用户名: 密码: 验证码:
过渡金属表面石墨烯和硅烯的成核生长机理与相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯和硅烯,两者是具有相似的蜂巢形格子的二维单原子薄膜,它们近年来成为物理、材料、化学等领域的新星材料,吸引了众多科研工作者的研究热情。因独特的线性色散关系,近似无质量的超快费米子存在于这两种材料的狄拉克锥中,这两种材料在未来超快微电子器件和自旋电子器件中大有前途。特别是,由于具有超强的力学性质,独特的光学性质,优良的导热等性质,石墨烯在传感器、探测器、太阳能电池和超级电容器等方面有大量的潜在应用。
     基于密度泛函理论和晶体生长理论,我们系统地研究了石墨烯在金属平台和台阶附近的成核生长行为。研究模型为同石墨烯晶格完美匹配的Ni(111)表面和具有较大失配的Rh(111)表面上的碳团簇CN(碳原子数N=1-24)。研究发现平台上最稳定的石墨烯团簇都含有1-3个五元环。并且在N≈10-12处,碳团簇发生了从碳链到碳sp2网格的结构转变,这个转变尺寸在很大的化学势范围内对应碳团簇的成核尺寸。此外,无论在Ni(111)还是Rh(111)表面,金属台阶都有助于稳定六元环并且进一步降低碳团簇形成能。这样,在一定程度的低化学势下,石墨烯优先在台阶处成核生长。此外,在失配较大的Rh(111)台阶处,我们发现了两种饱和碳链的竞争方式以及石墨烯团簇的非线性生长关系。在石墨烯成核生长过程的研究中,四种用以研究的表面Ni(111), Cu(111), Rh(111)和Ru(0001)上都存在一个有趣的超稳定幻数碳团簇C21,这较好地解释了最近实验上在过渡金属表面观察到的均一大小的碳团簇现象。此外,我们系统地研究了在三种过渡金属表面[Cu(111),CO(111)和Ni(111)]上钝化效应对石墨烯边界的影响。与真空中的情况截然不同,纯锯齿形边在所有的过渡金属表面都非常稳定,我们还发现了一个新奇的ac(ad)边在Co(111)和Ni(111)面上是最稳定的扶手椅型朝向边;进一步的研究表明这种奇特的边界结构对石墨烯CVD生长行为具有显著的影响。
     作为石墨烯生长工作的延伸,我们系统地计算了Ag(111)表面上的SiN团簇(N≤24)的结构和稳定性,并以此探究硅烯外延生长的初期行为。同时,我们也计算了Ag(111)表面上三种类型的硅烯超结构,与实验STM图像直接对比。分析结果表明硅团簇和银表面存在p-d杂化,并且部分sp2特征存留在SiN@Ag(111)中,硅团簇不具有穹顶形结构。通过Ag(111)和Rh(111)上硅烯热稳定性的分子动力学模拟,确定了Ag(111)表面上硅烯的高稳定性。我们解释了银衬底有助于硅烯生长的优越性,这有助于促进实验提高硅烯合成工艺。
Graphene and silicene, a couple of counterparts of thin atomic monolayers with honeycombed lattices, are the new rising stars in many fields such as physics, materials science and chemistry, causing the great rush of scientific researchers. Based on the linear dispersion, near massless fermions with ultrafast velocity are in their Dirac cone. Therefore, they are the ideal materials for ultrafast microelectronics and spintronics in future. Moreover, due to the excellent mechanical, optical, thermal properties and so on, graphene has many novel applications, e. g. sensor, detection, solar cell and supercapacity.
     Based on density functional theory (DFT) calculations and theory of crystal growth, the nucleation of graphene is investigated both on a well matched Ni(111) surface and on a large mismatched Rh(111) by systematically exploring the CN clusters (with size N ranging from1to24) either on a terrace or near a step edge of transition metal (TM) surface. It is surprising that incorporating one to three pentagons into a graphene island on a TM terrace is required to achieve the most stable structure. A ground state structure transformation is found firstly from a C chain to a sp2C network at N-10-12, which is corresponding to the nucleation size at a wide range of carbon chemical potential. Besides, we found that steps of both Ni(111) and Rh(111) can help'to stabilizing the hexagon and reducing the formation energy. Thus, at a relative low carbon chemical potential, the nucleation preferentially occurred along the step. In addition, two competing style of passivation for C chain, as well as the nonlinear growth behaviours were revealed along the large mismatched step of Rh(111) surface. During the research of graphene growth behaviors, a magic carbon cluster C21is intriguingly found at four selected TM surfaces, that is, Ni(111), Cu(111), Rh(111) and Ru(0001), which explained the recent observed uniformed C clusters on TM surfaces. Besides, we investigated the impact of passivation on the graphene edges on three TM surfaces [Cu(111), Co(111), and Ni(111)]. Different from that in vacuum, the pristine zz edge is stable on all TM surface and an undiscovered novel reconstructed ac(ad) edge is high stable on Co(111) and Ni(111) surfaces. Beyond this, the unique edge configuration has a significant impact on the graphene CVD growth behavior.
     As an extension of graphene growth work, we investigated the structures and stabilities of SiN clusters (N≤24) on Ag(111)surface as the initial stage of epitaxial growth of silicene and three types of silicene superstructures on Ag(111) surface. Analysis reveals p-d hybridization between Ag and Si as well as sp2characteristics in SiN@Ag(111), without dome-shaped configuration. Molecular dynamic simulation shows high thermal stability of silicene monolayer on Ag(111) surfaces, contrast to that on Rh(111) surface. The superiority of Ag substrate for silicene growth is explained, which would be helpful for improving the experimentally epitaxial growth of silicene.
引文
[1]H. Handschuh, G. Gantefor, B. Kessler, et al. Stable Configurations of Carbon Clusters: Chains, Rings, and Fullerenes[J], Physical Review Letters,1995,74:1095.
    [2]D. Tomanek and M. A. Schluter. Growth regimes of carbon clusters[J], Physical Review Letters,1991,67:2331.
    [3]X. Zhao, Y. Ando, Y. Liu, et al. Carbon Nanowire Made of a Long Linear Carbon Chain Inserted Inside a Multiwalled Carbon Nanotube[J], Physical Review Letters,2003,90: 187401.
    [4]B. T. Kelly. Physics of Graphite[M], (Applied Science, London,1981).
    [5]S. Iijima. Helical microtubules of graphitic carbon[J], Nature,1991,354:56.
    [6]H. W. Kroto, J. R. Heath, S. C. O'Brien, et al. C60:Buckminsterfullerene[J], Nature, 1985,318:162.
    [7]王光祖.纳米金刚石[M],(郑州大学出版社,郑州,2009).
    [8]K. S. Novoselov, A. K. Geim, S. V. Morozov, et al. Electric Field Effect in Atomically Thin Carbon Films[J], Science,2004,306:666.
    [9]A. K. Geim and K. S. Novoselov. The rise of graphene[J], Nature Materials,2007,6: 183.
    [10]R. E. Peierls. Quelques proprietes typiques des corpses solides[J], Annales de 1'Institut Henri Poincare,1935,5:177.
    [11]L. D. Landau. Zur Theorie der phasenumwandlungen Ⅱ[J], Physikal ische Zeitschrift der Sowjetunion,1937,11:26.
    [12]A. H. Castro Neto, F. Guinea, N. M. R. Peres, et al. The electronic properties of graphene[J], Reviews of Modern Physics,2009,81:109.
    [13]K. S. Novoselov, A. K. Geim, S. V. Morozov, et al. Two-dimensional gas of massless Dirac fermions in graphene[J], Nature,2005,438:197.
    [14]P. R. Wallace. The Band Theory of Graphite[J], Physical Review,1947,71:622.
    [15]K. S. Novoselov, D. Jiang, F. Schedin, et al. Two-dimensional atomic crystals[J], Proceedings of the National Academy of Sciences of the United States of America,2005, 102:10451.
    [16]Y. Zhang, Y.-W. Tan, H. L. Stormer, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J], Nature,2005,438:201.
    [17]J.-H. Chen, C. Jang, S. Xiao, et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2[J], Nature Nanotechnology,2008,3:206.
    [18]J. H. Chen, C. Jang, S. Adam, et al. Charged-impurity scattering in graphene [J], Nature Physics,2008,4:377.
    [19]I. W. Frank, D. M. Tanenbaum, A. M. van der Zande, et al. Mechanical properties of suspended graphene sheets [J], Journal of Vacuum Science and Technology B,2007,25: 2558.
    [20]C. Lee, X. Wei, J. W. Kysar, et al. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene[J], Science,2008,321:385.
    [21]A. B. Kuzmenko, E. van Heumen, F. Carbone, et al. Universal Optical Conductance of Graphite[J], Physical Review Letters,2008,100:117401.
    [22]R. R. Nair, P. Blake, A. N. Grigorenko, et al. Fine Structure Constant Defines Visual Transparency of Graphene[J], Science,2008,320:1308.
    [23]J. Liu, A. R. Wright, C. Zhang, et al. Strong terahertz conductance of graphene nanoribbons under a magnetic field[J], Applied Physics Letters,2008,93:041106.
    [24]H. Zhang, D. Tang, R. J. Knize, et al. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser[J], Applied Physics Letters,2010,96:111112.
    [25]Y. Miao, B. Liu, K. Zhang, et al. Temperature tunability of photonic crystal fiber filled with Fe3O4 nanoparticle fluid [J], Applied Physics Letters,2011,98:021103.
    [26]H. Zhang, D. Y. Tang, L. M. Zhao, et al. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene[J], Optics Express,2009,17:17630.
    [27]Q. Bao, H. Zhang, Y. Wang, et al. Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers[J], Advanced Functional Materials,2009,19:3077.
    [28]A. A. Balandin, S. Ghosh, W. Bao, et al. Superior Thermal Conductivity of Single-Layer Graphene[J], Nano Letters,2008,8:902.
    [29]A. V. Sukhadolau, E. V. Ivakin, V. G. Ralchenko, et al. Thermal conductivity of CVD diamond at elevated temperatures[J], Diamond and Related Materials,2005,14:589.
    [30]S. Chen, Q. Wu, C. Mishra, et al. Thermal conductivity of isotopically modified graphene[J], Nature Materials,2012,11:203.
    [31]N. Mingo and D. A. Broido. Carbon Nanotube Ballistic Thermal Conductance and Its Limits[J], Physical Review Letters,2005,95:096105.
    [32]S. Cho, Y.-F. Chen, and M. S. Fuhrer. Gate-tunable graphene spin valve[J], Applied Physics Letters,2007,91:123105.
    [33]N. Tombros, C. Jozsa, M. Popinciuc, et al. Electronic spin transport and spin precession in single graphene layers at room temperature[J], Nature,2007,448:571.
    [34]D. Pesin and A. H. MacDonald. Spintronics and pseudospintronics in graphene and topological insulators[J], Nature Materials,2012,11:409.
    [35]V. P. Gusynin and S. G. Sharapov. Unconventional Integer Quantum Hall Effect in Graphene[J], Physical Review Letters,2005,95:146801.
    [36]J. Wu, W. Pisula, and K. Mullen. Graphenes as Potential Material for Electronics[J], Chemical Reviews,2007,107:718.
    [37]A. K. Geim. Graphene:Status and Prospects[J], Science,2009,324:1530.
    [38]C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, et al. Graphene:The New Two-Dimensional Nanomaterial[J], Angewandte Chemie International Edition,2009,48:7752.
    [39]Y. Zhu, S. Murali, W. Cai, et al. Graphene and Graphene Oxide:Synthesis, Properties, and Applications[J], Advanced Materials,2010,22:3906.
    [40]M. J. Allen, V. C. Tung, and R. B. Kaner. Honeycomb Carbon:A Review of Graphene [J], Chemical Reviews,2009,110:132.
    [41]D. R. Dreyer, R. S. Ruoff, and C. W. Bielawski. From Conception to Realization:An Historial Account of Graphene and Some Perspectives for Its Future[J], Angewandte Chemie International Edition,2010,49:9336.
    [42]0. C. Compton and S. T. Nguyen. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene:Versatile Building Blocks for Carbon-Based Materials[J],Small,2010,6: 711.
    [43]F. Bonaccorso, Z. Sun, T. Hasan, et al. Graphene photonics and optoelectronics[J], Nature Photonics,2010,4:611.
    [44]P. Avouris, Z. Chen, and V. Perebeinos. Carbon-based electronics[J], Nature Nanotechnology,2007,2:605.
    [45]F. Schwierz. Graphene transistors[J], Nature Nanotechnology,2010,5:487.
    [46]S. Bae, H. Kim, Y. Lee, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J], Nature Nanotechnology,2010,5:574.
    [47]M. Tadatsugu. Transparent conducting oxide semiconductors for transparent electrodes[J], Semiconductor Science and Technology,2005,20:S35.
    [48]I. Hamberg and C. G. Granqvist. Evaporated Sn-doped In2O3 films:Basic optical properties and applications to energy-efficient windows[J], Journal of Applied Physics,1986,60:R123.
    [49]G. Eda, G. Fanchini, and M. Chhowalla. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J], Nature Nanotechnology, 2008,3:270.
    [50]I. Meric, M. Y. Han, A. F. Young, et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors[J], Nature Nanotechnology,2008,3:654.
    [51]T. J. Echtermeyer, M. C. Lemme, M. Baus, et al. Nonvolatile Switching in Graphene Field-Effect Devices[J], Electron Device Letters, IEEE,2008,29:952.
    [52]Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, et al. Operation of Graphene Transistors at Gigahertz Frequencies[J], Nano Letters,2008,9:422.
    [53]L. Liao, Y.-C. Lin, M. Bao, et al. High-speed graphene transistors with a self-aligned nanowire gate[J], Nature,2010,467:305.
    [54]J. S. Moon, D. Curtis, M. Hu, et al. Epitaxial-Graphene RF Field-Effect Transistors on Si-Face 6H-SiC Substrates[J], Electron Device Letters, IEEE,2009,30:650.
    [55]M. C. Lemme, T. J. Echtermeyer, M. Baus, et al. A Graphene Field-Effect Device[J], Electron Device Letters, IEEE,2007,28:282.
    [56]Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, et al.100-GHz Transistors from Wafer-Scale Epitaxial Graphene[J], Science,2010,327:662.
    [57]Y. Wu, Y.-m. Lin, A. A. Bol, et al. High-frequency, scaled graphene transistors on diamond-like carbon [J], Nature,2011,472:74.
    [58]S. J. Tans, A. R. M. Verschueren, and C. Dekker. Room-temperature transistor based on a single carbon nanotube[J], Nature,1998,393:49.
    [59]S. Li, Z. Yu, S.-F. Yen, et al. Carbon Nanotube Transistor Operation at 2.6 GHz[J], Nano Letters,2004,4:753.
    [60]L. Nougaret, H. Happy, G. Dambrine, et al.80 GHz field-effect transistors produced using high purity semiconducting single-walled carbon nanotubes[J], Applied Physics Letters,2009,94:243505.
    [61]Q. Yuan, H. Hu, J. Gao, et al. Upright Standing Graphene Formation on Substrates [J], Journal of the American Chemical Society,2011,133:16072.
    [62]Y.-W. Son, M. L. Cohen, and S. G. Louie. Energy Gaps in Graphene Nanoribbons[J], Physical Review Letters,2006,97:216803.
    [63]Y.-W. Son, M. L. Cohen, and S. G. Louie. Half-metallic graphene nanoribbons[J], Nature, 2006,444:347.
    [64]D. Soriano, F. Munoz-Rojas, J. Fernandez-Rossier, et al. Hydrogenated graphene nanoribbons for spintronics[J], Physical Review B,2010,81:165409.
    [65]T. Yokoyama. Controllable spin transport in ferromagnetic graphene junctions[J], Physical Review B,2008,77:073413.
    [66]J. Cai, P. Ruffieux, R. Jaafar, et al. Atomically precise bottom-up fabrication of graphene nanoribbons[J], Nature,2010,466:470.
    [67]D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J], Nature,2009,458:872.
    [68]L. Jiao, L. Zhang, X. Wang, et al. Narrow graphene nanoribbons from carbon nanotubes [J], Nature,2009,458:877.
    [69]R. Hanson, L. P. Kouwenhoven, J. R. Petta, et al. Spins in few-electron quantum dots [J], Reviews of Modern Physics,2007,79:1217.
    [70]B. Trauzettel, D. V. Bulaev, D. Loss, et al. Spin qubits in graphene quantum dots[J], Nature Physics,2007,3:192.
    [71]V. Gupta, N. Chaudhary, R. Srivastava, et al. Luminscent Graphene Quantum Dots for Organic Photovoltaic Devices [J], Journal of the American Chemical Society,2011,133: 9960.
    [72]J. Peng, W. Gao, B. K. Gupta, et al. Graphene Quantum Dots Derived from Carbon Fibers [J], Nano Letters,2012,12:844.
    [73]G. Konstantatos, M. Badioli, L. Gaudreau, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J], Nature Nanotechnology,2012,7:363.
    [74]L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, et al. Chaotic Dirac Billiard in Graphene Quantum Dots[J], Science,2008,320:356.
    [75]N. Mohanty, D. Moore, Z. Xu, et al. Nanotomy-based production of transferable and dispersible graphene nanostructures of controlled shape and size[J], Nature Communications,2012,3:844.
    [76]D. Pan, J. Zhang, Z. Li, et al. Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots[J], Advanced Materials,2010,22:734.
    [77]J. Lu, P. S. E. Yeo, C. K. Gan, et al. Transforming C60 molecules into graphene quantum dots[J], Nature Nanotechnology,2011,6:247.
    [78]Y. Cui, Q. Fu, H. Zhang, et al. Formation of identical-size graphene nanoclusters on Ru(0001)[J], Chemical Communications,2011,47:1470.
    [79]B. Wang, X. Ma, M. Caffio, et al. Size-Selective Carbon Nanoclusters as Precursors to the Growth of Epitaxial Graphene[J], Nano Letters,2011,11:424.
    [80]Y. Zhu, S. Murali, M. D. Stoller, et al. Carbon-Based Supercapacitors Produced by Activation of Graphene[J], Science,2011,332:1537.
    [81]C. Liu, Z. Yu, D. Neff, et al. Graphene-Based Supercapacitor with an Ultrahigh Energy Density[J], Nano Letters,2010,10:4863.
    [82]J. Yan, Z. Fan, W. Sun, et al. Advanced Asymmetric Supercapacitors Based on Ni (OH)2/Graphene and Porous Graphene Electrodes with High Energy Density [J], Advanced Functional Materials,2012,22:2632.
    [83]R. L. Murry and G. E. Scuseria. Theoretical Evidence for a C60, "Window" Mechanism [J], Science,1994,263:791.
    [84]M. Saunders, H. A. Jimenez-Vazquez, R. J. Cross, et al. Stable Compounds of Helium and Neon:Hei@C60 and Ne@C60[J], Science,1993,259:1428.
    [85]J. S. Bunch, S. S. Verbridge, J. S. Alden, et al. Impermeable Atomic Membranes from Graphene Sheets[J], Nano Letters,2008,8:2458.
    [86]J. J. Yoo, K. Balakrishnan, J. Huang, et al. Ultrathin Planar Graphene Supercapacitors[J], Nano Letters,2011,11:1423.
    [87]K. Sheng, Y. Sun, C. Li, et al. Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering[J], Scientific Reports, 2012,2:
    [88]Y. Chen, X. Zhang, D. Zhang, et al. High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes[J], Carbon,2011,49:573.
    [89]Y. Dan, Y. Lu, N. J. Kybert, et al. Intrinsic Response of Graphene Vapor Sensors [J], Nano Letters,2009,9:1472.
    [90]F. Schedin, A. K. Geim, S. V. Morozov, et al. Detection of individual gas molecules adsorbed on graphene[J], Nature Materials,2007,6:652.
    [91]E. W. Hill, A. Vijayaragahvan, and K. Novoselov. Graphene Sensors [J], Sensors Journal, IEEE,2011,11:3161.
    [92]W. Li, X. Geng, Y. Guo, et al. Reduced Graphene Oxide Electrically Contacted Graphene Sensor for Highly Sensitive Nitric Oxide Detection[J], ACS Nano,2011,5:6955.
    [93]A. Salehi-Khojin, D. Estrada, K. Y. Lin, et al. Polycrystalline Graphene Ribbons as Chemiresistors[J], Advanced Materials,2012,24:53.
    [94]X. Wang, L. Zhi, and K. Mullen. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells[J], Nano Letters,2007,8:323.
    [95]H. Gao, L. Wang, J. Zhao, et al. Band Gap Tuning of Hydrogenated Graphene:H Coverage and Configuration Dependence [J], The Journal of Physical Chemistry C,2011,115:3236.
    [96]Z. Yang, H. Chun-Hua, W. Yu-Hua, et al. Strain-tunable band gap of hydrogenated bi layer graphene[J], New Journal of Physics,2011,13:063047.
    [97]H. Chang, J. Cheng, X. Liu, et al. Facile Synthesis of Wide-Bandgap Fluorinated Graphene Semiconductors[J], Chemistry-A European Journal,2011,17:8896.
    [98]C.-L. Hsu, C.-T. Lin, J.-H. Huang, et al. Layer-by-Layer Graphene/TCNQ Stacked Films as Conducting Anodes for Organic Solar Cells[J], ACS Nano,2012,6:5031.
    [99]X. Miao, S. Tongay, M. K. Petterson, et al. High Efficiency Graphene Solar Cells by Chemical Doping[J], Nano Letters,2012,12:2745.
    [100]N. Mohanty and V. Berry. Graphene-Based Single-Bacterium Resolution Biodevice and DNA Transistor:Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents[J], Nano Letters,2008,8:4469.
    [101]M. Xu, D. Fujita, and N. Hanagata. Perspectives and Challenges of Emerging Single-Molecule DNA Sequencing Technologies[J], Small,2009,5:2638.
    [102]R. Chowdhury, F. Scarpa, and S. Adhikari. Molecular-scale bio-sensing using armchair graphene[J], Journal of Applied Physics,2012,112:014905.
    [103]A. J. Patil,J. L. Vickery, T. B. Scott, et al. Aqueous Stabilization and Self-Assembly of Graphene Sheets into Layered Bio-Nanocomposites using DNA[J],Advanced Materials, 2009,21:3159.
    [104]H. Shen, L. Zhang, M. Liu, et al. Biomedical Applications of Graphene [J], Theranostics, 2012,2:283.
    [105]L. Wang, K. Lee, Y.-Y. Sun, et al. Graphene Oxide as an Ideal Substrate for Hydrogen Storage [J], ACS Nano,2009,3:2995.
    [106]G. K. Dimitrakakis, E. Tylianakis, and G. E. Froudakis. Pillared Graphene:A New 3-D Network Nanostructure for Enhanced Hydrogen Storage [J], Nano Letters,2008,8:3166.
    [107]Y. Gao, D. Ma, C. Wang, et al. Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature[J], Chemical Communications,2011,47:2432.
    [108]B. F. Machado and P. Serp. Graphene-based materials for catalysis[J], Catalysis Science & Technology,2012,2:54.
    [109]J. Hou, Y. Shao, M. W. Ellis, et al. Graphene-based electrochemical energy conversion and storage:fuel cells, supercapacitors and lithium ion batteries[J], Physical Chemistry Chemical Physics,2011,13:15384.
    [110]L. Qu, Y. Liu, J.-B. Baek, et al. Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells[J], ACS Nano,2010,4:1321.
    [ill]T. Mueller, F. Xia, and P. Avouris. Graphene photodetectors for high-speed optical communications[J], Nature Photonics,2010,4:297.
    [112]F. Xia, T. Mueller, Y.-m. Lin, et al. Ultrafast graphene photodetector[J], Nature Nanotechnology,2009,4:839.
    [113]J. M. Lee, J. W. Choung, J. Yi, et al. Vertical Pillar-Superlattice Array and Graphene Hybrid Light Emitting Diodes [J], Nano Letters,2010,10:2783.
    [114]L. Gomez De Arco, Y. Zhang, C. W. Schlenker, et al. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics[J], ACS Nano,2010,4:2865.
    [115]B. Sensale-Rodriguez, R. Yan, M. M. Kelly, et al. Broadband graphene terahertz modulators enabled by intraband transitions[J], Nature Communications,2012,3:780.
    [116]A. R. Wright, J. C. Cao, and C. Zhang. Enhanced Optical Conductivity of Bilayer Graphene Nanoribbons in the Terahertz Regime[J], Physical Review Letters,2009,103: 207401.
    [117]Q. Liang, X. Yao, W. Wang, et al. A Three-Dimensional Vertically Aligned Functionalized Multilayer Graphene Architecture:An Approach for Graphene-Based Thermal Interfacial Materials[J], ACS Nano,2011,5:2392.
    [118]K. M. F. Shahil and A. A. Balandin. Graphene-Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials[J], Nano Letters,2012,12:861.
    [119]A. A. Balandin. Thermal properties of graphene and nanostructured carbon materials [J], Nature Materials,2011,10:569.
    [120]D. Cohen-Tanugi and J. C. Grossman. Water Desalination across Nanoporous Graphene [J], Nano Letters,2012,12:3602.
    [121]P. Avouris and C. Dimitrakopoulos. Graphene:synthesis and applications[J], Materials Today,2012,15:86.
    [122]H. Wang, T. Maiyalagan, and X. Wang. Review on Recent Progress in Nitrogen-Doped Graphene:Synthesis, Characterization, and Its Potential Applications[J], ACS Catalysis,2012,2:781.
    [123]S. Stankovich, D. A. Dikin, G. H. B. Dommett, et al. Graphene-based composite materials[J], Nature,2006,442:282.
    [124]http://en.wikipodia.org/wiki/Graphene
    [125]M. Segal. Selling graphene by the ton[J], Nature Nanotechnology,2009,4:612.
    [126]X. Li, W. Cai, J. An, et al.Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils[J], Science,2009,324:1312.
    [127]K. V. Emtsev, A. Bostwick, K. Horn, et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide[J], Nature Materials,2009, 8:203.
    [128]P. Sutter. Epitaxial graphene:How silicon leaves the scene[J], Nature Materials, 2009,8:171.
    [129]C. Virojanadara, M. Syvajarvi, R. Yakimova, et al. Homogeneous large-area graphene layer growth on 6H-SiC(0001)[J], Physical Review B,2008,78:245403.
    [130]C. Riedl, C. Coletti, and U. Starke. Structural and electronic properties of epitaxial graphene on SiC(0001):a review of growth, characterization, transfer doping and hydrogen intercalation[J], Journal of Physics D:Applied Physics,2010,43:374009.
    [131]J. Hass, F. Varchon, J. E. Millan-Otoya, et al. Why Multilayer Graphene on 4H-SiC(0001) Behaves Like a Single Sheet of Graphene[J], Physical Review Letters,2008,100: 125504.
    [132]T. Ohta, A. Bostwick, J. L. McChesney, et al. Interlayer Interaction and Electronic Screening in Multilayer Graphene Investigated with Angle-Resolved Photoemission Spectroscopy[J], Physical Review Letters,2007,98:206802.
    [133]B. Aaron,O. Taisuke, L. M. Jessica, et al. Symmetry breaking in few layer graphene films[J], New Journal of Physics,2007,9:385.
    [134]C. Berger, Z. Song, T. Li, et al. Ultrathin Epitaxial Graphite:2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics[J], The Journal of Physical Chemistry B,2004,108:19912.
    [135]J. Kedzierski, H. Pei-Lan, P. Healey, et al. Epitaxial Graphene Transistors on SiC Substrates[J], Electron Devices, IEEE Transactions on,2008,55:2078.
    [136]R. S. Singh, V. Nalla, W. Chen, et al. Laser Patterning of Epitaxial Graphene for Schottky Junction Photodetectors[J], ACS Nano,2011,5:5969.
    [137]Luxmi, N. Srivastava, G. He, et al. Comparison of graphene formation on C-face and Si-face SiC{0001} surfaces [J], Physical Review B,2010,82:235406.
    [138]J. Robinson, X. Weng, K. Trumbull, et al. Nucleation of Epitaxial Graphene on SiC(0001) [J], ACS Nano,2009,4:153.
    [139]J. Wintterlin and M. L. Bocquet. Graphene on metal surfaces [J], Surface Science,2009, 603:1841.
    [140]J. Robin, A. Ashokreddy, C. Vijayan, et al. Single-and few-layer graphene growth on stainless steel substrates by direct thermal chemical vapor deposition[J], Nanotechnology,2011,22:165701.
    [141]N. A. Vinogradov, A. A. Zakharov, V. Kocevski, et al. Formation and Structure of Graphene Waves on Fe(110)[J], Physical Review Letters,2012,109:026101.
    [142]A. Varykhalov and 0. Rader. Graphene grown on Co(0001) films and islands:Electronic structure and its precise magnetization dependence [J], Physical Review B,2009,80: 035437.
    [143]D. Eom, D. Prezzi, K. T. Rim, et al. Structure and Electronic Properties of Graphene Nanoislands on Co(0001)[J], Nano Letters,2009,9:2844.
    [144]X. Li, W. Cai, L. Colombo, et al. Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Label ing[J], Nano Letters,2009,9:4268.
    [145]Y. Zhang, L. Gomez, F. N. Ishikawa, et al. Comparison of Graphene Growth on Single-Crystalline and Polycrystalline Ni by Chemical Vapor Deposition[J], The Journal of Physical Chemistry Letters,2010,1:3101.
    [146]Y. S. Dedkov, M. Fonin, U. Rodiger, et al. Rashba Effect in the Graphene/Ni(111) System[J], Physical Review Letters,2008,100:107602.
    [147]A. B. Preobrajenski, M. L. Ng, A. S. Vinogradov, et al. Controlling graphene corrugation on lattice-mismatched substrates[J], Physical Review B,2008,78: 073401.
    [148]B. Wang, M. Caffio, C. Bromley, et al. Coupling Epitaxy, Chemical Bonding, and Work Function at the Local Scale in Transition Metal-Supported Graphene [J], ACS Nano,2010, 4:5773.
    [149]H. Zhang, Q. Fu, Y. Cui, et al. Growth Mechanism of Graphene on Ru(0001) and O2 Adsorption on the Graphene/Ru(0001) Surface [J], The Journal of Physical Chemistry C,2009,113:8296.
    [150]P. W. Sutter, J.-I. Flege, and E. A. Sutter. Epitaxial graphene on ruthenium[J], Nature Materials,2008,7:406.
    [151]D. Martoccia, P. R. Willmott, T. Brugger, et al. Graphene on Ru(0001):A 25X25 Supercell[J], Physical Review Letters,2008,101:126102.
    [152]T. N. D. Alpha, C. Johann, N. P. Tim, et al. Structure of epitaxial graphene on Ir(111)[J], New Journal of Physics,2008,10:043033.
    [153]P. Lacovig, M. Pozzo, D. Alfe, et al. Growth of Dome-Shaped Carbon Nanoislands on Ir (111):The Intermediate between Carbidic Clusters and Quasi-Free-Standing Graphene[J], Physical Review Letters,2009,103:166101.
    [154]S. Entani, Y. Matsumoto, M. Ohtomo, et al. Precise control of single- and bi- layer graphene growths on epitaxial Ni (111) thin film[J], Journal of Applied Physics,2012, 111:064324.
    [155]C. Orofeo, H. Ago, B. Hu, et al. Synthesis of large area, homogeneous, single layer graphene films by annealing amorphous carbon on Co and Ni[J], Nano Research,2011, 4:531.
    [156]R. Addou, A. Dahal, P. Sutter, et al. Monolayer graphene growth on Ni (111) by low temperature chemical vapor deposition[J], Applied Physics Letters,2012,100: 021601.
    [157]X. Li, C. W. Magnuson, A. Venugopal, et al. Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper[J], Journal of the American Chemical Society,2011,133:2816.
    [158]P. Sutter, J. T. Sadowski, and E. Sutter. Graphene on Pt(111):Growth and substrate interaction [J], Physical Review B,2009,80:245411.
    [159]M. Gao, Y. Pan, L. Huang, et al. Epitaxial growth and structural property of graphene on Pt(111)[J], Applied Physics Letters,2011,98:033101.
    [160]M. W. Joseph, S. Elena, L. W. Andrew, et al. Extraordinary epitaxial alignment of graphene islands on Au(111)[J], New Journal of Physics,2012,14:053008.
    [161]S. Nie, N. C. Bartelt, J. M. Wofford, et al. Scanning tunneling microscopy study of graphene on Au(111):Growth mechanisms and substrate interact ions[J], Physical Review B,2012,85:205406.
    [162]E. S. Kim, H.-J. Shin, S.-M. Yoon, et al. Low-temperature graphene growth using epochal catalyst of PdCo alloy[J], Applied Physics Letters,2011,99:223102.
    [163]B. Dai, L. Fu, Z. Zou, et al. Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene [J], Nature Communications, 2011,2:522.
    [164]X. Liu, L. Fu, N. Liu, et al. Segregation Growth of Graphene on Cu-Ni Alloy for Precise Layer Control[J], The Journal of Physical Chemistry C,2011,115:11976.
    [165]W. Wu, L. A. Jauregui, Z. Su, et al. Growth of Single Crystal Graphene Arrays by Locally Controlling Nucleation on Polycrystalline Cu Using Chemical Vapor Deposit ion[J], Advanced Materials,2011,23:4898.
    [166]J. Shen, M. Shi, N. Li, et al. Facile synthesis and application of Ag-chemically converted graphene nanocomposite[J], Nano Research,2010,3:339.
    [167]L. Liu, L. Wang, J. Gao, et al. Amorphous structural models for graphene oxides[J], Carbon,2012,50:1690.
    [168]L. Wang, Y. Y. Sun, K. Lee, et al. Stability of graphene oxide phases from first-principles calculations[J], Physical Review B,2010,82:161406.
    [169]C. Gomez-Navarro, J. C. Meyer, R. S. Sundaram, et al. Atomic Structure of Reduced Graphene Oxide[J], Nano Letters,2010,10:1144.
    [170]I. K. Moon, J. Lee, R. S. Ruoff, et al. Reduced graphene oxide by chemical graphitization[J], Nature Communications,2010,1:73.
    [171]B. Dai, L. Fu, L. Liao, et al. High-quality single-layer graphene via reparative reduction of graphene oxide[J], Nano Research,2011,4:434.
    [172]A. Bagri, C. Mattevi, M. Acik, et al. Structural evolution during the reduction of chemically derived graphene oxide[J], Nature Chemistry,2010,2:581.
    [173]S. Park and R. S. Ruoff. Chemical methods for the production of graphenes[J], Nature Nanotechnology,2009,4:217.
    [174]S. Pei and H.-M. Cheng. The reduction of graphene oxide[J], Carbon,2012,50:3210.
    [175]L. L. Zhang, X. Zhao, M. D. Stoller, et al. Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors[J], Nano Letters,2012, 12:1806.
    [176]L. Wang, J. Zhao, L. Wang, et al. Titanium-decorated graphene oxide for carbon monoxide capture and separation[J], Physical Chemistry Chemical Physics,2011,13:21126.
    [177]J. T. Robinson, F. K. Perkins, E. S. Snow, et al. Reduced Graphene Oxide Molecular Sensors [J], Nano Letters,2008,8:3137.
    [178]Y. Ding and J. Ni. Electronic structures of silicon nanoribbons[J], Applied Physics Letters,2009,95:083115.
    [179]V. Kumar. Nanosilicon[M], (Elsevier Science, London,2007).
    [180]X. Yang and J. Ni. Electronic properties of single-walled silicon nanotubes compared to carbon nanotubes[J], Physical Review B,2005,72:195426.
    [181]G. G. Guzman-Verri and L. C. Lew Yan Voon. Eleetronic structure of silicon-based nanostructures[J], Physical Review B,2007,76:075131.
    [182]S. Cahangirov, M. Topsakal, E. Akturk, et al. Two-and One-Dimensional Honeycomb Structures of Silicon and Germanium[J], Physical Review Letters,2009,102:236804.
    [183]T. Morishita, K. Nishio, and M. Mikami. Formation of single-and double-layer silicon in slit pores [J], Physical Review B,2008,77:081401.
    [184]K. Takeda and K. Shiraishi. Theoretical possibility of stage corrugation in Si and Ge analogs of graphite[J], Physical Review B,1994,50:14916.
    [185]P. Vogt, P. De Padova, C. Quaresima, et al. Silicene:Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon[J], Physical Review Letters,2012,108: 155501.
    [186]C.-C. Liu, H. Jiang, and Y. Yao. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin[J], Physical Review B, 2011,84:195430.
    [187]L. Chen, C.-C. Liu, B. Feng, et al. Evidence for Dirac Fermions in a Honeycomb Lattice Based on Silicon[J], Physical Review Letters,2012,109:056804.
    [188]T. H. Osborn, A. A. Farajian,O. V. Pupysheva, et al. Ab initio simulations of silicene hydrogenation[J], Chemical Physics Letters,2011,511:101.
    [189]M. Houssa, E. Scalise, K. Sankaran, et al. Electronic properties of hydrogenated silicene and germanene[J], Applied Physics Letters,2011,98:223107.
    [190]X.-Q. Wang, H.-D. Li, and J.-T. Wang. Induced ferromagnetism in one-side semihydrogenated silicene and germanene[J], Physical Chemistry Chemical Physics, 2012,14:3031.
    [191]Y. Ding and Y. Wang. Electronic structures of silicene fluoride and hydride[J], Applied Physics Letters,2012,100:083102.
    [192]P. De Padova, C. Quaresima, B. Olivieri, et al. sp2-like hybridization of silicon valence orbitals in silicene nanoribbons[J], Applied Physics Letters,2011,98: 081909.
    [193]C.-C. Liu, W. Feng, and Y. Yao. Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium[J], Physical Review Letters,2011,107:076802.
    [194]M. Guigou, P. Recher, J. Cayssol, et al. Spin Hall effect at interfaces between HgTe/CdTe quantum wells and metals[J], Physical Review B,2011,84:094534.
    [195]B. Lalmi, H. Oughaddou, H. Enriquez, et al. Epitaxial growth of a silicene sheet[J], Applied Physics Letters,2010,97:223109.
    [196]C.-L. Lin, R. Arafune, K. Kawahara, et al. Structure of Silicene Grown on Ag(111) [J], Applied Physics Express,2012,5:045802.
    [197]B. Feng, Z. Ding, S. Meng, et al. Evidence of Silicene in Honeycomb Structures of Silicon on Ag(111)[J], Nano Letters,2012,12:3507.
    [198]A. Fleurence, R. Friedlein, T. Ozaki, et al. Experimental Evidence for Epitaxial Silicene on Diboride Thin Films[J], Physical Review Letters,2012,108:245501.
    [199]C. Leandri, H. Oughaddou, B. Aufray, et al. Growth of Si nanostructures on Ag(0 0 1)[J], Surface Science,2007,601:262.
    [200]B. Aufray, A. Kara, S. Vizzini, et al. Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene[J], Applied Physics Letters,2010,96:183102.
    [201]P. De Padova, C. Quaresima, C. Ottaviani, et al. Evidence of graphene-like electronic signature in silicene nanoribbons[J], Applied Physics Letters,2010,96:261905.
    [202]P. De Padova, C. Quaresima, B. Olivieri, et al. Strong resistance of silicene nanoribbons towards oxidation[J], Journal of Physics D:Applied Physics,2011,44: 312001.
    [203]A. Kara, H. Enriquez, A. P. Seitsonen, et al. A review on silicene- New candidate for electronics [J], Surface Science Reports,2012,67:1.
    [204]H. Jamgotchian, Y. Colignon, N. Hamzaoui, et al. Growth of silicene layers on Ag(111): unexpected effect of the substrate temperature[J], Journal of Physics:Condensed Matter,2012,24:172001.
    [205]H. Nakano, T. Mitsuoka, M. Harada, et al. Soft Synthesis of Single-Crystal Silicon Monolayer Sheets[J], Angewandte Chemie International Edition,2006,45:6303.
    [206]I. V. Markov, Fundamentals of Nucleation, Crystal Growth and Epitaxy[M], (World Scientific Publishing Co. Pte. Ltd., Singapore,2003).
    [207]A. Milchev. Electrochemical phase formation on a foreign substrate-basic theoretical concepts and some experimental results[J], Contemporary Physics,1991,32:321.
    [208]J. G. Kirkwood and F. P. Buff. The Statistical Mechanical Theory of Surface Tension [J], The Journal of Chemical Physics,1949,17:338.
    [209]R. C. Tolman. The Effect of Droplet Size on Surface Tension [J], The Journal of Chemical Physics,1949,17:333.
    [210]R. Becker and W. Doring. Kinetic theory for nucleation of supersaturated structures [J], Annals of Physics,1935,24:719.
    [211]M. Born and R. Oppenheimer. Zur Quantentheorie der Molekeln[J], Annalen der Physik, 1927,389:457.
    [212]P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas[J], Physical Review,1964,136: B864.
    [213]W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects[J], Physical Review,1965,140:A1133.
    [214]J. P. Perdew, J. A. Chevary, S. H. Vosko, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J], Physical Review B,1992,46:6671.
    [215]J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient Approximation Made Simple[J], Physical Review Letters,1996,77:3865.
    [216]G. Kresse and J. Furthmtiller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J], Computational Materials Science,1996,6:15.
    [217]G. Kresse and J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J], Physical Review B,1996,54:11169.
    [218]K. Laasonen, A. Pasquarello, R. Car, et al. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials[J], Physical Review B,1993,47:10142.
    [219]P. E. Blochl. Projector augmented-wave method [J], Physical Review B,1994,50:17953.
    [220]T. Ohta, A. Bostwick, T. Seyller, et al. Controlling the Electronic Structure of Bilayer Graphene[J], Science,2006,313:951.
    [221]C. Berger, Z. Song, X. Li, et al. Electronic Confinement and Coherence in Patterned Epitaxial Graphene[J], Science,2006,312:1191.
    [222]A. Bostwick, T. Ohta, T. Seyller, et al. Quasiparticle dynamics in graphene[J], Nature Physics,2007,3:36.
    [223]M. Choucair, P. Thordarson, and J. A. Stride. Gram-scale production of graphene based on solvothermal synthesis and sonication[J], Nature Kanotechnology,2009,4:30.
    [224]S. Stankovich, D. A. Dikin, R. D. Piner, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J], Carbon,2007,45:1558.
    [225]J. Vaari, J. Lahtinen, and P. Hautojarvi. The adsorption and decomposition of acetylene on clean and K-covered Co(0001)[J], Catalysis Letters,1997,44:43.
    [226]T. A. Land, T. Michely, R. J. Behm, et al. STM investigation of single layer graphite structures produced on Pt (111) by hydrocarbon decomposition[J], Surface Science, 1992,264:261.
    [227]J. Coraux, A. T. N Diaye, C. Busse, et al. Structural Coherency of Graphene on Ir(111)[J], Nano Letters,2008,8:565.
    [228]I. Pletikosic, M. Kralj, P. Pervan, et al. Dirac Cones and Minigaps for Graphene on Ir(111)[J], Physical Review Letters,2009,102:056808.
    [229]C. Johann, T. N. D. Alpha, E. Martin, et al. Growth of graphene on Ir(111) [J], New Journal of Physics,2009,11:039801.
    [230]D. Takagi, Y. Kobayashi, and Y. Homma. Carbon Nanotube Growth from Diamond [J], Journal of the American Chemical Society,2009,131:6922.
    [231]F. Ding, K. Bolton, and A. Rosen. Nucleation and Growth of Single-Walled Carbon Nanotubes:A Molecular Dynamics Study [J], The Journal of Physical Chemistry B,2004, 108:17369.
    [232]K. W. Kolasinski. Catalytic growth of nanowires:Vapor-liquid-solid, vapor-solid-solid, solution-liquid-solid and solid-liquid-solid growth[J], Current Opinion in Solid State and Materials Science,2006,10:182.
    [233]A. Gorbunov,O. Jost, W. Pompe, et al. Solid-liquid-solid growth mechanism of single-wall carbon nanotubes[J], Carbon,2002,40:113.
    [234]0. V. Yazyev and S. G. Louie. Electronic transport in polycrystalline graphene[J], Nature Materials,2010,9:806.
    [235]R. Grantab, V. B. Shenoy, and R. S. Ruoff. Anomalous Strength Characteristics of Tilt Grain Boundaries in Graphene[J], Science,2010,330:946.
    [236]E. Starodub, S. Maier, I. Stass, et al. Graphene growth by metal etching on Ru (0001) [J], Physical Review B,2009,80:235422.
    [237]L. Elena, C. B. Norman, J. F. Peter, et al. Evidence for graphene growth by C cluster attachment[J], New Journal of Physics,2008,10:093026.
    [238]E. Loginova, N. C. Bartelt, P. J. Feibelman, et al. Factors influencing graphene growth on metal surfaces[J], New Journal of Physics,2009,11:063046.
    [239]S. Karoui, H. Amara, C. Bichara, et al. Nickel-Assisted Healing of Defective Graphene[J], ACS Nano,2010,4:6114.
    [240]H. Amara, C. Bichara, and F. Ducastelle. Formation of carbon nanostructures on nickel surfaces:A tight-binding grand canonical Monte Carlo study[J], Physical Review B, 2006,73:113404.
    [241]D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formal ism[J], Physical Review B,1990,41:7892.
    [242]C. Gong, G. Lee, B. Shan, et al. First-principles study of metal-graphene interfaces[J], Journal of Applied Physics,2010,108:123711.
    [243]Y. Murata, V. Petrova, B. B. Kappes, et al. Moire Superstructures of Graphene on Faceted Nickel Islands [J], ACS Nano,2010,4:6509.
    [244]F. Ding, A. R. Harutyunyan, and B. I. Yakobson. Dislocation theory of chirality-controlled nanotube growth[J], Proceedings of the National Academy of Sciences of the United States of America,2009,106:2506.
    [245]R.0. Jones and G. Seifert. Structure and Bonding in Carbon Clusters C14 to C24:Chains, Rings, Bowls, Plates, and Cages[J], Physical Review Letters,1997,79:443.
    [246]R.O. Jones. Density functional study of carbon clusters C2n(2≤n≤16). I. Structure and bonding in the neutral clusters [J], The Journal of Chemical Physics, 1999,110:5189.
    [247]X. Fan, L. Liu, J. Lin, et al. Density Functional Theory Study of Finite Carbon Chains [J], ACS Nano,2009,3:3788.
    [248]K. S. Pitzer and E. Clementi. Large Molecules in Carbon Vapor[J], Journal of the American Chemical Society,1959,81:4477.
    [249]S. Saadi, F. Abild-Pedersen, S. Helveg, et al. On the Role of Metal Step-Edges in Graphene Growth[J], The Journal of Physical Chemistry C,2010,114:11221.
    [250]H. Amara, J. M. Roussel, C. Bichara, et al. Tight-binding potential for atomistic simulations of carbon interacting with transition metals:Application to the Ni-C system[M], Physical Review B,2009,79:014109.
    [251]M. Moors, H. Amara, T. Visart de Bocarme, et al. Early Stages in the N'ucleation Process of Carbon Nanotubes[J], ACS Nano,2009,3:511.
    [252]A. J. Page, S. Irle, and K. Morokuma. Polyyne Chain Growth and Ring Collapse Drives Ni-Catalyzed SWNT Growth:A QM/MD Invest igat ion [J], The Journal of Physical Chemistry C,2010,114:8206.
    [253]A. GrUneis and D. V. Vyalikh. Tunable hybridization between electronic states of graphene and a metal surface[J], Physical Review B,2008,77:193401.
    [254]A. Reina, X. Jia, J. Ho, et al. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposit ion[J], Nano Letters,2008,9:30.
    [255]J. Gao, J. Yip, J. Zhao, et al. Graphene N'ucleation on Transition Metal Surface: Structure Transformation and Role of the Metal Step Edge[J], Journal of the American Chemical Society,2011,133:5009.
    [256]J. Gao, Q. Yuan, H. Hu, et al. Formation of Carbon Clusters in the Initial Stage of Chemical Vapor Deposition Graphene Growth on Ni (111) Surface[J], The Journal of Physical Chemistry C,2011,115:17695.
    [257]Q. Yuan, J. Gao, H. Shu, et al. Magic Carbon Clusters in the Chemical Vapor Deposition Growth of Graphene[J], Journal of the American Chemical Society,2011,134:2970.
    [258]H. Chen, W. Zhu, and Z. Zhang. Contrasting Behavior of Carbon Nucleation in the Initial Stages of Graphene Epitaxial Growth on Stepped Metal Surfaces[J], Physical Review Letters,2010,104:186101.
    [259]G. Henkelman, B. P. Uberuaga, and H. Jonsson. A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J], The Journal of Chemical Physics,2000,113:9901.
    [260]J. Tersoff and D. R. Hamann. Theory and Application for the Scanning Tunneling Microscope[J], Physical Review Letters,1983,50:1998.
    [261]T. B. Tai, D. J. Grant, M. T. Nguyen, et al. Thermochemistry and Electronic Structure of Small Boron Clusters (B0, n=5-13) and Their Anions[J], The Journal of Physical Chemistry A,2009,114:994.
    [262]A. Siber. Vibrations of closed-shell Lennard-Jones icosahedral and cuboctahedral clusters and their effect on the cluster ground-state energy[J], Physical Review B, 2004,70:075407.
    [263]R. G. Van Wesep, H. Chen, W. Zhu, et al. Communication:Stable carbon nanoarches in the initial stages of epitaxial growth of graphene on Cu(111)[J], The Journal of Chemical Physics,2011,134:171105.
    [264]D. Cheng, G. Barcaro, J.-C. Charlier, et al. Homogeneous Nucleation of Graphitic Nanostructures from Carbon Chains on Ni(111)[J], The Journal of Physical Chemistry C,2011,115:10537.
    [265]J. Gao, J. Zhao, and F. Ding. Transition Metal Surface Passivation Induced Graphene Edge Reconstruction[J], Journal of the American Chemical Society,2012,134:6204.
    [266]H. Shu, X. Chen, X. Tao, et al. Edge Structural Stability and Kinetics of Graphene Chemical Vapor Deposition Growth[J], ACS Nano,2012,6:3243.
    [267]W. Zhang, P. Wu, Z. Li, et al. First-Principles Thermodynamics of Graphene Growth on Cu Surfaces[J], The Journal of Physical Chemistry C,2011,115:17782.
    [268]L. Meng, Q. Sun, J. Wang, et al. Molecular Dynamics Simulation of Chemical Vapor Deposition Graphene Growth on Ni (111) Surface [J], The Journal of Physical Chemistry C,2012,116:6097.
    [269]P. Wu, H. Jiang, W. Zhang, et al. Lattice Mismatch Induced Nonlinear Growth of Graphene[J], Journal of the American Chemical Society,2012,134:6045.
    [270]M. Y. Han, B. Ozyilmaz, Y. Zhang, et al. Energy Band-Gap Engineering of Graphene Nanoribbons[J], Physical Review Letters,2007,98:206805.
    [271]P. Koskinen, S. Malola, and H. Hakkinen. Self-Passivating Edge Reconstructions of Graphene[J], Physical Review Letters,2008,101:115502.
    [272]P. Koskinen, S. Malola, and H. Hakkinen. Evidence for graphene edges beyond zigzag and armchair[J], Physical Review B,2009,80:073401.
    [273]V. V. Ivanovskaya, A. Zobelli, P. Wagner, et al. Low-Energy Termination of Graphene Edges via the Formation of Narrow Nanotubes[J], Physical Review Letters,2011,107: 065502.
    [274]J. M. H. Kroes, M. A. Akhukov, J. H. Los, et al. Mechanism and free-energy barrier of the type-57 reconstruction of the zigzag edge of graphene [J], Physical Review B, 2011,83:165411.
    [275]T. Wassmann, A. P. Seitsonen, A. M. Saitta, et al. Structure, Stability, Edge States, and Aromaticity of Graphene Ribbons[J], Physical Review Letters,2008,101:096402.
    [276]G. Giovannetti, P. A. Khomyakov, G. Brocks, et al. Doping Graphene with Metal Contacts[J], Physical Review Letters,2008,101:026803.
    [277]S. Nose. A unified formulation of the constant temperature molecular dynamics methods[J], The Journal of Chemical Physics,1984,81:511.
    [278]D. M. Bylander and L. Kleinman. Energy fluctuations induced by the Nose thermostat [J], Physical Review B,1992,46:13756.
    [279]C. K. Gan and D. J. Srolovitz. First-principles study of graphene edge properties and flake shapes[J], Physical Review B,2010,81:125445.
    [280]S. Lebegue and 0. Eriksson. Electronic structure of two-dimensional crystals from ab initio theory[J], Physical Review B,2009,79:115409.
    [281]H. Sahin, S. Cahangirov, M. Topsakal, et al. Monolayer honeycomb structures of group-IV elements and Ⅲ-Ⅴ binary compounds:First-principles calculations[J], Physical Review B,2009,80:155453.
    [282]Z. Ni, Q. Liu, K. Tang, et al. Tunable Bandgap in Silicene and Germanene[J], Nano Letters,2011,12:113.
    [283]N. D. Drummond, V. Zolyomi, and V. I. Fal'ko. Electrically tunable band gap in silicene[J], Physical Review B,2012,85:075423.
    [284]C. Kamal. Controlling Band Gap in Silicene Monolayer Using External Electric Field[J], arXiv:1202.2636vl[cond-mat.mes-hall],2012,
    [285]A.O'Hare, F. V. Kusmartsev, and K. I. Kugel. A Stable "Flat" Form of Two-Dimensional Crystals:Could Graphene, Silicene, Germanene Be Minigap Semiconductors?[J], Nano Letters,2012,12:1045.
    [286]N. Gao, W. T. Zheng, and Q. Jiang. Density functional theory calculations for two-dimensional silicene with halogen functionalization[J], Physical Chemistry Chemical Physics,2012,14:257.
    [287]D. Jose and A. Datta. Structures and electronic properties of silicene clusters:a promising material for FET and hydrogen storage[J], Physical Chemistry Chemical Physics,2011,13:7304.
    [288]P. Wu, W. Zhang, Z. Li, et al. Communication:Coalescence of carbon atoms on Cu(111) surface:Emergence of a stable bridging-metal structure mot if[J], The Journal of Chemical Physics,2010,133:071101.
    [289]B. Hammer, L. B. Hansen, and J. K. Narskov. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals[J], Physical Review B,1999,59:7413.
    [290]R. Windiks and B. Delley. Massive thermostatting in isothermal density functional molecular dynamics simulations[J], The Journal of Chemical Physics,2003,119:2481.
    [291]X. Zhu and X. C. Zeng. Structures and stabilities of small sil icon clusters:Ab initio molecular-orbital calculations of Si7-Si11[J], The Journal of Chemical Physics,2003, 118:3558.
    [292]X. L. Zhu, X. C. Zeng, Y. A. Lei, et al. Structures and stability of medium silicon clusters. II. Ab initio molecular orbital calculations of Si12-Si20 [J], The Journal of Chemical Physics,2004,120:8985.
    [293]S. Yoo and X. C. Zeng. Structures and relative stability of medium-sized silicon clusters. IV. Motif-based low-lying clusters Si21-Si30[J], The Journal of Chemical Physics,2006,124:054304.
    [294]D. P. Kosimov, A. A. Dzhurakhalov, and F. M. Peeters. Carbon clusters:From ring structures to nanographene[J], Physical Review B,2010,81:195414.
    [295]J. Wang, J. Zhao, L. Ma, et al. Stability and magnetic properties of Fe encapsulating in silicon nanotubes[J], Nanotechnology,2007,18:235705.
    [296]R. S. Mulliken. Electronic Population Analysis on LCAO[Single Bond]MO Molecular Wave Functions. I[J], The Journal of Chemical Physics,1955,23:1833.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700