用户名: 密码: 验证码:
预应力混凝土连续刚构桥结构性能退化预测评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海工建筑物和公路桥梁常因氯盐等环境因素引起钢筋锈蚀而使结构性能退化、承载能力降低,甚至毁损破坏,不得不花费巨资维修甚至重建,造成巨大的经济损失和严重的社会影响。本文结合“大跨度移动模架现浇箱梁裂缝控制技术及耐久性研究”项目,以广州珠江黄埔大桥引桥段预应力混凝土连续刚构桥为工程背景,对移动模架施工的薄壁混凝土箱型桥梁结构的耐久性进行试验分析、状态评估、寿命预测,同时考虑材料性能退化,对其运营阶段结构的极限承载能力进行分析预测研究,主要的研究成果如下:
     (1)确定了黄埔桥的主导腐蚀环境—氯离子侵蚀。讨论了氯离子对混凝土结构的侵蚀机理和破坏形式,采用NEL法测定黄埔桥引桥段墩身和箱梁混凝土氯离子的扩散系数,并根据混凝土渗透性评价标准,对黄埔桥引桥段的墩身和箱梁混凝土的渗透性等级进行评定。
     (2)基于Fick第二扩散定律,通过参数定义综合考虑氯离子扩散系数的时随效应、混凝土的氯离子结合能力,混凝土自身的材料缺陷对氯离子在混凝土中扩散过程的影响,建立了多因素作用下的氯离子在混凝土中扩散的修正模型,研究给出了模型中各参数的取值,利用该模型,结合已有研究的实测数据对该模型进行了验证,取得了较为满意的结果。
     (3)基于上述扩散模型,以钢筋表面的氯离子浓度达到临界值导致钢筋开始锈蚀作为结构寿命终结的标志,采用不同的方法进行结构寿命预测:定值法,即将扩散模型中的若干参数作为常变量处理,取一代表值直接计算;利用经典概率论方法,考虑参数的随机特性,推导了基于概率的混凝土结构工作寿命期望值及相应失效概率的计算公式;引入可靠度概念,把临界浓度的氯离子侵入深度看作环境荷载,保护层厚度看作结构抗力,采用蒙特卡洛法进行可靠度计算,通过引入目标可靠度进行结构的寿命预测。采用上述三种方法,针对黄埔大桥钢筋混凝土引桥段的墩身和箱梁混凝土进行基于耐久性的寿命预测,不同方法的预测结果能够相互吻合。
     (4)基于灰色关联和模糊识别理论,采用非线性的归一化处理方法,引入信息熵和复合权重的概念,综合考虑专家经验和检测数据自身的重要性,建立了混凝土构件的耐久性评估模型,并给出了工程算例。该评估模型可一次对多个构件进行评估,且具有广泛的适用性,不仅局限于对混凝土耐久性能的评估。
     (5)基于材料性能的退化,以黄埔大桥的预应力混凝土连续刚构桥为背景,从空间单元模式、预应力空间效应分析、阶段模型应力处理、材料非线性的考虑等方面对在役预应力混凝土桥梁结构的极限承载能力及退化规律进行了分析研究。结果表明材料的性能退化对结构的极限承载能力有较大影响,破坏时的载荷因子出现大幅下降,且破坏时的脆性特征加剧,有从整体破坏向局部破坏转化的趋势。
Marine structures and highway bridges usually suffered environmental loads, such as chloride ion corrosion. It caused structural behavior degeneration、bearing capacity decreasing, even structural failure, and lead to tremendous economic loss and severe social impact. According to the item of "Study on crack control technology and durability for cast-in-place box girder by large span Movable Scaffolding System (MSS)", on the background of Huang-pu Bridge project, aiming at P.C. continuous rigid frame bridge with thin-walled box section, the series studies were carried out - including experimental analysis of material durability, condition assessment, life prediction, ultimate bearing capacity analysis and prediction on service stage based on material degradation. And the primary achievements are listed as follows:
     (1) Chloride ion was identified as main erosion environment of Huang-pu Bridge. Corrosion mechanisms of chloride ion and damage modals of concrete structures suffered chloride erosion were discussed. The NEL method was adopted, and the chloride ion diffusion coefficient of piers & box girders of approach bridge was measured. According to the assessment standard of concrete permeability, the permeability grade evaluation of piers & box girders were performed.
     (2) Based on Fick's second law, a new chloride diffusion model in concrete was formulated, in which the factors of time-dependence of chloride diffusion coefficient, chloride binding capacity of concrete, and self-defects of concrete were taken into account. And the parameters value in the model was given for practical application. The model was verified by long-term field data that are available in published literatures. The practical data agreed with the calculated results very well.
     (3) Based on the diffusion model, three different life prediction methods were presented, with the state that chloride ion concentration on rebar surface reached the threshold value was regarded as a sign of end of life. The first method assumed parameters in diffusion model as constant, the representative value was employed to calculate; And based on classical probability theory, the parameters randomness was considered, then expected value of service life and corresponding failure probability of concrete structure were further deduced in second method; By introducing the concept of reliability, the chloride ion penetration depth in limit state was taken as environment load, and the cover thickness was taken as resistance, monte carlo method was adopted to calculate reliability of structure. Through the introduction of target reliability, life prediction could be easily performed. By using above methods, aiming at piers & box girders of approach bridge of Huang-pu Bridge, service life prediction were carried out and the results could be matched each other.
     (4) Based on grey correlation and fuzzy recognition, a durability assessment model of concrete members was established, in which nonlinear normalization processing method was adopted. By introducing combinatorial weight, the importance of expert experience and inspection data were taken into account. The model was testified by practical engineering example at last. By using this model, several concrete members could be evaluated at one time, and it has widely applicability, not only confined to concrete durability assessment.
     (5) With a case study of P.C. continuous rigid frame bridge of Huang-pu Bridge , on the basis of material performance degradation, the ultimate bearing capacity analysis of P.C. bridge structures was carried out from several aspects: space element mode, spatial prestressing effect, treatment of stage model stress, and material nonlinear effect. The results showed that material degradation has great impact on ultimate load capacity of structure: the load factor on limit state dropped rapidly and brittle characteristics was aggravated at the same time.
引文
[1-1]金伟良,赵羽习.混凝土结构耐久性研究的回顾与展望[J].浙江大学学报(工学版),2002,36(4):371-380.
    [1-2]李清富,赵国藩,王恒栋.混凝土结构的耐久性预评估[J].混凝土,1995,No1:54-56.
    [1-3]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002.
    [1-4]覃维祖.混凝土结构耐久性的整体论[J].建筑技术,2003,30(1):19-22.
    [1-5]陈肇元.土建结构工程的安全性与耐久性[M].北京:中国建筑工业出版社,2003.
    [1-6]石利强.既有钢筋混凝土桥梁耐久性研究[D].西安:长安大学硕士学位论文,2005.
    [1-7]M.Yunovich.Highway Bridges,Appendix D,Corrosion Costs and Preventive Strategies in the United States,Report FHWA-RD-01-156,Sept,2001.
    [1-8]洪定海.混凝土中铟筋的腐蚀与保护[M].北京:中国铁道出版社,1998.
    [1-9]罗福午.建筑结构缺陷事故的分析及防止[M].北京:清华大学出版社,1996.
    [1-10]Mehta,P.K.Durability-Critical Issues for the Future[J].Concrete Internatioal,1997,vol19:27-33.
    [1-11]J.L.Smith,Y.P.Vermani.Materials and Methods for Corrosion Control of Reinforced and Prestressed Concrete in New Construction,FHWA-RD-081,FHA,Aug,2000.
    [1-12]陈肇元.土建结构工程的安全性与耐久性—现状、问题与对策[R].中国工程院土木水利与建筑学部,工程结构的安全性与耐久性研究咨询项目组.
    [1-13]日本土木工程学会编,张富春译.混凝土构筑物的维护、修补与拆除[M].北京:中国建筑工业出版社,1990.
    [1-14]万德友.我国铁路桥梁病害浅析与对策[R].中国铁道学会桥梁病害诊断与剩余寿命评估学术讨论会,大连,1995.
    [1-15]仲伟秋.既有钢筋混凝土结构的耐久性评估方法研究[D].大连:大连理工大学博士学位论文,2003.
    [1-16]卢木.混凝土耐久性研究现状和研究方向[J].工业建筑,1997,27(5):1-6.
    [1-17]P-C Aitcin.Cement of Yesterday and Today & Concrete of Tomorrow.Cement and Concrete Research[J],30(3):128-143,2000.
    [1-18]邓敏,唐明述.混凝土的耐久性与建筑业的可持续发展[J].混凝土,1999,N02:8-12.
    [1-19]朱平华.混凝土结构耐久性设计与评估[D].杭州:浙江大学博士后研究工作报告,2006.
    [1-20]李田.混凝土结构耐久性研究的概况与若干特点[J].建筑结构,1995,NO.12:42-50.
    [1-21]贡金鑫,赵国藩.钢筋混凝土结构耐久性研究的进展[J].工业建筑,2000,30(5):1-5.
    [1-22]Durable Concrete Structure Design Guide(CEB).Thomas Telford,Switzerland,1992.
    [1-23]Ton Siemes.Introduction to DuroNet:Services Life Design of Concrete Structures—From Theory to Standardization[R].3~(rd) DuraNet Workshop Troms,Norway,2001,pp8-11.
    [1-24]G.J.Frohnsdorff,James R.Clifton.Virtual Cement and Concrete[R].PCA Emerging Technologies Symposium on Cement in 21st Century,1995.
    [1-25]G.J.Frohnsdorff,J.W.Martin.Towards Prediction of Building Service life:the Standards Imperative[C].7~(th) International Conference on the Durability of Building Materials and Components,Stockholm,1996.
    [1-26]G.J.Frohnsdorff.Predicting the Service lives of Materials of Construction[C].'Materials for the New Millennium'.Proceedings of the 4~(th) Materials Engineering Conference.1996,pp38-53.
    [1-27]M.Masi,D.Colella,G.Radaelli.Simulaation of Chloride Penetration in Cement-Based Materials[J].Cement and Concrete Research,1997,27(10):1591-1601.
    [1-28]Koichi MAEKAWA,Eetsuya ISHIDA.Service-life Evaluation of Reinforced Concrete under Coupled Forced and Environmental Actions.Concrete Technology for a Sustainable Development in the 21~(st) Century.Edited by O.E.Gjorv and K.Sakai,Published in 2000 by E&FN Spon,London.
    [1-29]LE.C.Bentz M.D.A.Thomas.Life-365 Manual.2001.
    [1-30]史庆轩,李小建,牛荻涛.锈蚀钢筋混凝土偏心受压构件承载力试验研究[R].攀登计划项目年度研究报告.清华大学土木工程系,西安建筑科技大学建筑工程系,1998.
    [1-31]张誉,刘亚芹,张伟平等.混凝土碳化深度计算模式的试验与修正[R].攀登计划项目年度研究报告.上海:同济大学结构工程学院,1996.
    [1-32]王林科,牛荻涛,王庆霖.混凝土中钢筋腐蚀模型验证分析[R].攀登计划项目年度研究报告.北京:清华大学土木工程系,1996.
    [1-33]中华人民共和国建设部.混凝土结构设计规范(GB50010-2002).北京:中国建筑工业出版社,2002.
    [1-34]康保惠.中港系统东北(锦州港)建筑材料暴露试验站的设计与建造[J].中国港湾建设,2004, 129(2):35-38.
    [1-35]耿欧,袁迎曙.钢筋混凝土耐久性人工气候加速退化试验的相关性研究[J].混凝土,2004,No1:29-31.
    [1-36]Guo Li,Ying-shu Yuan.Lag Effects of Environmental Temperature and Relative Humidity in Concrete[C].“混凝土与结构新进展”国际会议论文集,江苏徐州,2004.
    [1-37]李云峰.混凝土结构环境模拟试验技术及相关理论研究[D].南京:河海大学博士学位论文,2005,9.
    [1-38]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003.
    [1-39]岸谷孝一.铁筋混凝土在大气环境下的耐久性[M].日本:鹿岛建设技术研究所出版部,1963.
    [1-40]Lesage-de-Contenay C.Deterioration and repair.[J].Bahrain Proc.1995,NO.6:467-483.
    [1-41]张誉,蒋利学.基于碳化机理的混凝土碳化深度实用数学模型.工业建筑,1998,28(1):16-19.
    [1-42]邸小坛,周燕.混凝土碳化规律研究.中国建筑科学研究院,1995.
    [1-43]金伟良,鄢飞,张亮.考虑混凝土碳化规律的钢筋锈蚀率预测模型[J].浙江大学学报(工学版),2000,34(2):158-163.
    [1-44]金伟良,张亮,鄢飞.函数型神经网络法在混凝土碳化分析中的作用[J].浙江大学学报(工学版),1998,32(5):519-525.
    [1-45]屈文俊,张誉.构件截面混凝土碳化深度分布的有限元分析[J].同济大学学报,1999,27(4):412-416.
    [1-46]朱伯龙,肖建庄.碳化混凝土的结构性能[J].工业建筑,1998,28(9):41-48.
    [1-47]P.A.M.Basheer,S.E.Chidiact,A.E.Long.Predictive models for deterioration of concrete structures[J].Construction and Building Materials,1996,10(1):27-37.
    [1-48]洪乃丰.混凝土中钢筋腐蚀与防护技术(3)——氯盐与钢筋锈蚀破坏[J].工业建筑,1999,29(10):60-63.
    [1-49]Fluge,F.Marine chloddes—A probabilistic approach to derive provisions for EN 206-1[C].3~(rd)Workshop on Service Life Design of Concrete Structures from Theory to Standardisation,Troms,Norway,June 2001.
    [1-50]Helland S.Assessment and prediction of service life of marine structures—A tool for performance based requirements[C].Workshop on Design of Durability of Concrete,Berlin,June 1999.
    [1-51]余红发,孙伟,麻海燕等.混凝土在多重因素作用下的氯离子扩散方程[J].建筑材料学报,2002,5(3):240-247.
    [1-52]洪乃丰.混凝土中钢筋腐蚀与防护技术(1)—氯盐与钢筋锈蚀破坏[J].工业建筑,1999,29(10):60-63.
    [1-53]徐善华.混凝土结构退化模型与耐久性评估[D].西安建筑科技大学博士学位论文.西安:2003,5.
    [1-54]岸谷孝一.大气环境下铁筋的腐蚀性能研究[R].日本建筑学会论文报告集,1979,11-15.
    [1-55]Syed Ehtesham Hussain,Ahmad S.AI-Gahtani,Rasheeduzzafar.Chloride Threshold for Corrosion of Reinforcement in Concrete[J].ACI Material Journal.1994,94(6):283-292.
    [1-56]Bazant ZP.Physical Modal for Steel Corrosion in Concrete Sea Structure—Theory[J].Journal of Structure Divion.ASCE,1979,135(6):1137-1153.
    [1-57]Bazant ZP.Physical Modal for Steel Corrosion in Concrete Sea Structure—Application[J].Journal of Structure Divion.ASCE,1979,135(6):1155-1166.
    [1-58]刘西拉,苗澍柯.混凝土结构中的钢筋锈蚀及结构计算[J].土木工程学报,1990,23(4):69-78.
    [1-59]Morinaga S.Prediction of Service Life of Reinforced Concrete Building Based on the Corrosion Rate of Reinforcing Steel[C].Durability of Building Materials and Components,Proceeding of the 5~(th)International Conference Held in Brighton UK,1990.
    [1-60]邸小坛,周燕.大气环境下钢筋锈蚀规律的研究[C].第四届全国混凝土耐久性学术交流会议论文集,1996,11.
    [1-61]袁迎曙,贾福萍,蔡跃.锈蚀钢筋的力学性能退化研究[J].工业建筑,2000,30(1):43-46.
    [1-62]惠云玲,林志伸,李荣.锈蚀钢筋性能试验研究分析[J].工业建筑,1997,26(6):10-13.
    [1-63]张平生,卢梅,李晓燕.修饰钢筋的力学性能[J].工业建筑,1995,25(9):41-44.
    [1-64]龚洛书,刘春圃.混凝土的耐久性及其防护修补[M].北京:中国建筑工业出版社,1990.
    [1-65]邓正刚,李金玉,曹建国等.安全抗冻混凝土技术条件国内外概况综述—重点工程混凝土耐久性的研究与工程应用[M].北京:中国建材工业出版社,2000.
    [1-66]Andrade C,Alonso C,Molina FJ.Cover Cracking as a Function of Rebar Corrosion:Part I-Experimental Test[J],Material and Structure,1993,26(163):453-464.
    [1-67]Andrade C,Aionso C,Rodriguez J.et al.Factors Controlling Cracking of Concrete Affected Reinforcement Corrosion[J].Material and Structures,1998,31(211):435-441.
    [1-68]Rasheoduzzafar,S.S.AI-Saadoun,A.S.AI-Gahtani.Corrosion Cracking in Relation to Bar Diameter,Cover,and Concrete Quality[J].Journal of Materials in Civil Engineering,1992,4(4):327-342.
    [1-69]繁永森.铁筋的腐蚀速度基于铁筋锈蚀物胀裂[R].建筑物寿命预测研究,日本:清水建设研究报告,1998.
    [1-70]惠云玲.混凝土结构中钢筋锈蚀程度和预测试验研究[J].工业建筑,1997,27(6):6-9.
    [1-71]J.G.Cabrera,P.Ghoddoussi.The Effect of Reinforcement Corrosion on the Strength of the Steel/Cocrete "Bond"[C].Proceeding on International conference "Bond in Concrete".Latvia,1992:11-24.
    [1-72]G.J.AI-Sulaimaini,M.Kaleemullah,L.A.Basunbul,and Rasheeduzzfar.Influence of Corrosion and Cracking on Bond Behavior and Strength of Reinforced Concrete Members[J].ACI Structural Journal,1990,87(2):220-231.
    [1-73]潘振华,牛荻涛,王庆霖.锈蚀率与极限粘结强度关系的试验研究[J].工业建筑,2000,30(5):10-12.
    [1-74]王林科.锈后钢筋混凝土粘结锚固的试验研究[J].工业建筑,1996,26(4):14-16.
    [1-75]张伟平.混凝土结构的钢筋锈蚀损伤预测及其耐久性评估[D].同济大学博士学位论文,上海:1999,11.
    [1-76]赵羽习,金伟良.锈蚀钢筋与混凝土粘结性能的试验研究[J].浙江大学学报,2002,36(4):352-356.
    [1-77]Roberto Capozucca.Damage to Reinforced Concrete due to Reinforcement Corrosion[J].Construction and Building Materials,1995,9(5):295-303.
    [1-78]Mircea D.,Loani A.,Filip M,et al.Long-term Durability of Reinforced and Pre-stressed Elements in Aggressive Environments[J].ACI Material Journal,1994,91(2):135-140.
    [1-79]Pritpal S.Mangat,Mahouns S.Elgarf.Flexural Strength of Concrete Beams with Corroding Reinforcement[J].ACI Structural Journal,1999,96(1):149-158.
    [1-80]A.Almuasllam.,Yoshihiro Tachtbana,et al.Behavior and Punching Strength of R.C.Slabs Damaged by Corrosion of Reinforcement[J].Japan Society of Civil Engineers,1991,18(12):43-49.
    [1-81]Kiyoshi Okada,Kazuo Kobayashi,Toyoaki Miyagawa.Influence of Longitudinal Cracking due to Reinforcement Corrosion on Characteristics of Reinforced Concrete Members[J].ACI Structural Journal,1988,85(2):134-140.
    [1-82]史庆轩,李小建,牛荻涛.钢筋锈蚀前后混凝土偏心受压构件承载力试验研究[J].西安建筑科技大学学报,1999,31(3):218-221.
    [1-83]金伟良,赵羽习.锈蚀钢筋混凝土梁抗弯强度的试验研究[J].工业建筑,2001,31(5):9-11.
    [1-84]惠云玲.混凝土基本构件钢筋锈蚀前后性能试验研究[J].工业建筑,1997,27(6):14-18.
    [1-85]张富春译.已有建筑物可靠性鉴定方法和检验手册[M].北京:中国铁道出版社,1982.
    [1-86]Tuutti.Corrosion of Steel in Concrete[C].Aluminium,EUROCOR '77,Eur Congr on Met Corros,92nd Event of the Eur Fed of Corros,1977,p 655-661.
    [1-87]Henriksen C.F.Predicting of Service Life and Choice of Repair Strategy for RC structures[C].Proceedings of the 1997 MRS Fall Meeting.,U.S.A.,Boston,1998:207-214.
    [1-88]Cady P.D.and Weyers R.E.Deterioration Rates of Concrete Bridge Decks[J].Journal of Transportation Engineering.1984,10(1):34-45.
    [1-89]Weyers R.E.Service Life Model for concrete Structure in Chloride Laden Environments[J].ACI Materials Journal,1998,95(4):445-453.
    [1-90]M.Thomas,E.Bentz.Life-365 Computer Program for Predicting the Service Life and Life-Cycle Costs of Reinforced Concrete Exposed to Chlorides,American Concrete Institute,Detroit,MI,USA,2000.
    [1-91]肖从真.混凝土中钢筋腐蚀的机理研究及数论模拟方法[D].北京:清华大学博士学位论文,1995.
    [1-92]赵宏彦.一般大气条件下钢筋混凝土构件剩余寿命预测[D].北京:清华大学硕士学位论文,1995.
    [1-93]Thomas Telford.Durable Concrete Structure Design Guide(CEB).Switzerland,1992.
    [1-94]刘西拉.重大土木与水利工程安全性及耐久性的基础研究[J].土木工程学报,1998,34(6):1-7.
    [2-1]覃维祖.混凝土技术进展现状与可持续发展前景[J].施工技术,2006,35(4):1-4.
    [2-2]易成,谢和平,孙华飞.等.混凝土抗渗性研究的现状与进展[J].混凝土,2003,2:7-11.
    [2-3]覃维祖.混凝土性能对结构耐久性与安全性的影响[J].混凝土,2002,6:3-5.
    [2-4]PK Mehta,P Shiessl,M Raupach.Concrete:Structure,Properties,and Materials[C].第九届国际水泥化学会议综合报告译文集,1993,南京:南京化工学院
    [2-5]陈肇元.混凝土结构的耐久性设计方法[J].建筑技术,2003,34(5):328-333.
    [2-6]覃维祖.混凝土耐久性研究的现状和发展动向[J].建筑技术,2001,32(1):12-15..
    [2-7]孙国强,周云琴.杭州湾跨海大桥方案与混凝土结构耐久性的研究[c].第四届混凝土结构耐久性科技论坛论文集.杭州,2006,3.
    [2-8]Price,P.A.M.High Performance Concrete in Practice[R].Presented at the 22~(nd) Annual Convention of the Institute of Concrete Technology,March 1994.
    [2-9]吴中伟.高性能混凝土(HPC)的发展趋势与问题[J].建筑技术,1998,29(1):8-13.
    [2-10]王智,黄煜镔,王绍东.当前国外混凝土耐久性问题及其预防措施综述[J].混凝土,2000,1:52-57.
    [2-11]范立础.桥梁工程安全性与耐久性—展望设计理念进展[J].上海公路,2004,1:1-7.
    [3-1]金伟良,赵羽习.混凝土结构耐久性研究的回顾与展望[J].浙江大学学报(工学版),2002,36(4):371-380.
    [3-2]孙国强,周云琴.杭州湾跨海大桥方案与混凝土结构耐久性的研究[C].第四届混凝土结构耐久性科技论坛论文集.杭州,2006,3.
    [3-3]Price,P.A.M.High Performance Concrete in Practice[R].Presented at the 22~(th) Annual Convention of the Institute of Concrete Technology,March 1994.
    [3-4]Dunaszegi,Laszio.High-performance concrete in the Confederation Bridge(J).Concrete International,1998,20(4):66-68.
    [3-5]Falbe-Hansen,Klaus.Concrete for the Oresund Bridge(J).Concrete,1998,32(7):29-31
    [3-6]Mehta P K.Durability-critical Issues for the Future[J].Concrete International,1997,19(7):27-33.
    [3-7]Mehta P K.High Performance Concrete for the Future.Proceedings International Congress on High Performance Concrete[C].Brazil,1996:225-242.
    [3-8]Taywood Engineering Ltd.Condition Audit of Reinforced Concrete Piers and Review of Concrete Design for the Marine Environment Executive Summary.Oct.1996.
    [3-9]范宏,赵铁军,徐红波.码头混凝土中的氯离子侵入研究[J].水运工程,2006,4:49-53.
    [3-10]范志宏,杨福麟,黄君哲等.海工混凝土长期暴露试验研究[J].水运工程,2005,9:45-48.
    [3-11]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社.2003,2.
    [3-12]杜荣归,刘玉,林昌健.氯离子对钢筋腐蚀机理的影响及其研究进展[J].材料保护,2006,39(6):45-50.
    [3-13]赵筠.钢筋混凝土结构的工作寿命设计—针对氯盐污染环境[J].混凝土,2004,1:3-21.
    [3-14]刘斯凤.氯离子扩散测试方法演变和理论研究背景[J].混凝土,2002,10:21-24.
    [3-15]Standard Method for Sampling and Testing Chloride Ion in Concrete and Concrete Raw Materials (T260-94).American Association of State Highway and Transportation Officials,Washington,1994.
    [3-16]NT Build 443.Concrete hardened:accelerated chloride penetration[S].Finland:Nord test.
    [3-17]林宝玉,蔡跃波.海工混凝土耐久性室内与现场长期暴露试验研究[C].第四届混凝土结构耐久性科技论坛论文集.杭州,2006,3.
    [3-18]Whiting,D.Rapid Measurement of the Chloride Permeability of Concrete[J].Public Roads.1981,45(3):101-112.
    [3-19]混凝土结构耐久性设计与施工指南[M].中国工程院土木水利与建筑学部,工程结构安全性与耐久性研究咨询项目组.北京:中国建筑工业出版社,2004.
    [3-20]C.C.Yang.Relationship Between Migration Coefficient of Chloride lons and Charge Passed in Steady State[J].ACI Materials Journal,2004,101(2):124-130.
    [3-21]路新瀛,王晓睿,张华新.ASTMC 1202试验方法评述[J].工业建筑,2004,34(4):89-91.
    [3-22]C.C.Yang,S.W.Cho.Relationship Between Chloride Migration Rate for Concrete and Electrical Current in Steady State Using Accelerated Chloride Migration Test[J].Materials and Structure,2004,37(271):456-463.
    [3-23]Tang,L.Nilsson,L.Chloride Diffusivity in High Strength Concrete at different ages[J].Nordic concrete Research,11:162-170.
    [3-24]中国工程院土木水利与建筑学部工程结构安全性与耐久性研究咨询项目组.混凝土结构耐久性设计与施工指南[S].北京:中国建筑工业出版社,2004.
    [3-25]Lu Xinying.Application of the Nemst-Einstein equation to concrete.Cement and Concrete Research,1997,27(2):293-302.
    [4-1]Ton Siemes.Introduction to DuroNet:Services Life Design of Concrete Structures—From Theory to Standardization[C]//3~(rd) DuraNet Workshop Tromsφ,Norway,2001.
    [4-2]LE.C.Bentz,M.D.A.Thomas.Life-365 Manual.2001.
    [4-3]Prezzi M,Geyskens P,Monteriro P J M.Reliability approach to service life prediction of concrete exposed to marine environments[J].ACI Material Journal,1996,93(6):544-552.
    [4-4]Mangat P S,Molloy B T.Prediction of long-term chloride concentration in concrete[J].Materials and Structures,1994,27(4):338-346.
    [4-5]余红发,孙伟,麻海燕等.混凝土在多重因素作用下的氯离子扩散方程[J].建筑材料学报,2002,5(3):240-247.
    [4-6]王仁超,朱琳,李振福.混凝土氯离子综合机制扩散模型及敏感性研究[J].哈尔滨工业大学学报,2004,36(6):824-828.
    [4-7]刘荣归,陆春华.海工预应力混凝土氯离子侵蚀模型及耐久性[J].江苏大学学报(自然科学版),2005,26(6):525-528.
    [4-8]赵筠.钢筋混凝土结构的工作寿命设计—针对氯盐污染环境[J].混凝土,2004,26(1):3-21.
    [4-9]Maage M.Service life model for concrete structures exposed to marine environment-Initiation period[J].ACI Material Journal,1996,93(6):602-608.
    [4-10]T.U.Mohammed,H.Hamada.Relationship between Free Chloride and Total Chloride Contents in Concrete[J].Cement and Concrete Research,2003,33(3):1487-1490.
    [4-11]刘志勇,孙伟,杨鼎宜,等.基于氯离子渗透的海工混凝土寿命预测模型进展[J].工业建筑,2004,34(6):61-64.
    [4-12]刘芳.混凝土中氯离子浓度确定及耐蚀剂的作用[D].杭州:浙江大学硕士学位论文,2006.
    [4-13]刘秉京.混凝土结构耐久性设计[M].北京:人民交通出版社,2007.
    [4-14]Bamforth Phi,Price Bill.Predicting the risk of reinforcement corrosion in marine structures[J].Concrete,1994,28(3):6-9.
    [4-15]Per Goltermann.Chloride ingress in concrete structures:Extrapolation of observations[J].ACI Materials Journal,2003,100(2):114-119.
    [4-16]冯乃谦,刑锋.混凝土与混凝土结构的耐久性[M].北京:机械工业出版社,2009.
    [4-17]陈肇元,廉惠珍,李克非.混凝土结构耐久性设计与施工指南[S].中国土木工程学会标准.北京:中国建筑工业出版社,2005.
    [4-18]Alberto Sagues,Kranc.Corrosion forecasting for 75-year durability design of reinforced concrete[M].Federal Highway Administration,2001.
    [4-19]Fiuge F.Environmental loads on costal bridges[C]//Proceedings from International Conference on repair of concrete structures.Norway,1997.
    [4-20]陈肇元.土建结构工程的安全性与耐久性[M].北京:中国建筑工业出版社,2003.
    [4-21]Helland S.Assessment and prediction of service life of marine structures-A tool for performance based requirements[C]/Workshop on design of durability of concrete,Berlin,1999.
    [4-22]Fluge F.Marine chlorides-A probalistic approach to derive provisions for EN 206-1[C]//3~(rd)Workshop on service life design of concrete structures-from theory to standardization.Norway,2001.
    [4-23]G.K.Glass,N.R.Buenfeld.The presentation of the chloride threshold level for corrosion of steel in concrete[J].Corrosion Scidece,1997,39(5):1001-1013.
    [4-24]M.Thomas.Chloride threshold in marine concrete[J].Cement and concrete research,1996,26(4):513-519.
    [4-25]梁松,杨医博,莫海鸿,等.关于混凝土中氯离子限值和评价方法的探讨[J].工业建筑,2006,第36卷(增刊):880-883.
    [4-26]卫军,桂志华,王艺霖.混凝土中钢筋锈蚀速率的预测模型[J].武汉理工大学学报,2005,27(6):45-47.
    [4-27]Dunaszegi,Laszlo.High Performance Concrete in the Confederation Bridge[J].Concrete International,1998,20(4):66-68.
    [4-28]Thomas M D A,Bamforth P B.Modeling chloride diffusion in concrete—effect of fly ash and slag [J].Cement Concrete Research,1999,29(4):487-495.
    [5-1]赵筠.钢筋混凝土结构的工作寿命设计—针对氯盐污染环境[J].混凝土,2004年第1期(总第171期):3-21.
    [5-2]Tuutti K.Corrosion of steel in concrete[R].CBI Research Report4:82.Stockholm,Sweden,1992.
    [5-3]Henriksen C F.Predicting of Service Life and Choice of Repair Strategy-Durability of Building Materials and Components[C]//Proceeding of the 6~(th) International Conference,Japan,1993.
    [5-4]Price W F.High performance Concrete in Practice[C]//The 22nd Annual Convention of the Institute of Concrete Technology,Norway,1994.
    [5-5]Falbe-Hansen,Klaus.Concrete for the Oresund Bridge[J].Concrete(London).1998,32(7):29-31.
    [5-6]Dunaszegi,Laszlo.High Performance Concrete in the Confederation Bridge[J].Concrete International,1998,20(4):66-68.
    [5-7]吴瑾,吴胜兴.氯离子环境下钢筋混凝土结构耐久性寿命评估[J].土木工程学报,2000,38(2):59-63.
    [5-8]Maage M.Service life model for concrete structures exposed to marine environment-Initiation period[J].ACI Material Journal,1996,93(6):602-608.
    [5-9]Fluge F.Environment Loads on Coastal Bridges[C]//Proceedings from International Conference on Repair of Concrete Structures,Norway,1997.
    [5-10]梁萌,李俊毅,卢秀敏,等.混凝土保护层厚度施工允许偏差[J].中国港湾建设,2006,143(3):9-12.
    [5-11]刘秉京.混凝土结构耐久性设计[M].北京:人民交通出版社,2007.
    [5-12]E.C.Bentz.Probabilistic Modeling of Service Life for Structures Subjected to Chloride[J].ACI Materials Journal,2003,100(5):391-397.
    [5-13]Trevor J K.Impact of Specification Changes on Chloride Induced Corrosion Service Life of Virginia Bridge Decks[D]//Thesis in Civil and Environmental Engineering of Virginia Polytechnic Institute and State University,2001.
    [5-14]Stewart M G.Vu K A T.Structural reliability of concrete bridges including improved chloride-induced corrosion models[J].Structural Safety,2000(22):313-333.
    [5-15]J.M.Fredefikren.Chloride Threshold Values for Service life Design[C]//2~(nd) International RILEM Workshop on Testing and Modeling the Chloride Ingress into Concrete,Denmark,2000.
    [5-16]Endghe M P.Frangopol D P.Probabilistic analysis of resistance degradation of reinforced concrete bridge beams under corrosion[J].Engineering Structure,1998,20(11):960-971.
    [5-17]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2002.
    [5-18]Marine chlorides-A probabilistic approach to derive provisions for EN 206-1[C]//3~(rd) Workshop on Service Life Design of Concrete Structures from Theory to Standardization,Norway,2001.
    [5-19]Siemes A J M,Rostam S.Durable Safety and Serviceability-A Performance Based Design Format[C]//IABSE Report 74:Rorceeding IABSE Colloquium 'Basis of Design and Actions on Structures-Background and Application of Eurocode'.Delft,1996.
    [6-1]杨则英.既有钢筋混凝土桥梁安全性耐久性综合评估方法研究[D].大连理工大学博士学位论文.大连,2004.
    [6-2]王永平,张宝银,张树仁.桥梁使用性能模糊评估专家系统[J].中国公路学报,1996,9(2):37-41.
    [6-3]屠艳平.钢筋混凝土结构耐久性分析的神经网络方法[D].武汉理工大学硕士学位论文.武汉,2003.
    [6-4]杨则英,黄成奎,曲建波.基于自适应神经.模糊推理系统和遗传算法的桥梁耐久性评估[J].土木工程学报,2006,39(2):16-20.
    [6-5]杨光强.基于模糊理论的桥梁耐久性评估研究[D].西南交通大学硕士学位论文.成都,2005.
    [6-6]张洪涛,魏华.BP神经网络在混凝土结构耐久性评估中的应用[J].交通标准化(总第144期):104-106.
    [6-7]邓聚龙.灰色预测与决策[M].华中理工大学出版社,1998.
    [6-8]熊德国,鲜学福.模糊综合评价方法的改进[J].重庆大学学报,2003,26(6):93-95.
    [6-9]汪培庄.模糊集合论及其应用[M].上海:上海科学技术出版社,1983.
    [6-10]张文泉,张世英,江立勤.基于熵的决策评价模型及应用[J].系统工程学报,1995,10(3):69-74.
    [6-11]翁沙羚.文晖大桥健康监测评估系统的研究与开发[D].杭州:浙江大学硕士学位论文,2004.
    [6-12]伍化成.大跨度预应力混凝土斜拉桥状态评估系统的研究[D].杭州:浙江大学硕士学位论文,2006.
    [6-13]陕西省公路局.中华人民共和国行业标准.公路桥涵养护规范[S].北京:人民交通出版社,2004.
    [6-14]赵燕林,梅占馨.模糊灰关联模式识别方法及其应用[J].系统工程理论与实践,1999(6):67-70.
    [6-15]夏宁.钢筋混凝土结构耐久性的研究[D].扬州:扬州大学硕士学位论文,2002.
    [7-1]徐兴,凌道盛.实体退化单元系列[J].固体力学学报(计算力学专辑),2001,22:1-12.
    [7-2]凌道盛,张金江,项贻强,等.虚拟层合单元法及其在桥梁工程中的应用[[J].土木工程学报,1998,31(3):22-29.
    [7-3]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析[M].北京:清华大学出版社,1993.
    [7-4]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论及应用[M].上海:同济大学出版社,1997.
    [7-5]Sargin M.Stress—strain relationships for concrete and the analysis of structural concrete sections[M].Canda:Study No.4,Solid Mechanics Division,University of Waterloo,Ontario,1971.
    [7-6]汪劲丰.预应力混凝土斜拉桥施工控制的关键技术研究[D].杭州:浙江大学博士学位论文,2003.
    [7-7]林同炎,NEDH.预应力混凝土结构设计(第三版)[M].北京:中国铁道出版社,1983.
    [7-8]Bonet J,Wood R D.Nonlinear continuum mechanics for finite element analysis[M].London:Cambridge University Press,New York,1997.
    [7-9]吴光宇.大跨P.C.桥梁非线性行为的分析理论及其极限承载力计算研究[D].浙江大学博士学位论文,杭州:浙江大学,2006.
    [7-10]柏华军.移动模架若干问题研究与优化[D].浙江大学硕士学位论文,杭州:浙江大学,2008.
    [7-11]王立超.移动模架的设计、安全性监测及其适用性研究[D].浙江大学硕士学位论文,杭州:浙江大学,2007.
    [7-12]谢旭,黄剑源.关于大跨度钢斜拉桥极限承载力特性的研究[C].中国土木工程学会桥梁及结构工程学会第十三届年会论文集,上海:同济大学出版社,1998.
    [7-13]中交公路规划设计院编.中华人民共和国行业标准,公路桥涵设计通用规范(JTG D60-2004)[S].北京:人民交通出版社,2004.
    [7-14]牛荻涛.海洋环境下混凝土强度的经时变化模型[J].西安建筑科技大学学报,1995,27(1):49-52.
    [7-15]G K Glass,N R Buenfeld.Chloride-induced corrosion of steel in concrete[J].Progress in Structural Engineering and Materials,2001,2(4):448-458.
    [7-16]Kim Anh T.Vu.Mark G.Stewart.Structural reliability of concrete bridges including improved chloride-induced corrosion models[J].Structural Safety,2000,22(4):313-333.
    [7-17]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003.
    [7-18]石利强.既有钢筋混凝土桥梁耐久性研究[D].长安大学硕士学位论文,西安:长安大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700