用户名: 密码: 验证码:
生物酶法制备真菌菌丝体多糖的工艺优化及生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文将9种酶提取真姬菇、齿耳菌和乳牛肝菌菌丝体多糖的效果进行了比较;并首次利用均匀设计优化了真姬菇菌丝体多糖的提取条件;对获得的真姬菇、齿耳菌菌丝体多糖进行了抗肿瘤和抗氧化活性的检测;同时比较了真姬菇胞壁多糖和胞内多糖的生物活性。
     溶壁酶是提取3种真菌菌丝体多糖产量最高的酶类,其多糖产量分别是14.78±0.22 mg/g干菌丝、16.66±1.60 mg/g干菌丝、27.49±1.89 mg/g干菌丝,比对照提高了164.36%、156.68%、141.19%。在真姬菇和乳牛肝菌菌丝体多糖的提取中,中性蛋白酶A是最经济适合的酶类,其多糖产量分别为8.52±0.27 mg/g干菌丝、20.67±1.86 mg/g干菌丝,比对照提高了56.48%、44.85%;而在齿耳菌菌丝体多糖的提取中,中性蛋白酶A的多糖产量是7.39±0.16 mg/g干菌丝,比对照提高了13.86%,但与对照产量无差异显著性(p>0.05)。
     通过单因素实验获得了中性蛋白酶A酶解制备真姬菇菌丝体多糖的适宜酶用量、酶解时间、酶解温度、提取时间、提取温度和提取次数;采用均匀设计方法获得了中性蛋白酶A制备菌丝体多糖的最佳条件为:在2%酶用量下,43.05℃酶解4h,100℃提取1h,提取1次。该优化条件下多糖产量的预测值为16.65 mg/g干菌丝,验证实测值为15.73±0.15 mg/g干菌丝,优化条件下获得的多糖产量比优化前的产量提高75.0%,比热水提取法和微波辅助提取法分别提高122.5%和104.8%,表明酶解法是简便易行的高产制备真姬菇菌丝体多糖的方法。
     利用MTT法检测了真姬菇菌丝体多糖的抗肿瘤活性。果胶酶、酸性蛋白酶、纤维素酶A提取的菌丝体多糖对癌细胞(SGC7901)的抑制率显著高于其它酶及对照提取的多糖(p<0.05),其IC50分别是0.343 mg/mL、0.397 mg/mL、0.430 mg/mL。中性蛋白酶A提取的多糖的抗肿瘤活性的IC50是0.984 mg/mL。真姬菇胞壁多糖和胞内多糖的抗肿瘤活性试验表明,发挥抗肿瘤作用的多糖主要位于菌丝体胞内。
     不同酶类提取的齿耳菌菌丝体多糖的抗肿瘤活性试验表明,纤维素酶B提取的多糖的活性显著高于其他酶类提取的多糖(p<0.05),其抗肿瘤活性的IC50为0.863 mg/mL。
     抗氧化活性试验中,木瓜蛋白酶、果胶酶、中性蛋白酶A和B提取的真姬菇菌丝体多糖的抗氧化活性较高,他们的羟基自由基清除能力的EC50分别是51.98μg/mL、55.76μg/mL、63.56μg/mL、62.49μg/mL;超氧阴离子自由基清除能力的EC50分别是153.77μg/mL、195.61μg/mL、252.68μg/mL、219.85μg/mL。酶类对真姬菇胞壁多糖的抗氧化活性无影响。多糖的抗氧化活性成分主要存在于菌丝体胞内。
     木瓜蛋白酶提取的齿耳菌菌丝体多糖的总抗氧化能力,清除羟基自由基能力,超氧阴离子自由基清除能力均比其他酶提取的多糖高(p<0.05),其羟基自由基清除能力、超氧阴离子自由基清除能力的EC50分别是59.42μg/mL、74.78μg/mL。
9 evaluated enzymes were selected to extract polysaccharide from fungal mycelia, and then uniform design was utilized for optimaization of technology for high yield polysaccharides from Hypsizigus marmoreus mycelia. the anti-tumor and antioxidant activity of polysaccharide from fungal mycelia was discussed, and the bio-activity of the polysaccharide intro-mycelia and in the wall of mycelia was also discussed.
     It can get the hignest yield polysaccharides from Hypsizigus marmoreus, Suillus sp and Mycoleptodonoides.sp mycelia by lywallzyme, 14.78±0.22 mg/g, 16.66±1.60 mg/g, 27.49±1.89 mg/g, 164.36%, 156.68%, 141.19% higher than control. It was concluded that Neutral protease A was the most cost efficient among 9 evaluated enzymes when extraction of polysaccharide from mycelia of Hypsizigus marmoreus and Suillus sp, 8.52±0.27 mg/g, 20.67±1.86 mg/g, 56.48%, 44.85% higher than control.
     The single factor and uniform design experiment was conducted to optimize the conditions, and a regression model were constructed to predict polysaccharide yield from Hypsizigus marmoreus mycelia. The highest polysaccharide yield was obtained when 2% (w/w) of neutral protease was added into the hydrolytic reaction and incubated for 4 h at 43oC, and then extracted one time at 100 oC for 1 h. Using the regression model, the predicted polysaccharide yield was 16.65 (mg/g DMW), which was very close to the measured value of 15.73±0.15 (mg/g DMW). Thus the prediction equation was validated to accurately estimate polysaccharide yield. When following the optimized procedures, polysaccharide yield was raised 75.0% from that prior to optimization. Compared to hot-water extraction and microwave assisted extraction methods, enzymatic extraction method increased polysaccharide yield by 122.5% and 104.8%, respectively. It was concluded that enzymatic extraction is a simple, high yield method to prepare polysaccharide from Hypsizigus marmoreus mycelia.
     The anti-tumor activity of polysaccharides from Hypsizigus marmoreus mycelia by different enzymatic hydrolysis.has been observed. The test indicated that the anti-tumor activity of polysaccharides extracted by different enzymatic is different. The anti-tumor activity of polysaccharides from Hypsizigus marmoreu mycelia by pectinase, cellulase and acid protease is higher than by other enzymes. The polysaccharides from mycelia by pectinase, cellulose, acid protease and neutral protease 1 can obviously kill the tumor cell of SGC7901, 0.343 mg/mL, 0.397 mg/mL, 0.430 mg/mL, and 0.984 mg/mL respectively in 50% death rate. The anti-tumor activity of polysaccharides in mycelia is higher than polysaccharides from the wall of mycelia.
     The anti-tumor activity of polysaccharides from Mycoleptodonoides sp mycelia by cellulose B is higher than by other enzymes, it can obviously kill the tumor cell of SGC 7901 in 50% death rate with the dosage of 0.863 mg/mL. The antioxidant activity of polysaccharides from mycelia by different enzymatic hydrolysis.is also different. The antioxidant activity of polysaccharides from mycelia by pectinase, papain, neutral protease A and neutral protease B is higher than by other enzymes. Polysaccharides extracted by papain pectinase, neutral protease A and neutral protease B can obviously scavenge hydroxyl free radical, 51.98μg/mL,55.76μg/mL , 62.49μg/mL , 63.56μg/mL respectively in 50% scavenging rate. Polysaccharides extracted by them can obviously scavenge superoxide anion free radical, 153.77μg/mL,195.61μg/mL,219.85μg/mL,252.68μg/mL respectively in 50% scavenging rate.
     The antioxidant activity of polysaccharides in mycelia is higher than polysaccharides from the wall of mycelia.
     The antioxidant activity of polysaccharides from Mycoleptodonoides sp mycelia by papain is higher than by other enzymes, it can obviously scavenge hydroxyl free radical and superoxide anion free radical, with the dosage of 59.42μg/mL, 74.78μg/mL respectively in 50% scavenging rate.
引文
1 J. A. Takahashi, E. M. F. Lucas, Occurrence and Structural Diversity of Fungal Metabolites with Antibiotic Activity. Quimica Nova, 2008, 31(7): 1807-1813.
    2闵三弟.真菌的药用价值.食用菌学报, 1996, 3(4): 55-64.
    3 Thales R. Cipriani, Caroline G. Mellinger, Lauro M. de Souza. Acidic Heteroxylans from Medicinal Plants and Their Anti-ulcer Activity. Carbohydrate Polymers. 2008, 74(2): 274–278.
    4郝瑞芳,景浩.真菌多糖的研究进展.中国食物与营养, 2008(4): 19-22.
    5 Yong Ook Kim, Hae Woong Park, Jong Hoon Kim, et al. Anti-cancer Effect and Structural Characterization of Endo-polysaccharide from Cultivated Mycelia of Inonotus Obliquus. Life Sciences. 2006, 79(1): 72–80.
    6陈传红,金卫根,李荣同,等.真菌多糖药理作用研究进展.时珍国医国药, 2006, 17(6): 933-934.
    7叶红,余为一.药用真菌葡聚糖免疫调节作用的研究进展.中国药理学通报, 2009, 25(2): 153-156.
    8吴新君,毛培宏,金湘,等.食(药)用真菌多糖的研究.食用菌, 2006., 26(4): 3-5.
    9李永红,柴红梅,李树红,等.离褶伞研究进展.中国食用菌, 2008, 27(2): 10-12.
    10秦俊哲,陈明,陈合,等.食药用真菌多糖的研究现状与展望.中国食用菌, 2004, 23(2): 6-8.
    11 E. R. Carbonero, A. H. P. Gracher, D. L. Komura, et al. Lentinus Edodes Heterogalactan: Antinociceptive and Anti-inflammatory Effects. Food Chemistry, 2008, 111(3): 531–537.
    12刘天龙,许剑琴.多糖现代研究及应用进展.中国兽医杂志, 2004, 40(3):24-26.
    13张树政.糖生物学:生命科学中的新前沿.生命的化学, 1999, 19(3): 103-106.
    14张峰源,张松.食药用真菌多糖及复合多糖生物活性研究.生命科学研究, 2006, 10(2): 85-90.
    15李小定,荣建华,吴谋成.真菌多糖生物活性研究进展.食用菌学报, 2002, 9(4): 50-58.
    16芮菁.香菇多糖的药理作用和临床应用概况.天津药学, 2000, 12(1): 35-37.
    17黎雪如.枸杞多糖对小鼠腹腔巨噬细胞C36和FC受体的影响.中国实验临床试验杂志, 1990, 16(5): 29-31.
    18 L. Is, ZB. Fin, Q. Chen, et al. Antagonistic Effect of Ganoderma Lucidum Polysaccharides on The Immunosuppressive Response Induced by Ciclosporin A,hy-drocortisonean Dantitumoragents. ChinJPharmToxico, 1993, 7: 183-18.
    19 József Zákány, Goro Chihara, József Fachet. Effect of Lentnan on Tumor Growth in Murine Allogeneic and Syngeneic Hosts. Experimental Cancer, 1990, 25: 371.
    20成静,祝寿芬.大刺猴头(88)多糖的免疫调节功能.卫生毒理学杂志, 2001, 9: 165-166.
    21 S. Yoshio, T. Tabata, S. Hazama, et al. Immunoregulatory Effects of The Antitumor Polysaccgaride Lentinan on Th1/Th2 Balance in Patients with Digestive Cancer. Anticancerres, 2000, 20(6c): 4707-4711.
    22李汾,哀秉祥.纯化百合多糖抗肿瘤作用和对荷瘤小鼠免疫功能的影响.现代肿瘤医学, 2008, 16(2): 188-189.
    23吕苏成,孔玮,曹巧利,等.茯苓多糖对荷瘤小鼠及老年人和肿瘤患者免疫功能影响的探讨.当代医师杂志, 1996,1(9): 5-7.
    24马兴铭赵进昌.六种多糖对小鼠免疫功能调节作用的比较.中药药理与临床, 2003, 19(4), 14-15.
    25翟少钦.生物多糖免疫作用的研究进展及应用.中兽医学杂志, 2001, (3): 2-5.
    26 E. M. Kidd. The Use of Mushroom Glucans and Proteoglycans in Cancer Treatment. Altern Med Rev, 2000, 5(1): 4-27.
    27 M. Fisher, L. X. Yang. Anticancer Effects and Mechanisms of Polysaccharide-k(PSK) Implications of Cancer Immunotherapy. Anticancer Res, 2002, 22(3): 1737-1754.
    28 Y. Kobayashi., K. Kariya, K. Saigenji, et al. Enhancement of Anti-cancer Activity of Cisdia Minedichloro-platinum by the Protein-bound Polysaccharide of Coriolus Versicolor QUEL (PS-K) in Vitro. Cancer Biother, 1994, 9(4): 351-358.
    29宁安红,孙晓东,曹婧,等.灵芝多糖抗肿瘤作用的初步探讨.中国微生态学杂志, 2003,15(6): 335-336.
    30赵世华,姚文兵,庞秀炳,等.灵芝多糖分离鉴定及抗肿瘤活性的研究.中国生化药物杂志, 2003,24(4): 173-176.
    31刘栋,钱建亚,卜敏.香菇多糖抗肿瘤作用研究现状.食用菌, 2003, (2), 43-44.
    32马连星,汤雷.香菇多糖治疗晚期癌症疗效观察.中国临床保健杂志, 2004,7(1): 43-44.
    33杜肖娜,王润田,刘殿武,等.中药猪苓多糖抑瘤作用机理的初探.中华微生物学和免疫学杂志, 2001, 21(3): 296-297.
    34王艳,王英,梁秀艳,等.猪苓多糖与5-氟尿嘧啶伍用对小鼠抗肿瘤及免疫功能的影响.中国中医药科技, 2002,9(6): 349-350.
    35余建国,姜正前,严晗光,等.茯苓多糖对雏鸡细胞免疫活性的影响及其抗肿瘤作用.中国兽医科技, 2004, 34(1): 70-73.
    36张文女,黄金龙.茯苓多糖的抗肿瘤作用.中草药, 1999,30(7):附3-4.
    37毛平.怀牛膝多糖抗凝血作用实验研究.时珍国医国药, 2000, 11(12): 1075-1076.
    38 Dongxiao, Sun-Waterhouse, Bronwen G. Smith, et al. Effect of Raw and Cooked Onion Dietary Fibre on the Antioxidant Activity of Ascorbic Acid and Quercetin. Food Chemistry, 2008, 11(3): 580–585.
    39 Z. Hromádková, Z. Ko?t, A. Ebringerová. Comparison of Conventional and Ultrasound-assisted Extraction of Phenolics-rich Heteroxylans from Wheat Bran. Ultrasonics Sonochemistry, 2008, 15(6): 1062–1068.
    40刘鹏举,薛小刚,马镝,等.水溶性酸浆果多糖的提取及清除自由基作用的研究.食品科技, 2007(12).
    41苏瑛.淫羊藿多糖的酶法提取及其抗氧化作用的研究.食品科技, 2009, 34(4).
    42张方乐,方敏,王推峰,等.芦荟多糖的提取和体外抗氧化活性研究.食品工程技术, 2000, 2(15): 26-29.
    43黄飞.山楂叶多糖的功能活性测定研究.广西轻工业, 2001(2), 47-49.
    44王志洁,黄铁牛,刘焱文,等.黄芪总多糖抗HSV-2的实验研究.安徽中医学院学报, 2002(2): 27-29.
    45杨清香,潘锋.阿魏菇子实体粗多糖提取的研究.食品科技, 2007, 32(12): 90-93.
    46高玉荣,孙文红.超声波辅助提取灵芝菌丝胞内多糖的研究.食品科技, 2007, 14(2): 24-26.
    47林增祥,付永前,王倩,等.耐高温阿魏菇胞内多糖提取工艺研究.江苏食品与发酵, 2006(3): 13-16.
    48 Yang Bao, Zhao Mou-ming, Jiang Yue-ming. Optimization of Tyrosinase Inhibition Activity of Ultrasonic-extracted Polysaccharides from Longan Fruit Pericarp. Food Chemistry, 2008, 110(2): 294–300.
    49 Ye Hong, Wang Ke-qi. Purification, Antitumor and Antioxidant Activities in Vitro of Polysaccharides from the Brown Seaweed Sargassum Pallidum. Food Chemistry, 2008, 111 (2): 428–432.
    50 Fu Yu-Jie, Liu Wei. Breaking the Spores of the Fungus Ganoderma Lucidum by Supercritical CO2. Food Chemistry, 2009, 112 (1): 71–76.
    51 J. S. Rokem, D. Klein, H. Toder, et al. Degradation of Fungal Cell Walls Taking into Consideration The Polysaccharide Composition. Enzyme Microb Technol. 1986,8:588-592.
    52谢红旗,周春山,杜邵龙.酶法提取香菇多糖新工艺研究.食用菌, 2006,27(4): 59-61.
    53沈爱英,谷文英.复合酶法提取姬松茸子实体多糖的研究.食用菌, 2001, (3): 7-9.
    54于淑娟,高大雄,李国基.超声波酶法提取灵芝多糖的机理研究.华南理工大学学报, 1998, 26(2): 123-127.
    55刘青娥.酶法提取袖珍菇多糖工艺的研究.食品研究与开发, 2008, 29: 53-55.
    56张欣,韩增华,孔祥辉,等.酶法提取香菇柄多糖.生物技术, 1999, 9(1): 21-24.
    57马淑凤,王利强,胡志超,等.酶法提取白灵菇深层发酵菌丝体多糖的研究.农业工程学报, 2006, 22(9): 198-201.
    58陈石良,孙震,谷文英,等.灰树花深层发酵菌丝体的酶法提取及其抗肿瘤作用.无锡轻工大学学报, 2000,19(4): 336-339;33.
    60马春,董秀萍,朱蓓薇.复合酶法提取姬松茸胞内多糖.大连轻工业学院学报, 2005, 24(3): 195-198.
    60梁敏,邬洪源.复合酶法提取香菇多糖.高师理科学刊, 2008, 28(6): 72-74;83.
    61赵玉,徐雅琴.微波协同酶法提取南瓜多糖最佳提取条件的研究.食品工业科技, 2009,30(1): 221-222.
    62崔红霞,苏富琴,赵学梅.姬松茸多糖抗肿瘤作用研究.中药药理与临床, 2006: 22(2): 27-29.
    63 S. Furukawa. In Vitro Chemosensitivity of Hepatocellular Carcinoma for Hepatic Arterial Infusion Chemotherapy Using the MTT Assay with The Combinations of Antitumor Drugs. Kurume Med J, 2004, 51(1): 25-33.
    64王雪.裙带菜多糖抗肿瘤作用的研究.大连医科大学学报, 2006, 28(2): 98-100.
    65 Xiao Y, Li JD, Shi HL, et al. Predictive Value of in Vitro MTT Assay Chemosensitivity Test of Cytotoxic Drug Activity in Cervical Cancer . Ai Zheng, 2007, 26(4): 386-389.
    66 T. Mosmann. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J Immunol Methods, 1983, 65(1-2): 55-63.
    67黄滨南.黑木耳多糖抗肿瘤作用的研究.哈尔滨商业大学学报, 2004,20(6): 648-651.
    68张峰,高群,孔令雷,等.黄精多糖抗肿瘤作用的实验研究.中国实用医药, 2007, 2(21).
    69沈健,陈增良,沈香娣,等.茶多糖抗肿瘤及其增强免疫作用的研究.浙江预防医学, 2007, 19(8): 10-12.
    70张佳佳,戴静波,陈莉莉,等.利用稻瘟霉分生孢子追踪分离黑乳海参活性成分.中药材, 2008(07): 1001-1003.
    71张祎,王涛,裴月湖,等.利用生物模型-稻瘟霉筛选活性菌株.沈阳药科大学学报, 2002(06).
    72泰省,易杨华,武晓娟,等.利用稻瘟霉模型筛选铁刀木生物活性成分.解放军药学学报, 2006(04): 251-253.
    73唐裕芳,张妙玲,陶能国,等.苍术挥发油的提取及其抑菌活性研究.西北植物学报, 2008, 28 (3): 0588– 0594.
    74林桂兰,许学书.食用菇多糖提取物体外抗氧化性能研究.华东理工大学学报, 2009, 32(3).
    75 M. J. Thomas. The Role of Free Radicals and Antioxidants. Nutrition, 2000, 16(7): 716-718.
    76周连文,张存兰,刘新华.酶辅助超声波提取何首乌多糖及其抗氧化性研究.食品科技, 2008, 33(1).
    77 Li SP, Zhang GH, Zeng Q, et al. Hypoglycemic Activity of Polysaccharide with Antioxidation Isolated from Cultured Cordyceps Mycelia. Phytomedicine. 2006(13): 428-433.
    78赵帜平,沈业寿,葛盛芳,胡家菊.丹皮多糖分离纯化和降血糖作用研究.安徽大学学报, 1999, 23(2).
    79 Chung CS, Lu MK, Cheng JJ, et al. Antiangiogenic Activities of Polysaccharides Isolated from Medicinal Fungi. FEMS Microbiol Lett , 2005, 249: 247-54.
    80张拥军.南瓜多糖的分离、分析与降糖性质研究.中国计量学院学报, 2004, 15 (3): 0238- 0241.
    81周杰,丁建平,王泽农等.茶多糖对小鼠血糖、血脂和免疫功能的影响.茶叶科学, 1997, 17 (1): 75—79.
    82韦璐,秦小明,林华娟.金花茶多糖的降血脂功能研究.食品科技, 2008, 33(7).
    83张建峰.红曲多糖的免疫活性研究.食品科学, 2008, 29(2): 391-393.
    84高丽君.白首乌多糖的免疫活性研究.食品科学, 2008, 29(10): 546-548.
    85于丽萍,邹碧珍,李新玉,等.真菌多糖对小鼠腹腔巨噬细胞免疫功能的影响.生物技术, 1998, 8(2): 38-40.
    86仰榴青.五味子醇提残渣中粗多糖的免疫活性研究.食品科学, 2008, 29(6):392-394.
    87 H. Tada, O. Shiho, K. Kuroshima, et al. An Improved Colorimetric Assay for Interleukin 2. J Immunol Meth2ods, 1986, 93: 157– 165.
    88周爱武,葛志东,梁君山,等.香菇多糖的免疫调节作用.中国药理学通报, 1995, 11(2): 157-159.
    89聂凌鸿,宁正祥.广东淮山多糖的纯化及化学结构鉴定研究.林产化学与工业, 2004, 24(z1): 101-106.
    90皮文霞,丁辉,程爱斌.芦荟多糖的纯化与体外抗肿瘤活性.中国天然药物, 2007, 5(6).
    91 H. Tada, O. Shiho, K. Kuroshima, et al. An Improved Colorimetric Assay for Interleukin 2. J Immunol Meth2ods, 1986, 93: 157– 165.
    92王继韶,李颖.常用实验设计与优化方法及其在发酵试验中的应用.实验室科学, 2007, (1): 60-62.
    93方开泰.均匀设计-数论方法在实验设计的应用.应用数学学报, 1980(04): 363-372.
    94夏之宁,谌其亭,穆小静,等.正交设计与均匀设计的初步比较.重庆大学学报(自然科学版), 1999, 22(5): 112-117.
    95张里千.关于正交设计与均匀设计的比较(Ⅰ).数理统计与管理, 1995, 14(1): 25-29.
    96罗颠辉.均匀设计法优化超声波提取牛蒡多糖工艺的研究.河南师范大学学报(自然科学版), 2008, 36(1): 115-117.
    97郑宇,林兴生,陈福如.真姬菇生物学特性研究初报.食用菌, 2001, 22(3): 12-13.
    98孙培龙,魏红福,杨开,等.真姬菇研究进展,食品科技, 2005(9): 54-56.
    99 Kazutaka Tsuchida, Yutaka Aoyagi, Shoji Odani, et al. Isolation of A Novel Collagen - binding Protein from the Mushroom, Hypsizigus Marmoreus, Which Inhibits the Lewis Lung Carcinoma Cell Adhesion to Type IV Collagen. J Biol Chem, 1995, 270(4): 1481-1484.
    100 Liotta, L. A. Rao. Biochemical Interactions of Tumor Cells with The Basement Membrane. Annu Rev Biochem, 1986, 55: 1037-1057.
    101 Yutaka Shoh, Mamoru Isemura, Haruhiko Muto, et al. Isolation of A 41kDa Protein with Cell Adhesion Activity for Animal Cells from the Mushroom Hypsizigus Marmoreus by Affinity Chromatography with Type IV Collamobilized.Bio.Biotechnol.Biochem, 2000, 64(4): 775-780.
    102 Yasukawa Ken, Aoki Takashi, Takido Michio. Inhibitory Effects of ErgosterolIsolated from the Edible Mushroom Hypsizigus Marmoreus on TPA-induced Inflammatory Earedema and Tumor Promotion Inmice. Phytotherapy Research, 1994, 8(1): 10-13.
    103 Tetsuro Ikekawa. Beneficial Effects of Edible and Medicinal Mushrooms on Health Care. International journal of Medicinal Mushrooms, 2001, (3): 291- 298.
    104 T. Ikekawa, H. Saitoh, W. Feng, et al. Antitumor Activity of Hypsizigus Marmoreus I:Antitumor Activity of Extracts and Polysaccharides. Chemical and Pharmaceutical Bulletin, 1992, 40(7): 1954-1957.
    105 Yuuichi Ukawa, Hitoshi Ito, Makoto Hisamatsu, et al. Antitumor Effects of (l- 3)-β- D- Glucan and (l-6)-β-Dglucan Purified from Newly Cultivated Mushroom Hatakeshimeji (Lyophyllum decmtes Sing). Journal of Bioscience and Bioengineering, 2000, 90(1): 98-104.
    106 T. Matsuzawa, M. Sano, I. Tomita, et al. Studies on Antioxidant Effect of Hypsizigusmarmoreus I: Effects of Hypsizigus Marmoreus for Antioxidant Activities Ofmice Plasma. Journal of the Pharmaceutical Society of Japan, 1997, 117(9): 623-628.
    107 Susumu Maruyama. HIV-1 Protease-Inhibiting Substances. AIST Today, 2002, 2(10): 11.
    108 S. K. Lam, T. B. Ng. Hypsin a Novel Thermostable Ribosome-Inactivating Protein with Antifungal and Antiproliferative Activities from Fruiting Bodies of The Edible Mushroom Hypsizigus marmoreus. Biochemical and Biophysical Research Communications, 2001, 285: 1071-1075.
    109 Ikemizu Shoichi, Kishimoto Makio, Konishi Haruo. Angiotensin-converting Enzyme Inhibitors of Bunashimeji and Enokitake. JP: 08099895, 1996gen Im.
    110樊锦艳,王秋颖.食药用真菌多糖的研究及开发利用.食品工业科技, 2003, 24(12): 106-107.
    111秦俊哲,陈明,陈合,等.食药用真菌多糖的研究现状与展望.中国食用菌, 2004, 23(2): 6-9.
    112王斌,连宾.食药用真菌多糖的研究与应用.食品与机械, 2005, 21(6): 96-100.
    113郭嘉铭,上官舟建.药用真菌的研究与开发概述.中国食用菌, 1994, 13(3): 8–10.
    114 M. Dubois, K. A. Gillis, J. K. Hamilton, P. A. Rebers, et al. Colorimetric Method for Determination of Sugar and Related Substance. Anal. Chem. 1956, 28: 350–356.
    115程俊文,吴学谦.香菇子实体多糖分步酶解法提取研究.食用菌学报,2009.16(2): 67-71.
    116张立娟,于国萍,周国华.黑木耳多糖酶法提取条件的研究.食品研究与开发. 2005, 25(3): 89-91.
    117 K. T. Fang, D. K. J. Lin, P. Winker, et al. Uniform Design: Theory and application. Technometrics, 2000,42(3): 237-248.
    118 R. Z, D. K. J. Lin, Y. Chen. Uniform Design: Design, Analysis and Applications. International Journal of Materials & Product Technology, 2004, 20(1-3): 101-114.
    119郭霞.桑黄菌丝体多糖提取方法比较及优化研究.食用菌, 2009, 30(3), 62-64.
    120汪虹,翟伟菁,曹群华,等.酶法提取金耳多糖的研究简报.食用菌, 2002, 24(2): 7-8.
    121周大寨,朱玉昌,黄卫.复合酶法提取板党多糖的研究.时珍国医国药, 2009, 20(8): 1928-1929.
    122靳挺,沈波,吴天星.纤维素酶法提取富硒灵芝菌丝体多糖的研究.中国食品学报, 2007, 7(4): 33-36.
    123陈芝兰,张涪平,钟国辉,等.淡红蜡伞子实体水溶性粗多糖提取方法探索.食用菌学报, 2006, 13(4): 57-59.
    124程超,李伟,汪兴平.平菇水溶性多糖表征与体外抗氧化作用.食品科学, 2005, 26(8): 55-57.
    125严军,郭晓冬,邬晓勇,等.银耳多糖的提取及其清除自由基的作用.成都大学学报(自然科学版), 2006, 25(10): 35-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700