用户名: 密码: 验证码:
新疆草坪用野生偃麦草种质资源评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
偃麦草(Elytrigia repens (L.) Nevski)隶属禾本科偃麦草属,多年生草本,具发达的根茎,侵占性强,抗寒、耐踏、耐荫、耐湿、较耐旱,轻度盐渍化土壤亦能生长,且具较高营养价值,是一种具有潜在开发价值的优良草坪草、牧草资源。新疆是偃麦草资源的一个主要分布区,本文在对新疆野生偃麦草资源调查收集的基础上,以采集的39份野生偃麦草和5份引进偃麦草为供试材料,对其形态特征、抗旱性(包括种子萌发期、幼苗期抗旱评价及其生理响应)、坪用性、遗传差异(包括同工酶和DNA分子水平)等进行评价,筛选抗旱性好及坪用性优的优良居群,进而了解不同居群在分子水平的遗传差异程度,为资源有效保护与开发利用、品种选育工作中亲本的选配提供科学依据。
     主要研究结果包括:
     (1)对41份偃麦草种质资源的16个形态性状指标分析表明,偃麦草种内各形态指标存在较大的变异,变异系数介于4.88%-33.30%,其中叶层高度、旗叶长变异较大,而种子和颖片形态变异非常小。在相关分析结合主成分分析基础上,筛选出小穗数、百粒重、穗下第一节间长、叶长、叶层高度5个指标作为形态分异主要性状指标,将供试偃麦草材料划分为4大类,即高大型、偏高大型、特殊型、低矮型,其中特殊型、低矮型有望通过系统选育的方法,获得坪用性好的优良株系。
     (2)种子萌发期PEG模拟干旱胁迫结果表明,胁迫降低了偃麦草种质资源的发芽率、发芽势、发芽指数、发芽活力指数,抑制了胚芽和胚根的生长发育。采用隶属函数法,以相对发芽率、相对发芽势、相对胚芽长、相对胚根长、相对种子活力、相对发芽指数、萌发抗旱指数、胁迫指数为综合评价指标,得出29份偃麦草材料的抗旱能力由强到弱的次序为E39 > E14 > E11 > E13 > E16 > E03 >E07 > E25 > E34 > E42 > E09 > E29 > E17 > E31 > E21 > E26 > E06 > E10 > E12 > E27 > E38 > E08 > E01 > E04 > E41 >E19 > E37 > E02 > E24。
     (3)采用隶属函数法,以水分饱和亏缺、水分散失率、相对电导率、可溶性糖、土壤含水量为指标,对20份处于幼苗期的偃麦草材料进行抗旱性评价,其抗旱能力的次序为E01﹥E14﹥E13﹥E15﹥E17﹥E20﹥E09﹥E16﹥E19﹥E08﹥E18﹥E12﹥E07﹥E04﹥E10﹥E03﹥E06﹥E11﹥E02﹥E05,其中来自乌鲁木齐市永丰乡的2份材料E01与E13表现出较强的抗旱性,可为抗旱新品系选育提供材料。
     (4)依据苗期抗旱筛选,并结合田间观测结果,对4份抗旱能力不同的偃麦草材料E01、E05、E16、E22进行抗旱生理响应研究。结果表明干旱胁迫过程中偃麦草叶片水分饱和亏缺、电导率、丙二醛含量、脯氨酸含量呈现上升趋势,SOD活性及可溶性蛋白含量呈现先升高后降低趋势,而POD活性则表现降低趋势。与其他材料相比,抗旱性强的材料E01水分饱和亏缺值上升慢、增加率低,SOD酶活性峰值出现时间晚但峰值最高,可溶性蛋白含量变化小,脯氨酸积累少,MDA积累慢、含量低。
     (5)利用灰色关联分析的方法,以密度、盖度、抗旱性、出苗时间、成坪时间为指标对20份偃麦草材料的幼坪成坪性能进行评价表明,E11、E18与理想材料的关联度最大,其建坪性能最优,可以作为进一步选育优良草坪草的亲本材料利用;参照“景观-性能-应用适合度”与“外观-生态-使用”综合评价体系对偃麦草坪用性能进行评价表明,E18坪用性能最高,材料E04、E08、E09位于其后,也具有一定的育种价值。综合幼坪成坪性能与成坪坪用价值分析,认为E18、E04、E08可作为草坪用育种材料的首选。
     (6)对32份材料进行POD和EST同工酶分析表明:2种同工酶共出现16条酶带,其中10条酶带出现的频率较高,说明其种内分异较小,具有一定的同源性。以2种同工酶谱为基础,依据Jaccard相似系数,采用UPGMA方法将32份偃麦草材料划分为4大类,其中第一大类材料均来自新疆阿勒泰地区,表现出遗传特征与地域环境之间存在一定的相关性。
     (7)对32份偃麦草材料进行RAPD扩增表明,18条引物共扩增出264条带,多态性条带比例为93.7%,说明供试材料之间在DNA分子水平上多态性较高,表现出较丰富的遗传变异;以RAPD扩增结果进行聚类分析,在相似系数为0.373处,可将供试偃麦草种质资源划分为5大类群,且归类具有一定的地域相关性。
     (8)通过对新疆野生偃麦草资源形态特征、抗旱性、坪用性、分子水平遗传差异进行研究,发现居群间在不同性状上存在较大的变异,在遗传上存在丰富的遗传变异,有开发利用的潜能。筛选出的强抗旱居群和优坪用性居群,可为偃麦草新品系的选育奠定物质基础。
Elytrigia repens (L.) Nevski,the perennial grass of Elytrigia genus of Gramineae, had potential value utilized for good turfgrass and forage, which had plenty of rhizome, strong spreading ability, and good cold-resistance, anti-trample capacity, shade tolerance, humidity resistance and drought resistance. At the same time, Elytrigia repens could be planted on light salt soil and had abundant nutrition value. Xinjiang was a main distributing area of Elytrigia repens in China. On the base of investigating and collecting wild Elytrigia repens germplasm resource in Xinjiang, five introduced materials and thirty-nine native materials in Xinjiang were studied about morphological characteristics, drought resistance (including appraising drought resistance of seed germinating period and seedling period, and response to the droght stress), turf-using characteristic and genetic diversity (including isozyme of EST&POD and DNA by RAPD), which could select good drought-resistance and turf-using materials, understand genetic variation among different materials and provide scientific basis for effective protection and exploitation of germplasm resource, parent selecting in breeding research. The mainly results showed:
     (1)The morphological characteristics analysis of 16 morphological indexes of 41 E. repens materials showed that the variation of morphological indexes was great among the materials, and the coefficient of variation of morphological indexes were from 4.88% to 33.30%. The variation of the leave level height and the length of flag leaf was great, and that of seed and glumes shape was little. Based on correlation analysis and principal component analysis, five morphological indexes, including number of spikelet, weight of 100 grains, the first node length under the spikelet, leave length, leave level height, were selected as main variation indexes of E.repens, and in according to five indexes, E.repens could be divided into 4 morphological types, including high type, partial high type, special type and dwarf type by cluster analysis, and special type and dwarf type of E.repens could be bred good turfgrass by traditional breeding method.
     (2) The drought resistance evaluation of E. repens materials in the period of seed germination under PEG stress showed that the germination rate, germination energy, germination index and vitality index of E. repens decreased, and the length of embryonic bud and embryonic root also decreased under PEG stress. According to the comprehensive evaluation of drought tolerance, with the relative germination energy, relative germination rate, relative vitality index, relative embryonic bud length, relative embryonic root length, germination drought-resistance index and germination stress index as evaluation indexes, by membership function method, the sequence of drought resistance of 29 E. repens materials from high to low was E39 > E14 > E11 > E13 > E16 > E03 > E07 > E25 > E34 > E42 > E09 > E29 > E17 > E31 > E21 > E26 > E06 > E10 > E12 > E27 > E38 > E08 > E01 > E04 > E41 >E19 > E37 > E02 > E24。
     (3) Through measuring the leaf water saturation deficit, water loss rate, electrical conductivity, soluble sugar content and soil water content under drought stress,the drought resistance of 20 E. repens materials was comprehensively evaluated in the seedling period with membership function method. The result showed that the sequence of drought resistance of 20 E. repens materials was E01﹥E14﹥E13﹥E15﹥E17﹥E20﹥E09﹥E16﹥E19﹥E08﹥E18﹥E12﹥E07﹥E04﹥E10﹥E03﹥E06﹥E11﹥E02﹥E05. E01 and E13 collected from yongfeng village, Urumqi in Xinjiang, appeared stronger drought resistance, and could be used in breeding materials of drought resistance.
     (4) According to the results of drought resistance evaluation in seedling period and observation in the field, four E. repens materials of different drought resistance were selected, including E01、E05、E16、E22, and their physiological response to water stress was studied. The results showed that leaf water saturation deficit(WSD), electrical conductivity(EC), malondialdephyde (MDA )content, proline (Pro) content of E. repens during the drought stress always increased, superoxide dismutasethe (SOD) activity and content of soluble protein showed the tendency firstly decreasing then increasing, and peroxidase ( POD) activity decreased. Compared with other materials, E01 with high drought resistance showed the tendency that WSD increased slowly and the value was low, the maximum value of activities of SOD delayed and had the highest SOD activities, the soluble protein changed little, proline increased little and had a lower MDA content.
     (5) By grey analysis method, with density, coverage, drought resistance, seedling emergencing time and turf-establishing time as evaluation indexes, evaluation on turf-establishing performance of 20 accesions was carried out. The result showed E11 and E18 had high correlation degree, excellent turf -establishing performance, as were worth being further exploited. Based on the comprehensive assessment system of landscap-performance-utilization and landscape-zoology–utilization,evaluation on the turf-using performance of 20 quackgrass accessions was carried out, the result showed E18 was the best, the following was E04、E08、E09, these materials had potential exploitation and breeding value. By comprehensive assessment, E18、E04、E08 could be used as the primary selection for turfgrass breeding.
     (6)The results of esterase and peroxidase isozyme from 32 materials of E.repens showed that 16 enzyme belts emerged in sum. Among these belts, the emergence frequency of 10 enzyme belts was high, as meaned that the accessions of E.repens had the similar origin. Based on the esterase and peroxidase isozyme bands, in according to Jaccard similarity coefficient, cluster analysis was done with UPGMA method, 32 materials were divided into 4 categories, the enzyme characteristics of materials collected from altai region, Xinjiang, showed certain correlation with environment condition.
     (7) Based on the results of RAPD amplification reaction of 32 materials of E.repens, 264 bands were obtained by 18 effective random primers, and the polymorphism rate was 93.7%, which suggested that high DNA polymorphism and abundant genetic variation among E.repens materials existed. By clustering analysis based on RAPD, at the point of genetic similarity coefficient 0.373, all materials could be divided into 5 categories, and the categories had a certain correlation with environment condition.
     (8)Through study on morphological characteristics, drought resistance, turf-using characteristic and genetic diversity of wild Elytrigia repens (L.) Nevski in Xinjiang, the result showed great variation existed for different characteristics among accessions, abundant genetic diversity also existed among accessions, As had the value to be exploited, high drought resistance accessions and excellent turf–using accessions obtained by selection made the base for new quackgrass line breeding
引文
[1]刘建秀,贺善安,陈宁良.华东地区结缕草属植物形态类型及其坪用价值[J].草地学报,1997,5(1):42-47.
    [2]白史且,肖飙,韩烈保,等.几种暖季型草坪草在成都的引种适应性研究[J].草业科学,1999,16(S):22-25,30.
    [3]董厚德,宫莉君.中国结缕草生态学及其资源开发与应用[M].北京:中国林业出版社,2001:1-16.
    [4]阿不来提,孙宗玖,石定燧,等.新疆狗牙根资源的研究进展[G]//陈佐忠,周禾.草坪与地被科学进展论文汇编.北京:中国农业出版社,2006:158-163.
    [5]陈默君.中国饲用植物[M].北京:中国农业出版社,2002:38-39.
    [6]新疆维吾尔自治区畜牧厅.新疆草地植物名录[M].乌鲁木齐:新疆人民出版社,1990:54.
    [7]唐顺学,贾旭,靳全文.野生偃麦草遗传多样性研究及其保护和利用[M]//胡志昂,张亚平.中国动植物的遗传多样性.杭州:浙江科学技术出版社,1997:170-177.
    [8]吕伟东,徐鹏彬,蒲训.偃麦草属种质资源在普通小麦育种中的应用现状简介[J].草业学报,2007,16(6):136-140.
    [9] Plhak F. The effect of quackgrass on succeeding plants[J].Plant and Soil,1967,27(2):273-284.
    [10] Wedin D A,Tilman D. Influence of nitrogen loading and species composition on the carbon balance of grassland [J]. Science,1996,274:1720–1723.
    [11] Duke S O. Herbicide resistant crops:agricultural,environmental,economic,regulatory and technical aspects[M]. New York:CRC Press,1996:45-55.
    [12]王文清,程养民.偃麦草的生物学特性及其防除[J].植物保护,1998(5):19.
    [13]肖文一.北方型优良草坪植物—偃麦草[J].中国草地,1989(4):78-80.
    [14]孟林,张国芳.优良的饲用坪用水土保持兼用植物—偃麦草[J].草原与草坪,2003(4):16-18.
    [15]宋喜文,龚束芳.生态型野生草地植被偃麦草和扁蓄蓼[J].东北林业大学学报,2008(10):73-74.
    [16]陈宝书.牧草饲料作物栽培学[M].北京:中国农业出版社,2001:334-336.
    [17]张力君,易津.偃麦草属4种牧草种子萌发的基本特性[J].内蒙古农牧学院学报,1995,16(2):68-73.
    [18]崔乃然.新疆主要饲用植物志(第一册)[M].乌鲁木齐:新疆人民出版社,1990:70-71.
    [19]彭运翔,张力君,于颖杰,等.偃麦草属植物种子和幼苗的耐盐性[J].内蒙古草业,2002,14(3):42-43.
    [20]张竞.偃麦草属植物耐盐性评价及耐盐补偿生理学研究[D].呼和浩特:内蒙古农业大学硕士学位论文,2006:14-33.
    [21]尚春燕.偃麦草属植物种质材料苗期耐盐性鉴定与评价[D].乌鲁木齐:新疆农业大学硕士学位论文,2008:20-35.
    [22]孟林,毛培春,张国芳.偃麦草属植物种质材料不同耐盐群体生理指标分析[J].干旱地区农业研究,2009,27(4):83-89.
    [23]张耿,王赞,高洪文,等. 21份偃麦草属牧草苗期耐盐性评价[J].草业科学,2008,25(1):51-54.
    [24]张耿,高洪文,王赞,等.偃麦草属植物苗期耐盐性指标筛选及综合评价[J].草业学报,2007,16(4):55-61.
    [25]孟林,尚春艳,毛培春,等.偃麦草属植物种质材料苗期耐盐性综合评价[J].草业学报,2009,18(4):67-74.
    [26] Hon W C,Griffith M,Mlynarz A,et al. Antifreeze proteins in winter rye are similar to pathogenesis-related proteins [J]. Plant Physiol.,1995, 109:879-889.
    [27]李岩,龚束芳,杨涛,等.偃麦草冬季非质体蛋白抗冻活性的研究[J].东北农业大学学报,2008,39(11):28-31.
    [28]武保国,杜利民.偃麦草引种驯化[J].种子,1991(1):12-16.
    [29]孙宗玖,阿不来提,石定燧等.新疆野生偃麦草研究初报[G]//陈佐忠,白史且.中国草学会草坪专业委员会第六届全国会员代表大会及第九次学术研讨会论文汇编.北京:中国农业出版社,2004:165-169.
    [30]桂荣,那日苏,夏明,等.主要栽培牧草营养动态及适宜利用时期[J].中国草地,1998(5):38-45.
    [31]武菊英,滕文军,王庆海,等.耐旱多年生观赏草春季观赏性评价[J].华北农学报,2006,21(1):129-132.
    [32] Blair A M.The control of Agropyron repens(L)Beauv.in the stubble using glyphosate[J].Weed Research,1975,15(2):83-88.
    [33] Smith D L, Rogan P G. Growth of the shoot apex of Agropyron repens(L.) Beauv.during successive plastochrons[J].Oxford Journals(Annals of Botany),1979,45:27-34.
    [34] Smith D L,Rogan P G. Correlative inhibition in the shoot of Agropyron repens (L.)Beauv [J].Oxford Journals(Annals of Botany),1980,46:285-296.
    [35] Jerry A, Ivany J. Quackgrass (Elytrigia repens)control in potatoes(Solanum tuberosum)with clethodim [J].Phytoprotection,2003,84:27-35.
    [36] Brenly-Bultemeier T L,Barker D J,Sulc R M,et al. Species interactions with quackgrass and their effects on forage production [J].Crop Sci., 2005, 45:290-296.
    [37]张国芳,王北洪,孟林,等.四种偃麦草光合特性日变化分析[J].草地学报,2005,13(4):344-348.
    [38]孟林,毛培春,张国芳.偃麦草优良无性系及其光合特性日变化规律研究[J].草业与畜牧,2006(7):21-24.
    [39]解新明,云锦凤.植物遗传多样性及其检测方法[J].中国草地,2000(6):51-59.
    [40]马克平.试论生物多样性的概念[J].生物多样性,1993,1(1):20-22.
    [41]贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29(4):110.
    [42]夏铭.遗传多样性研究进展[J].生态学杂志,1999,18(3):59-65.
    [43]钱迎倩,马克平.生物多样性研究的原理与方法[M].北京:中国科学技术出版社,1994:115-119.
    [44]胡延吉,赵檀力.小麦农艺性状主成分分析与种质资源评价的研究[J].作物研究,1994,8(2):31-34.
    [45] Gill B S,Friebe B, Endo T R. Standard karyotype and nomenelature system for description of chromosome band and structural aberrations in wheat (Triticum aestvum)[J].Genome,1991,34:830-839.
    [46]阎贵兴.中国草地饲用植物染色体研究[M].呼和浩特:内蒙古人民出版社,2001:16-34.
    [47]杨瑞武,周永红,郑有良.小麦族披碱草属、鹅观草属和猬草属模式种的C带研究[J].云南植物研究,2003,25(1):71-77.
    [48]冯霞,孙振元,刘建锋,等.多年生黑麦草核型分析与组织培养再生植株染色体变异研究[J].林业科学研究,2005,18(3):321-324.
    [49] Steiner A M,Heidenreich S C,Schwarz P. Verification of varieties of alpine meadow grass (Poa alpine) floret morphology,chromosome number and single seed storage protein electrophoresis [J].Plant Varieties & Seeds,1997,10(2):129-134.
    [50] Heidenreich S C,Kruse S C,Borstel M,et al. Verification of perennial ryegrass blends (Lolium perenne) comparison of growing tests and bulk seed storage protein electrophoresis[J].Plant Varieties & Seeds,2000,13(1):61-66.
    [51] Wilson B L,Kitzmiller J,Rolle W,et al. Isozyme variation and its environmental correlates in Elymus glaucus from the California Floristic province[J].Canadian Journal of Botany,2001,79(2):139-153.
    [52]白史且.中国假俭草遗传多样性研究[D].成都:四川大学博士学位论文,2002:37-46.
    [53] Choi J S, Ahn B J, Yang G M. Classification of zoysiagrasses ( Zoysia spp. ) native to the southwest coastal regions of Korea using RAPD [J]. J. Kor. Soci. Hort. Sci.,1997,38(6):789 - 795.
    [54]金洪.中国结缕草遗传多样性研究[D].北京:北京林业大学博士学位论文,2004:65-90.
    [55]刘伟.西南区野生狗牙根种质资源遗传多样性和坪用价值研究[D].成都:四川农业大学博士学位论文,2006:45-72.
    [56] Zhang L H,Ozias-Akins P,Kochert G,et al. Differentiation of bermudagrass (Cynodon spp.)genotypes by AFLP analyses [J]. Theoretical and Applied Genetics,1999,98:895-902.
    [57] Huff D R,Peakall R,Smouse P E. RAPD variation within and among natural populations of outcrossing buffalograss [Buchloe dactyloides (Nutt.) Engelm.][J].Theoretical and Applied Genetics,1993,86:927-934.
    [58] Budak H,Shearman R C. Molecular characterization of buffalograss germplasm using sequencerelated amplified polymorphism markers [J]. Theoretical and Applied Genetics,2004,108:328–334.
    [59]田志宏,邱永福,严寒,等.用RAPD标记分析草地早熟禾遗传多样性[J].草地学报,2006, 14(2):120-123,128.
    [60]朱昊,阿不来提·阿不都热依木,李培英,等. 10份偃麦草形态生物学特性及其坪用性研究[J].新疆农业大学学报,2008,31(1):16-21.
    [61] Lu B R. The genus Elymus L. in Asia.taxonomy and biosystematics with special reference to genomic relationships[G]. // Wang R C,Jensen K B, Jaussi C (eds). Proceedings of 2nd International Triticeae Symposium,1994,17:1105–1109.
    [62]乌仁其木格,张力君.偃麦草属牧草种子同工酶比较研究[J].内蒙古农牧学院学报,1999,20(2):49-52.
    [63] Georgi Borisov. Isoenzyme variation of esterase and acid phosphatase and genetic affinities among Dasypyrum villosum(L.)P.Candargy,Elytrigia repens(L.)Nevski and Elymus canines(L.) [J].Turk. J. Bot.,2003,27:249-254.
    [64] Dewey D R. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae[G]. // Gustafsen J P (eds). Gene manipulation in plant improvement. Proc. of 16th Stadler Genet. Symp.,Plenum,New York,1984(b):209-279.
    [65] Seberg O,Petersen G. A taxonomic revision of the genus Elymus L. (Poaceae, Triticeae) in South America[J]. Bot. J. Syst.,1998,120:503-543.
    [66] Mizianty M,Frey L,Szczepaniak M. The Agropyron-Elymus complex (Poaceae) in Poland:nomenclatural problems[J]. Fragm. Flor. Geobol.,1999,44:3-33.
    [67] Mason-gamer R J,Burns M M,Naum M. Polyploidy,introgression and complex phylogenetic patterns within Elymus[J]. Czech. J. Genet. Plant Breed,2005,41:21-26.
    [68] Sun G,Salomon B. Microsatellite and hetrozygote deficiency in the arctic-alpine Alaskan wheatgrass (Elymus alaskanus) complex[J]. Genome,2003,46:729-737.
    [69] Magdalena Szczepaniak,Elzbieta Cieslak,Piotr Tomasz Bednarek. Morphological and AFLP variation of Elytrigia repens(L.)Gould (Poaceae) [J].Cellular & Molecular Biology Letters,2002,7:547-558.
    [70] Mitra S,Bhowmik P C,Idnurm A. Using RAPD markers to identify genetic variation in quackgrass(Elytrigia repens)biotypes[J].Association of Applied Biologists,2000,136:253-258.
    [71] Fahleson J,Okori P,Kerblom L A,et al. Genetic variability and genomic divergence of Elymus repens and related species [J]. Plant Systematics and Evolution,2008,271:43-156.
    [72]董杰,贾学锋.全球气候变化对中国自然灾害的可能影响[J].聊城大学学报,2004,17(2):58-62.
    [73]把多铎,魏晓妹,杨建国.我国的水资源危机及其分析[J].干旱地区农业研究,1998,16(3):97-102.
    [74]康绍忠.新的农业科技革命与21世纪我国节水农业的发展[J].干旱地区农业研究,1998,16(1):11-17.
    [75]王长利.甘草抗旱特性的初步研究[D].石家庄:河北农业大学硕士学位论文,2002:27-36.
    [76] Levitt J. Responses of plants to environmental stresses[M].New York:Academic Press,1972:25-35.
    [77] Hall A E. Physiological ecology of crops in relation to light,water,and temperature[G]. // Carrloo C R,Vandermeer J H ,Rosset P.(eds),Agroecology,New York:Mc Graw Hill Publishing Company,1990:191-233.
    [78]周久亚,刘建秀,陈树元.草坪草抗旱研究概述[J].草业科学,2002,19(5):61-66.
    [79]冉秀芝,杨成军,吴文杉.冷季型草坪草抗旱性机理研究进展[J].中国草地,2002,24(5):62-65,76.
    [80]王钦,金林梅.草坪植物对干旱逆境的效应[J].草业科学,1993,10(5):54-59.
    [81]徐炳成,山仑,黄占兵.草坪草对干旱胁迫的反应及适应性研究进展[J].中国草地,2001,23(2):55-61.
    [82] Foyer C H, Harbinson J. Oxygen metabolism and the regulation of photosynthetic electron- transport[G].// Foyer C H,Mullineaux P M (eds.) Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants[C]. Boca Raton:CRC Press,1994:1-42.
    [83]王静.冷蒿种群对放牧干扰响应的研究[D].呼和浩特:内蒙古农业大学博士学位论文,2003:34-60.
    [84]张往祥,周兴元,曹福亮.夏季土壤干旱对3种暖季型草坪草形态景观和生理参数的影响[J].江苏林业科技,2002(6):8-14.
    [85]彭明俊,赵琳,温绍龙,等. 4种禾本科牧草种子的抗旱性评价[J].西部林业科学,2006(2):74-77.
    [86] Levitt J. Response of plants to environmental stress [G]. //Water Radiation salt and others stress. New York,1980:82-85.
    [87] Keely S J, Koshi A J. Drought avoidance in the kentucky bluegrass [G]. //Agronomy abstracts. WI:Madion,1995:154.
    [88] Marcum K B,Engelke M C,Morton S J,et a1. Rooting characteristics and associated drought resistance of Zoysiagrass[J]. Agronomy Journal,1995,87:534-538.
    [89] Huang B R,Duncan R R,Carrow R N.Drought resistance mechanisms of seven warm-season turfgrass under surface soil drying:Ⅱroot aspect [J].Crop sci.,1997,37:1863-1869.
    [90] Huang B Hongwen G. Root physiological characteristics associated with drought resistance in tall fescue cultivars[J]. Crop sci.,2000,40:196-203.
    [91]王代军,温洋.温度胁迫下几种冷季型草坪草抗性机制的研究[J].草业学报,1998,7(1):75-80.
    [92]倪郁,李唯.作物抗旱机制及其指标的研究进展与现状[J].甘肃农业大学报,2001,36(1):14-22.
    [93]王艳,张绵.结缕草和早熟禾解剖结构与其抗旱性,耐践踏性和弹性关系的对比研究[J].辽宁大学学报(自然科学版),2000,27:371-375.
    [94]刘自学,郑群英,汪玺. 6种草坪草叶片的气孔特征与气孔传导力[J].草业科学,2005(8):71-75.
    [95] Cansnoff D M,Green R L,Beard J B. Leaf blade stomata densities of ten warm-season perennial grasses and their evaporation rates [G]. // Tokyo, Japanese Society of turf grass. Proceeding soft the sixth international turf grass research conference.Tokyo,1989:129-131.
    [96] Green R L,Sifers S J,Athins C E. Evapotranspiration rates of 11 Zoysia genotypes [J]. HortScience,1991,26:264-266.
    [97] Shearman R C. Kentucky bluegrass cultivars evapotranspiration rate[J].Hort Science,1999,21:455-457.
    [98] Beard J B. Turfgrass:science and culture prentice hall[M]. New Jersey:Englewood Cliffs,1973:85-93.
    [99]贺军虎,王永熙.渭北几种柿树的叶片结构与抗旱性关系的研究[J].西北林学院学报,2005,20(1):68-70.
    [100]许育彬,陈越.甘薯的抗旱生理及栽培技术研究进展[J].干旱地区农业研究,2004,22(1):128-131.
    [101]史燕山,骆建霞,王煦,等. 5种草本地被植物抗旱性研究[J].西北农林科技大学学报(自然科学版),2005,33(5):130-134.
    [102] Wang S M,Wan C G,Wang Y R. The characteristics of Na+, K+ and free proline distribution in several drought resistant plants of the Alxa Desert,China[J]. Journal of Arid Environments,2004,56:525-539.
    [103] Rashmi P,Agarwai R M,Jeevaratam K,et al. Osmotic stress induced alteration in rice (Oryza sativa L. ) and recovery on stress release[J]. Plant Growth Regulation,2004,42:79-87.
    [104]李岩,潘海春,李德全.抗旱性不同的玉米品种在土壤干旱及复水过程中的生理差异[J].浙江大学学报(农业与生命科学版) ,2002,28(3):249-254.
    [105] Subbarao G V, Chauhan Y S, Johansen C. Patterns of osmotic adjustment in pigeonpea-its importance as a mechanism of drought resistance[J]. European Journal of Agronomy,2000,12(3/4):239-249.
    [106]黎裕.植物的渗透调节与其它生理过程的关系及其在作物改良中的应用[[J].植物生理学通讯,1994,30(5):377-385.
    [107]刘娥娥,宗会,郭振飞,等.干旱、盐和低温胁迫对水稻幼苗脯氨酸含量的影响[J].热带亚热带植物学报,2000,8(3):235-238.
    [108]宗会,刘娥娥,郭振飞,等.干旱、盐胁迫下LaCl3和CPZ对稻苗脯氨酸积累的影响[J].作物学报,2001,27(2):173-177.
    [109] Singh. Proline accumulation and varietal adaptability to drought in barley:a potential metabolic measure of drought resistance[J ]. Nature New Biology,1972,3:188-190.
    [110]张力君.干旱胁迫下植物体内游离脯氨酸积累与细胞膜透性的变化[J].中国草地,1990(2):30-33.
    [111]张明生,杜建厂,谢波,等.水分胁迫下甘薯叶片渗透调节物质含量与品种抗旱性的关系[J].南京农业大学学报,2004,27 (4):123-125.
    [112] Bowler C, Van M M, Inze D. Superoxide dismutase and stress tolerance[J]. Ann. Rev. Plant physiol.,1992,43:83-116.
    [113] Scandalios J G, Oxygen stresses and superoxide dismutases[J]. Plant Physiol.,1993,101:7-12.
    [114]卢少云,郭振飞,彭新湘.干旱条件下水稻幼苗的膜保护酶活性及其与耐旱性的关系[J].华南农业大学学报,1997,18(4):21-25.
    [115]龚吉蕊,赵爱芬,张立新,等.干旱胁迫下几种荒漠植物抗氧化能力的比较研究[J].西北植物学报,2004,24(9):1570-1577.
    [116]王玉刚,阿不来提,齐曼.两狗牙根品种对干旱胁迫反应的差异[J].草业学报,2006,15(4):58-64.
    [117]周兴元,曹福亮,陈国庆.四种暖季型草坪草几种生理指标与抗旱性的关系研究[J].草原与草坪,2003(4):29-32.
    [118]卢少云,陈斯平,陈斯曼,等.暖季型草坪脯氨酸含量和抗氧化酶活性对干旱的反应[J].园艺学报,2003,30(3):23-26.
    [119] Dhindsa R S, Matowe W. Drought tolerance in two mosses:correlated with enzymatic defense against lipid peroxidation[J]. J. Exp. Bot.,1981,32:79-91.
    [120]丁文江,海淑珍,徐柱,等.牧草种质资源抗旱性鉴定方法的初步研究[J].中国草原,1987(3):57-60.
    [121]张力君,易津,贾光宏,等. 9种禾草对干旱胁迫的生理反应[J].内蒙古农业大学学报,2000,21(4):14-16.
    [122]张力君,彭运翔,王永生.偃麦草属3种植物的持水力和蒸腾速率[J].干旱区资源与环境,2001, 15(5):68-70.
    [123]李雪莲.偃麦草与中间偃麦草抗旱鉴定及其分子标记辅助筛选[D].乌鲁木齐:新疆农业大学硕士学位论文,2005:12-27.
    [124]张国芳.偃麦草属植物光合特性及其抗旱性鉴定研究[D].北京:中国农业科学院硕士学位论文,2006:20-29.
    [125]邓容,王萍,罗启华,等.草坪品质评定方法简述[J].贵州畜牧兽医,1996,20(2):42-43.
    [126]赵有益,林慧龙,任继周.草坪质量的模糊数学综合评价方法[J].草业科学,2006,23(2):92-97.
    [127]曹明霞,党耀国,张蓉,等.对灰色关联度计算方法的改进[J].理论创新,2007(4):29-30.
    [128]宋桂龙,韩烈保.层次分析法在草坪耐践踏性研究中的应用[J].福建林学院学报,2005,25(3):274-278.
    [129]梁应林,邓蓉,王萍,等.草坪品质评定方法简述[J].贵州畜牧兽医,1996,20(2):42-43.
    [130]刘建秀.草坪坪用价值综合评价体系探讨Ⅰ评价体系的建立[J].中国草地,1998(1):44-47.
    [131]刘建秀.草坪坪用价值综合评价体系的探讨—Ⅱ评价体系的应用[J].中国草地,2000(3):54-56,65.
    [132]苏德荣.草坪工程质量评价模型[J].北京林业大学学报,2000,3(2):54-55.
    [133]郑海金,华珞,高占国.草坪质量的指标体系与评价方法[J].首都师范大学学报,2003,24(1):78-82.
    [134]范海荣,华珞,王洪海.草坪质量评价指标体系与评价方法探讨[J].草业科学,2006,23(10):101-105.
    [135]张新全.草坪草育种学[M].北京:中国农业出版社,2004:259-260.
    [136]盖钧镒.试验统计方法[M].北京:中国农业出版社,2000:41-47.
    [137]张尧庭,方开泰.多元统计分析引论[M].北京:科学出版社,1982:257-270.
    [138]刘建秀,朱雪花,郭爱桂,等.中国假俭草种质资源主要性状变异及其形态类型[J].草地学报, 2004,12(3):183-188.
    [139]徐清,刘茂春,徐昌杰.草坪草生理生化研究进展[J].中国草地,1998(4):56-60.
    [140]阿力木·沙比尔. 6份新疆狗牙根抗旱性比较[D].新疆农业大学硕士学位论文,2008:9-49.
    [141] Ebdon J S, Kopp K L. Relationship between water use efficiency,carbon istope discrimination,andturf performance in genetypes of Kentucky bluegrass during drought [J].Crop Sci.,2004,44:1754-1762.
    [142] Jiang Y W,Huang B R. Drought and heat stress injure to two cool-season turfgrasses in relation to antioxidant metabolism and lipid pcroxidatiom [J].Crop Sci.,2001,41:436-442.
    [143] Jiang Y W, Huang B R. Osmotic adjustmeat and root growth associated drought preconditioning enhanced heat tolerance in Kentucky bluegrass[J].Crop Sci.,2001,41:1168-1163.
    [144]孙彦,杨青川,张英华.不同草坪草种及品种苗期抗旱性比较[J].草地学报,2001,9(1):16-20.
    [145]葛晋纲,宋刚,韩艳丽,等. 7种暖季型草坪草抗旱性的评价及其生理机制的初步研究[J].江苏林业科技,2004,31(2):12-16.
    [146]柴琦.坪用草地早熟禾抗旱性评价及硅对减轻其水分胁迫效应的研究[D].兰州:兰州大学博士学位论文,2007:55-67.
    [147]苏日古嘎,孙铁军,武菊英,等.干旱胁迫对禾草苗期抗旱性特征的影响[J].中国草地学报,2007,29(3):56-60.
    [148]王赞,李源,高洪文,等.鸭茅苗期抗旱性综合评价[J].干旱地区农业研究,2007,25(6):31-36.
    [149]李源,师尚礼,王赞,等.干旱胁迫下鸭茅苗期抗旱性生理研究[J].中国草地学报,2007,29(2):35-40.
    [150]张国芳,孟林,毛培春,等.偃麦草和中间偃麦草种质材料苗期抗旱性鉴定研究[J].华北农学报,2007,22(3):54-59.
    [151]孙宗玖,李培英,阿不来提.干旱复水后4份偃麦草渗透调节物质的响应[J].草业学报,2009,18(5):52-56.
    [152]王赞,李源,吴欣明,等. PEG渗透胁迫下鸭茅种子萌发特性及抗旱性鉴定[J].中国草地学报,2008,30(1):50-55.
    [153]安永平,强爱玲,张媛媛,等.渗透胁迫下水稻种子萌发特性及抗旱性鉴定指标研究[J].植物遗传资源学报,2006,7 (4) :421-426.
    [154]张治安.植物生理学实验指导[M].北京:中国农业科学技术出版社,2004:16.
    [155]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2002:164-169,184-185,258-263.
    [156]鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2000:67.
    [157]邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000:54-55.
    [158]席嘉宾,陈平,张惠霞,等.中国地毯草野生种质资源耐旱性变异的初步研究[J].草业学报,2006,15(3):93-99.
    [159]沈艳,谢应忠.干旱对紫花苜蓿叶绿素含量与水分饱和亏缺的影响[J].宁夏农学院学报,2004,25(2):25-28.
    [160] Minner D D, Butler J D. Drought tolerance of cool season turfgrass[J].Proc. Int. Turfgrass Rec. Conf.,1985,5:199-212.
    [161]陈少裕.膜脂过氧化与植物逆境胁迫[J].植物学通报,1989,6(4):211-217.
    [162]韩瑞宏,毛凯,干友民,等.干旱对草坪草的影响[J].草原与草坪,2003(5):8-10.
    [163]于同泉,秦岭,王有年.渗透胁迫板栗苗可溶性糖的积累及组分变化的研究[J].北京农学院学报,1996,11(1):43-47.
    [164]陈荣敏,杨学举,梁凤山,等.利用隶属函数法综合评价冬小麦的抗旱性[J].河北农业大学学报,2002,25(2):7-9.
    [165]廉华,马光恕.甜瓜种质资源苗期抗旱性生理鉴定指标测定[J].干旱地区农业研究,2004,22 (1):58 -61.
    [166]孙彩霞,沈秀瑛.作物抗旱性鉴定指标及数量分析方法的研究进展[J].中国农学通报,2002,18(1):49-51.
    [167] Ackerson B C. Comparative physiology and water relations of two corn hybrids during water stress [J]. Crop Sci.,1983,23:278-283.
    [168]董丽华.草地早熟禾不同品种抗旱性比较[D].银川市:宁夏大学硕士学位论文,2005:13-20.
    [169]于卓,史绣华,孙祥.四种植物种子萌发及苗期抗旱性差异的研究[J].西北植物学报,1997(3):410-415.
    [170]李德全,邹琦,程炳嵩.植物在逆境下的渗透调节[J].山东农业大学学报,1989,20(2):75-80.
    [171] Huang B,Fry J. Root anatomical physiological and morphological responses to drought stress for tall fescue cultivars [J].Crop Sci.,1998,38:1017-1022.
    [172]周兴元,曹福亮,刘国华.两种暖季型草坪禾草对土壤持续干旱胁迫的生理反应[J].草业学报,2004,13(1):84-88.
    [173] Hanson A D,Nelsen C E,Pedesrsen A R,et al. Capacity for proline accumulation during water stress in barley and its implication for drought resistance[J]. Crop Sci.,1979,19:489-493.
    [174]万开军,武高林,史晓霞,等.草坪草对干旱胁迫的反应与调节研究进展[J].草业科学,2006,23(8):97-102.
    [175] Bingru Huang. Nutrient accumulation and associated root characteristics in response to drought stress in tall fescue cultivars [J]. Hort Science,2001,36 (1):148-152.
    [176]孙铁军,苏日古嘎,马万里,等. 10种禾草苗期抗旱性的比较研究[J].草业学报,2008,17(4):42-49.
    [177]李培英,孙宗玖,阿不来提.偃麦草种质资源抗旱性评价初步研究[J].中国草地学报,2008,30(3):59-64.
    [178]金忠民.干旱胁迫对三种冷季型草坪草保护酶的影响[J].北方园艺,2008(9):120-122.
    [179] Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation [J].New phytol.,1993,125:27-58.
    [180]吕庆,郑荣梁.干旱及活性氧引起小麦膜脂过氧化及脱氧化[J].中国科学(C辑),1996,26(1):26-30.
    [181]夏新莉,郑彩霞,尹伟伦.土壤干旱对樟子松针叶膜指过氧化膜脂成分和乙烯释放的影响[J].林业科学,2000,36(3):8-12.
    [182]蒋明义,荆家海.植物体内羟自由基的产生及其膜脂过氧化作用启动的关系[J].植物生理学通讯,1993,29(4):300-305.
    [183]王振镒,郭蔼光,罗淑平.水分胁迫对玉米SOD和POD活力及同工酶的影响[J].西北农业大学学报,1989,17 (1) :45-49.
    [184]孔兰静,李红双,张志国.三种观赏草对土壤干旱胁迫的生理响应[J].中国草地学报,2008,30(4):40-45.
    [185]巩巧玲,冯佰利,高金锋,等.干旱胁迫对荞麦幼苗活性氧代谢的影响[J].华北农学报,2009,24 ( 4 ) :153-157.
    [186] Song J,Feng G,Tian C Y,et al. Osmotic adjustment traits of Suaeda physophora, Halaxylon ammodendron and Halaxlon persicum in field or controlled conditions [J]. Plant science,2006,170:113-119.
    [187]侯丽丽.干旱胁迫下沙棘抗旱生理生化指标变化规律研究[D].呼和浩特市:内蒙古农业大学士学位论文,2007:16.
    [188]宣继萍,周志芳,刘建秀,等.结缕草冷处理后可溶性蛋白的变化(简报)[J].草地学报,2008,16(2):208-210.
    [189]尹林克,张娟.不同环境下沙冬青属植物的蛋白质氨基酸变化[J].干旱区研究,2004,21(3):274-278.
    [190]王中英.果树抗旱生理[M].北京:中国农业出版社,2000:89-95.
    [191]陈立松,刘星辉.水分胁迫对荔枝叶片氮和核酸代谢的影响及其与抗旱性的关系[J].植物生理学报,1999,25(1):49 - 56.
    [192]王俊刚,陈国昌,张承烈.水分胁迫对2种生态型芦苇(Phragmites communis)的可溶性蛋白含量、SOD、POD、CAT活性的影响[J] .西北植物学报,2002,22(3):561 - 565.
    [193]孙景宽,张文辉,刘新成.干旱胁迫对沙枣和孩儿拳头的生理特性的影响[J].西北植物学报,2008,28(9):1868 -1874.
    [194]王娟,李德全.逆境条件下植物体内渗透调节物质的积累与活性氧化代谢[J].植物学通报,2001,18(4):459-465.
    [195]汤章城,吴亚华,王育启,等.游离脯氨酸与高粱苗的抗旱性[J].植物生理学通讯,1986(2):29-31.
    [196]汤章城,王育启,吴亚华,等.不同抗旱品种高梁苗中脯氨酸积累的差异[J].植物生理学报,1986(12):154-162.
    [197] Singh T N,Aspinall D,Palag L G.Proline accumulatin and varietal adaptability to drought in barley :A potential metaboic measure of drought resistance[J].Nature New Boil.,1972,236:188-190.
    [198] Hanson A D.Evaluation of free proline accumulation as an index of drought resistance using two contrasting barley cultivars [J].Crop sci.,1977,17:720-726.
    [199] Stewart C R.Proline accumulation:Biochemistry aspects[G]//Paley L G,Aslinall D.The physiology and biochemistry of drought resistance in plant.Sydney:Acaderrfic Press,1981:38-35.
    [200]谢彩云,尚以顺.主要冷季型草坪草幼坪质量评定[J].草业科学,2002,19(2):66-68.
    [201]刘永军,王同坤,齐永顺,等.不同板栗品种(系)过氧化物酶同工酶的分析比较[J].河北科技师范学院学报,2006(4):72-75,80.
    [202]张维强.同工酶与植物遗传育种[M].北京:北京农业大学出版社,1993:52-55.
    [203]张以忠,陈庆富.荞麦属植物三叶期幼叶过氧化物酶同工酶研究[J].武汉植物学研究,2008,26(2):213-217.
    [204]谢果珍,舒少华,王沫.栝楼不同居群可溶性蛋白质和酯酶同工酶电泳分析[J].湖北农业科学,2009,48(2):384-387
    [205]孙海燕,王利沙. 8种大白菜过氧化物酶同工酶分析[J].现代农业科技,2009(5):8-9.
    [206]何克勤,程昕昕.不同玉米品种间酯酶同工酶的分析[J].中国农学通报,2008,24(4):221-224.
    [207]丁玲,陈发棣,滕年军,等.菊花品种间过氧化物酶、酯酶同工酶的遗传多样性分析[J].中国农业科学,2008,4l(4):l142-l150.
    [208]李景环,云锦凤,王树彦,等.酯酶同工酶标记鉴定加拿大披碱草和老芒麦的杂种后代纯度研究[J].种子,2007,26(11):75-76.
    [209]朱彦涛,张新,刘湛,等. 2个油菜CMS系统的酯酶和过氧化物酶同工酶分析[J].西北植物学报,2009,29(4):711-716.
    [210]程昕昕,耿广汉,刘正.过氧化物酶杂合性与玉米Fl产量性状相关性分析[J].中国农学通报,2007,23(2):271-274.
    [211]陈传军.南农选系草地早熟禾坪用特性的研究[D].南京:南京农业大学硕士学位论文,2005:9-14.
    [212]郭海林.结缕草属(Zoysia Willd.)植物杂交育种的研究[D].南京:江苏省中国科学院植物研究所硕士学位论文,2004:29-35.
    [213]王中仁.植物等位酶分析[M].北京:科学出版社,1996:36-55.
    [214]张淑改.凇科四种植物的酯酶同工酶分析[J].山西农业大学出版社,1998,18(2):108-109.
    [215]张东向,张磊,王蕊.黄芩过氧化物酶同工酶几种酶液提取方法的比较[J].北方园艺,2008(6):33-35.
    [216]李潇枫.偃麦草属植物种质资源遗传多样性分析[D].北京:中国农业大学硕士学位论文,2007: 16-26.
    [217]马学军,舒跃龙,等译校. F. M.奥斯伯,R. E.金斯顿,等主编.精编分子生物学实验指南(第四版)[M].北京:科学出版社,2005:1026.
    [218]赵静,叶欢,李雪松,等.四种改良CTAB法提取大叶朴基因组DNA比较研究[J].北方园艺,2010(1):165-168.
    [219]马月萍,戴思兰.高盐沉淀CTAB法提取温室菊花基因组DNA[J].生物技术通报,2009(7):90-93.
    [220]王卓伟,余茂德,鲁成. PVP在桑叶总DNA提取中的应用[J].西南农业大学学报,2001,23(1):61-65.
    [221]韩世明,王志强,牛良,等.半矮生桃基因组DNA的提取及SSR-PCR反应体系的优化[J].江苏农业科学,2010(1):34-36.
    [222]徐兴友,王子华,张风娟,等.干旱胁迫对6种野生耐旱花卉幼苗根系保护酶活性及脂质过氧化作用的影响[J].林业科学,2008,44(2):41-47.
    [223] Rashmi P,Agarwai R M,Jeevaratam K,et al. Osmotic stress induced alteration in rice (Oryza sativa L.) and recovery on stress release [J]. Plant Growth Regulation,2004,42:79-87.
    [224]肖海峻.鹅冠草种质资源遗传多样性研究[D].呼和浩特:中国农业科学院草原研究所硕士学位论文,2007:67-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700