用户名: 密码: 验证码:
油松天然种群遗传多样性及系统地位分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油松(Pinus tabulaeformis Carr.)根系发达,极耐干旱贫瘠,具有良好的保持水土、涵养水源及改良土壤的作用,是我国华北及西北荒山绿化和营造生态林的重要树种。山西是天然油松林分布面积最大的省份之一,也是油松的分布中心,以油松为建群种构成的寒温性针叶林是分布于山西关帝山、太岳山和中条山等地的优势植被类型,在山西森林生态系统中占着举足轻重的地位。然而以往对油松遗传多样性的研究多集中于形态学、细胞学和蛋白质水平。分子水平的研究工作刚刚起步,油松的许多遗传指标仍知之甚少,这对于油松天然林的合理保护和可持续经营是远远不够的。
     RAPD分子标记和ISSR分子标记是研究种群遗传结构的两个非常有效的工具。本研究在对山西油松地理分布实地考察和全面分析的基础上,选取历山、紫团山、灵空山、芦芽山和关帝山5个天然油松种群作为研究对象。运用RAPD和ISSR标记两种方法,检测天然油松种群的遗传结构及其空间分布格局,探讨各种生态因子与遗传变异的关系,揭示油松对复杂生境的分子适应机制。运用两对引物扩增了叶绿体trnT-trnL和trnS-trnG基因间隔序列,为松属基因组的比较和系统进化研究提供重要信息。主要的研究结果如下:
     1.山西油松种群的多态位点百分率和多样性指数。用15个RAPD引物对油松种群140个个体进行PCR扩增,共扩增出125个位点,其中多态位点99个,占79.20%;Nei多样性指数和Shannon多样性指数分别为0.2853和0.4232,在5个油松种群中其变化范围分别介于0.2243~0.2626和0.3352~0.3860之间。5个ISSR引物共扩增出35个位点,多态位点28个,占80.00%;Nei多样性指数和Shannon多样性指数分别为0.3085和0.4468。两种标记估算的多样性能比较一致地反映各种群的遗传多样性,即灵空山种群和关帝山种群拥有较高的遗传多样性,芦芽山种群的遗传多样性水平相对较低。通过与松属其它物种的比较,油松种群遗传多样性在松属中处于中等偏高水平。
     2.山西天然油松种群的遗传结构。RAPD标记扩增的油松种群遗传多样性指数为0.2853,种群内变异为0.2428,遗传分化系数为0.1491;ISSR扩增的油松种群的遗传多样性指数为0.3085,种群内变异为0.2667,遗传分化系数为0.1356。两种标记反映出油松种群间均存在一定程度的变异和分化,在总的遗传变异中85.00%以上的变异存在于种群内,种群间的变异近15.00%。遗传变异主要存在于种群内,种群间的变异虽然不是遗传变异的主要来源,但这是不可忽视的,说明各种群间已经产生一定的遗传分化,从种群分布的自然地理环境分析可知,种群遗传结构格局的形成是环境因素、人为因素和物种本身生物学特性综合作用的结果。
     3.5个油松种群间的遗传关系。基于ISSR标记,根据Nei的方法计算油松种群的遗传相似系数和遗传距离。芦芽山种群和关帝山种群遗传一致度最高为0.9716,遗传距离最小为0.0288,这两个种群的相似程度最大;紫团山种群和关帝山种群遗传一致度最低为0.8999,遗传距离最大为0.1054,这两个种群亲缘关系相对较远。RAPD标记和ISSR标记反映5个种群间亲缘关系的远近稍有不同,但UPGMA的聚类结果完全一致。灵空山种群和紫团山种群首先聚在一起,再与历山种群聚为一组,芦芽山种群和关帝山种群聚为另一组,2组再聚在一起,地理距离相近的种群首先聚在一起。
     4.油松叶绿体DNA间隔序列的特点及应用。由于叶绿体DNA的编码区和非编码区分子进化速度不同,因而适用于不同阶元的系统学研究。本研究用两对特异引物扩增油松叶绿体非编码区trnT-trnL和trnS-trnG间隔序列,序列对比结果显示这两个片段在物种水平十分保守和稳定,而在松科各属间变异位点丰富,说明这两个序列片段不适合作为物种以下种群间的分析,适合作为物种以上的分子标记和系统学研究。结合GenBank(http://www.ncbi.nlm.nih.gov)中已有的序列资料,下载其它有关的松科植物trnT-trnL和trnS-trnG序列,一起进行分支分析,构建邻接系统进化树。分析了油松与其近缘物种的亲缘关系,为松科属间或种间植物提供更多更深入的信息。
     山西高原油松种群遗传多态性主要来自等位基因频率的不同,而不是等位基因的组成的差异。说明部分个体的死亡不会发生基因丢失,但个体数的减少会使种群在某些位点有遗传漂变的趋势,降低种群适应环境的能力,从而影响到种群的质量和进化潜力。对油松天然林保护要有科学的理念,长远的策略,保护生境,减少人为干扰,使其不片断化是油松资源保护工作的重点。
Chinese pine,Pinus tabulaeformis Carr.has a broad distribution across northeastern to southwestern China.It has a strong adaptability to dry and barren habitat,meanwhile,it is a fast-growing tree species and possesses a strong ability to develop roots.Therefore it also has the function of conserving soil and water,enriching headwaters and improving soil fertility.The species therefore can be a main species for afforestation in the semiarid and waste mountains in northeast of China.Shanxi Plateau has long been known as its distribution center,where the tree predominate the forest landscape.However,natural Chinese pine forests have long been affected by natural processes and anthropogenic perturbation without systematic management,leading to serious ecological hazards and partial loss of ecological functions.Understanding of the genetic diversity and genetic structure of species is necessary for the conservation of species and populations,especially the conifer species.
     Many studies on the levels of morphology,chromosome,isozyme from Chinese pine have been conducted in recent decades.However,the genetic diversity and structure of the Chinese pine populations on the genomic level remains unknown.Little is known about how genetic variation is distributed within and among populations,despite the species considerable ecological importance.
     On the base of analysis of geographical distribution of Chinese pine and of the field investigation,the Lishan in Zhongtiao Mountains,Zituan Shan in Taihang Mountains,Lingkong Shan in Taiyue Mountains,Luya Shan in Guanqin Mountains,and Guandi Shan in Lvliang Mountains were selected as investigated fields,which represent the natural distribution of Chinese pine in Shanxi Loess Plateau.Neutral molecular markers such as random amplified polymorphic DNA(RAPD) and inter simple sequence repeats(ISSR) are well established in population genetics and have proven to be useful tools for the detection of plant population variability and differentiation.In our study,both ISSR and RAPD markers have been used to survey the genetic structure at different levels in P.tabulaeformis(within and among populations) and the correlations between genetic variation and environmental system and the mechanism of ecological fitness and molecular evolution.
     Two pairs of primers were used to amplify noncoding region of chloroplast trnS-trnG and trnT-trnL from genome of chloroplast,respectively.The resultant sequences were analyzed by alignment and the phylogram trees were constructed using a series of softwares to inference the systematics relationship of the Pinaceae and Pinus,and to provide the significant information for the comparison of genome and systematic evolution of Pinus.The findings of this research are as follows:
     RATIO OF POLYMORPHIC LOCI AND INDEX OF DIVERSITY
     A total of 125 reproducible bands were obtained from 140 individuals of P. tabulaeformis using 15 RAPD primers.Ninety-nine polymorphic loci were identified from 125 reproducible RAPD bands(79.2%).Nei's analysis of genetic diversity ad Shannon's information index are 0.2853 and 0.4232, respectively,which varies in five populations of P.tabulaeformis range from 0.2243~0.2626 and 0.3352~0.3860,respectively.A total of 35 reproducible bands were obtained from 140 individuals by using 5 ISSR primers. Twenty-eight polymorphic loci(80%) were identified.Nei's analysis of genetic diversity and Shannon's information index are 0.3085 and 0.4468,respectively. The genetic diversity of five populations was compared and ranked by using the diversity index measured by two markers.The results indicated that the taxis of diversity of five populations base on RAPD and ISSR were similar except for the LS population.The genetic diversity of P.tabulaeformis is high on Lingkong Mountain and Guandi Mountain and low on Guanqin Mountain.The genetic diversity of P.tabulaeformis is relatively in the middle to high level compared with that of species in Pinus.
     THE GENETIC VARIATIONS AND DIFFERENTIATIONS
     The majority of genetic variations were found within populations and some genetic differentiation occurred among populations of P.tabulaeformis.Base on the RAPD marker,the total genetic diversity(Ht) and genetic diversity within populations(Hs) of P.tabulaeformis are each 0.2583 and 0.2428,and the corresponding differentiation among populations(Gst) are 0.1491.Base on ISSR marker,the Ht and Hs of P.tabulaeformis are 0.3805 and 0.2667, respectively,and Gst is 0.1356.The data from two molecular markers suggest the existence of genetic variation and differentiation in population of P. tabulaeformis in Shanxi.The majority variation(85%) was found within populations.Though genetic variation among population(15%) is not large,it should not be negligible.Base on the analysis combining with natural geographic environmental factors,we concluded that the effects on the development of pattern of genetic structure of P.tabulaeformis population involved geographic location,natural habitat and human perturbation.
     GENETIC IDENTITY AND GENETIC DISTANCE AMONG POPULATIONS OF P.TABULAEFORMIS
     The genetic identity and genetic distance among five P.tabulaeformis populations were calculated using Nei's original measure.The largest genetic identity(0.9716) and the smallest genetic distance(0.0288) were found between LY population in Guanqin Mountains and XW population in Guandi Mountains, and similarity of two populations is highest.Meanwhile,the least genetic identity(0.8999) and biggest differentiation(0.1054) were found between ZT population in Taihang Mountains and XW population in Guandi Mountains.The UPGMA dendrogram tree was constructed by using genetic distance of five populations to further confirm the genetic relationship among populations in Shanxi.
     THE PHYLOGENETIC RELATIONSHIP OF PINUS INFERRED FROM CHLOROPLAST DNA
     Chloroplast DNA(cpDNA) has been considered as an important tool for inferring phylogenetic relationships at many taxonomic levels corresponding to different development rate of the encoding and nonencoding regions in genome of chloroplast.In this study,two pairs of specific primers were used to amplify noncoding region of chloroplast trnS-trnG and trnT-trnL from chloroplast genome,respectively.Alignment of the sequences of P.tabulaeformis from different population indicates that these two DNA sequences are identical and conserved among five populations even within genus and varies among genera of Pinaceae,suggesting the two DNA sequences are not fit to being used to analyses the systematic relationship within species and could be used for that among species within familia.In this study,we constructed the phylogenic tree by combining the chloroplast trnS-trnG and trnT-trnL sequences amplified from five P.tabulaeformis populations and downloaded from GenBank (http://www.ncbi.nlm.nih.gov).The phylogenic relationship between P. tabulaeformis and its relative species were analyzed combining with the morphology,which will provide much more information for elucidating the genetic relationship among species and genera of Pinaceae.
     CONSERVATION OF PINE FOREST
     The genetic diversity of pine populations in Shanxi plateau mainly rests on the different allelic frequency rather than on the composition of alleles,indicating that the disappearance of some individuals does not lead to a loss of genes. However,a decrease in individuals may cause genetic drift and inbreeding leading to a decline in fitness with environmental or disease-related reductions in productivity for Chinese pine populations.Furthermore it will affect the evolution potential of the pine population.We should protect the natural pine forest with scientific consciousness.The conservation of pine forest should be focus on the protection of environment and decrease the artificial perturbation, which may cause the fragments level of the pine forest.
引文
[1]徐化成.油松[M].北京:中国林业出版社出版,1993.
    [2]智颖飙,王再岚,王中生.公路绿化植物油松和小叶杨(Populus simonii)对重金属元素的吸收与积累[J].生态学报,2007,27(5):1863-1872.
    [3]王希群.北京山区油松侧柏林质量调控理论与技术研究.北京林业大学博士论文[D],2005.
    [4]刘景海,马履一,王希群.北京低山油松、侧柏生态公益林的经营[J].西北林学院学报,2006,21(6):108-112.
    [5]Zhang X B,Zheng S X,Shangguan Z P.Nutrient distributions and bio-cycle characteristics in both natural and artificial Pinus tabulaeformis Cart forests in hilly loess regions[J].Acta Ecologica Sinica.2006,26(2):373-382.
    [6]Grant V.The Evolutionary Process:A Critical Study of Evolutionary Theory.(2nd ed.)[M],New York:Columbia University Press,1991.
    [7]麦克尼利等著.1990.李文军等译,1992.保护世界的生物多样性[M].北京:中国科学院生物多样性委员会编.
    [8]钱迎倩,马克平.生物多样性研究的原理与方法[M].北京:中国科学技术出版社,1994.
    [9]Barbier E B,Burgess J C,Folke C.Paradise lost? London:Earthscan Publications Ltd,1994.
    [10]薛喜梅,王芋华,罗建勋,等.不同DNA分子标记在云杉属植物遗传多样性研究中的应用[J].应用与环境生物学报,2004,10(6):803-810.
    [11]Soltis P S,Soltis D E.Genetic variation in endemic and widespread plant species:examples from Saxifragaceae and Polystichum(Dryopteridaceae)[J].Aliso,1991,13:215-223.
    [12]Santiago C G.Genetic resources in maritime pine(Pinus pinaster,Aiton):molecular and quantitative measures of genetic variation and differentiation among maternal lineages[J].Forest Ecology and Management 2004,197:103-115.
    [13]Barbara V.SSR markers as tools to reveal mutation events in Scots pine(Pinus sylvestris L.)from Chernobyl[J].Europeqn Journal Forest Research,2004,123:245-248.
    [14]Fu X X,Shi J S.Identification of seeds of Pinus species by microsatellite markers[J].Journal of Forestry Research,2005,16(4):281-284.
    [15]Walter R.and Epperson B K.Geographic pattern of genetic variation in Pinus resinosa:area of greatest diversity is not the origin of postglacial Populations[J].Molecular Ecology,2001(10):103-111.
    [16]Kan X Z,Wang S S,Ding X,et al.Structural evolution of nrDNA ITS in Pinaceae and its phylogenetic implications[J].Molecular Phylogenetics and Evolution,2007,44:765-777.
    [17]Zara A R,Richark S D.Chloroplast DNA supports a hypothesis of glacial refugia over postglacial recolonization in disjunct populations of black pine(Pinus nigra) in Western Europe[J].Molecular Ecology,2007,16:723-736.
    [18]杨业华.普通遗传学[M].北京:高等教育出版社,2003.
    [19]Fu L G.Pinaceae in Flora of China[R],In Wu Z Y,Raven P H.Flora of China 4,Flora of China Newsletter.Harvard University Herbaria,Cambridge,MA USA,1999.
    [20]吴中伦.中国松属的分类与分布.植物分类学报[J],1956,5(3):131-162.
    [21]Harju A M.Genetic and phenotypic variation of seed maturity in Pinus sylvestris[J].Silvae Genetica,1996,45(4):205-211.
    [22]Hannrup B.Time trend of genetic parameters of wood density and growth characteristics in Pinus sylvestris[J].Silvae Genetica,1998,47(4):214-219.
    [23]虞泓.云南松遗传多样性与进化研究[D].中国科学院植物研究所博士论文,1996.
    [24]赵毓棠,陆静梅,谷安根.中国东北松属—新种[J].植物研究,1990,10(4):69-70.
    [25]李竟雄,宋同明.植物细胞遗传学[M].北京:科学出版社,1993,32-72.
    [26]郑成木,张汉尧.植物分子标记的原理与方法[M].长沙:湖南科学技术出版社,2002.
    [27]Sax K,Sax H J.Chromosome number and morphology in the conifers[J],Journal of Arnold Arboretum,1933,14:356-357.
    [28]Darlington C D,Wylie A P.Chromosome Atlas of Flowering Plants,The Macmillan CO[M].New York,1956.
    [29]Hizume M,Tanaka A.Karyotypic analyses of gymnosperms[J].Heredity 1979,33:31-37.(in Japanese)
    [30]李林初,钱吉.两种中国特有松属植物核型的研究兼论松属的系统位置[J].云南植物研究,1993,15(1):47-56.
    [31]李林初.松科的核型和系统发育研究[J].植物分类学报,1995,33(5):417-432.
    [32]李楠,傅立国,朱政德.松科系统学研究(Ⅰ)[J].植物研究,1996,16(1):32-45.
    [33]李楠.黄杉属植物地理学研究.植物研究[J],1993,(4):404-411.
    [34]邓辉胜.松科三属植物的染色体研究[D].浙江大学博士论文,2005.
    [35]Harris H.Enzyme polymorphism in man[J].Proceedings of the Royal Society of London.Series B,1966,164:298-310.
    [36]Lewontin R C and Hubby J L.A molecular approach to the study of genetic heterozygosity in matural populations.Ⅱ.Amount of variation and degree of heterozygosity in natural populations of Drosopbila pseudoobscura[J].Genetics,1966,54:595-609.
    [37]邹春静,盛晓峰,韩文卿,等.同工酶分析技术及其在植物研究中的应用[J].态学杂志,2003,22(6):63-69.
    [38]Hamrick J L Godt M J.Allozyme diversity in plant species[A],In Brown A D H,Clegg M T,Kahler A L,Wier B S(eds),Plant population,breeding and genetic resources[C],Sinauer,Associates,Inc,Sunder land,MA,1989,43-63.
    [39]葛颂.电泳资料和系统与进化植物研究综述[J].武汉植物学研究,1994,12(1):71-84.
    [40]罗建勋,顾万春,陈少瑜.云杉天然群体遗传多样性研究的等位酶变异[J].植物生态学报,2006,30(1):165-173.
    [41]王中仁.植物遗传多样性和系统学研究中的等位酶分析[J].生物多样性,1994, 2(2):91-95.
    [42]Zhang C Y,Chen X S,He T M,Liu X L,Feng T,Yuan Z H.Genetic structure of Malus sieversii population from Xinjiang,China,revealed by SSR markers[J].J Genet Genomics,2007,4(10):47-55.
    [43]Palop-Esteban M,Segarra-Moragues J G,Gonzalez-Candelas F.Historical and biological determinants of genetic diversity in the highly endemic triploid sea lavender Limonium dufourii(Plumbaginaceae)[J].Molecular Ecology,2007,16(18):14-27.
    [44]Willianms J G,Kubelik A R,Livak K J.DNA polymorphism amplified by arbitrary primers are useful as genetic markers[J],Nucleic Acid Research,1990,18:6534-6535.
    [45]何华勤,贾小丽,梁义元,等.RAPD和ISSR标记对水稻化感种质资源遗传多态性的分析[J].遗传学报,2004,31(9):888-894.
    [46]Sheng Y,Zheng W H,Pei K Q,Ma K P.Population genetic structure of a dominant desert Tree,Haloxylon ammodendron(Chenopodiaceae),in the southeast Gurbantunggut desert detected by RAPD and ISSR markers[J].Acta Botanica Sinica.2004,46(6):675-681.
    [47]Christoph R,Anja A,Markus R.Molecular variation within and between ten populations of Primula farinose(Primulaceae) along an altitudinal gradient in the Northern Alps[J].Basic and Applied Ecology.2005(6):35-45.
    [48]Juchum F S,Leal J B,Santos L M,Almeida M P,Ahnert D,Correa R X.Evaluation of genetic diversity in a natural rosewood population(Dalbergia nigra Vell.Allemao ex Benth.) using RAPD markers[J].Genetics and Molecular Research.2007,6(3):43-53.
    [49]Zheng W,Wang L Y,Meng L H,Liu J Q.Genetic variation in the endangered Anisodus tanguticus(Solanaceae),an alpine perennial endemic to the Qinghai-Tibetan Plateau[J].Genetica.2008,132:123-129.
    [50]Vicario F,Vendramin G G,Rossi P.Allozyme,chroroplast DNA and RAPD markers for determining genetic relationship between Abies alba and the relic population of Abies nebrodensis[J].Theoretical and Applied Genetics,1995(90):1012-1018.
    [51]邹惠渝,黎志,罗世家,等.黄山松的分类学研究[J].植物研究,2003,23(3):278-279.
    [52]Nkongolo K K,Michael P,Gratton W S,Identification and characterization of RAPD markers inferring genetic relationships among Pine species[J].Genome,2002,45(1):51-58.
    [53]Zietkiewicz E,Rafalski A,Labuda D.Genome fingerprinting by simple sequence repeat(SSR)- anchored polymerase chain reaction amplification[J].Genomics,1994,20:176-183.
    [54]沈永宝,施季森,赵洪亮.利用ISSR DNA标记鉴定主要银杏栽培品种[J].林业科学,2005,41(1):202-204.
    [55]杜金昆,姚颖垠,倪中福.普通小麦、斯卑尔脱小麦、密穗小麦和轮回选择后代材料ISSR分子标记遗传差异研究[J].遗传学报,2002,29(5):445-452.
    [56]Huang J C,Sun M.Genetic diversity and relationships of sweet potato and its wild relatives in Ipomoea series Batatas(Convovulaceae) as revealed by inter-simple sequence repeat(ISSR) and restriction analysis of chloroplast DNA[J].Theoretical and Applied Genetics,2000,100:1050-1060.
    [57]Jonsson B O,Jonsdottir I S,Cronberg N.Clonal diversity and allozyme variation in populations of the arctic sedge Carex bigelowii(Cyperaceae)[J].Journal of Ecology,1996,84:449-459.
    [58]Martins M,Tenreiro R,Oliveira M M.Genetic relatedness of Portuguese almond cultivars assessed by RAPD and ISSR markers[J].Plant Cell Reports,2003,22:71-78.
    [59]Panda S,Martin J,Aguinagalde I.Chloroplast and nuclear DNA studies in a few members of the Brassica oleracea L.group using PCR-RFLP and ISSR-PCR markers:a population genetic analysis[J].Theoretical and Applied Genetics,2003,106:1122-1128.
    [60]陈俊秋,慈秀芹,李巧明,等.樟科濒危植物思茅木姜子遗传多样性的ISSR分析[J].生物多样性,2006,14(5):410-420.
    [61]穆立蔷,刘赢男.不同地理分布区紫椴种群的遗传多样性变化[J].植物生态学报,2007,31(6):1190-1198.
    [62]Verma V K,Behera T K,Munshi A D,Parida S K,Mohapatra T.Genetic diversity of ash gourd[Benincasa hispida(Thunb.) Cogn.]inbred lines based on RAPD and ISSR markers and their hybrid performance[J].Scientia Horticulturae,2007,113:231-237.
    [63]Su Y,Long R J,Chen G H,Wu X S,Xie K Z,Wan J H.Genetic analysis of six endangered local duck populations in china based on microsatellite markers[J].Journal of Genetics and Genomics,2007,34(11):1-8.
    [64]Zong M,Liu H L,Qiu Y X,et al.Genetic diversity and geographic differentiation in the threatened species dysosma pleiantha in China as revealed by ISSR analysis[J].Biochemical genetics,2008,46(1).
    [65]Liu G F,Dong J X,Jiang Y,et al.Analysis of genetic relationship in 12 species of Section Strobus with ISSR markers[J].Journal of Forestry Research,2005,16(3):213-215.
    [66]Li H Y,Jiang J,Liu G F et al.Genetic variation and division of pinus sylvestris provenances by ISSR markers[J].Journal of Forestry Research,2005,16(3):216-218.
    [67]Provan J,Soranzo N,Wilson N J,et al.A low mutation rate for chloroplast microsatellites[J].Genetics,1999,153:943-947.
    [68]Ribeiro M M,Plomion C,Petit R,et al.Variation in chloroplast single-sequence repeats in Portguese maritime pine(Pinus pinaster Ait.)[J].Theoretical and Applied Genetics,2001,102:97-103.
    [69]Tautz D,Arctander P,Minelli A,et al.A plea for DNA taxonomy.Trends in ecology and evolution,2003,18(2):70-74.
    [70]Weising K,Nybom H,Wolff K,Meyer W.DNA f'mgerprinting in plants and fungi[M].CRC Press,Inc.,Bota Raton,1995.
    [71]宋朝枢.山西太岳山油松形态特征与类型的初步研究[J].林业科学,1979,15(2):153-156.
    [72]李文荣.山西油松自然类型的划分及其性状的判别分析[J].植物学报,1994, 36(4):312-319.
    [73]郭军战,李周岐,毕春侠.油松表型性状三水平遗传变异分析[J].西北林学院学报,1997,12(1):13-16
    [74]河北省林研所.油松自然类型的初步划分[J].河北林业科技,1978,(2):22-28.
    [75]薜崇伯等.油松自然变异类型观察与形态类型划分[J].陕西林业科技,1985,(3):1-4.
    [76]夏昶.油松变异的形态观察.陕西林业科技[J],1987,(3):15-16.
    [77]Saylor L C.Karyotype analysis of Pinus group Lariciones[J].Silvae Genet 1964,13:165-192.
    [78]刘占林.松属植物rRNA基因的变异模式及其进化生物学意义[D].中国科学院植物研究所博士论文.2002.
    [79]黄阜峰,潘继承,宋运淳,等.中国松亚属三个种的C-带核型研究[J].湖北师范学院学报(自然科学版),1997,(3):59-63.
    [80]徐进,陈天华.油松及云南松染色体的荧光带型[J].南京林业大学学报,1999,23(1):49-52.
    [81]胡志昂.裸子植物的生化系统学(一)—松科植物的过氧化物酶[J].植物分类学报,1983,21(4):423-432.
    [82]胡志昂.裸子植物的生化系统学(二)—松科植物的种子蛋白多肽[J].植物分类学报,1984,22(5):360-366.
    [83]徐化成.油松地理变异和种源选择[M].中国林业出版社,1991:1-19.
    [84]毕春侠,郭军战,张懿藻.油松天然酯酶同工酶分析[J].西北林学院学报,1998,13(4):39-43.
    [85]郭军战,张懿藻,张存旭,等.油松天然群体遗传结构的研究[J].西北林学院学报,1996,11(4):12-18.
    [86]张春晓,李悦.油松同工酶位点选择研究[J].北京林业大学学报,1999,22(1):7-12.
    [87]张冬梅,李悦,沈熙环,等.去劣疏伐对油松种子园交配系统及遗传多样性影响的研究[J].植物生态学报,2001,25(4):483-487.
    [88]丁坤善,郑彩霞,包仁艳.油松雌性不育系的POD同工酶和蛋白多肽分析[J].西北植物学报,2004,24(1):17-20.
    [89]李毳,柴宝峰,王孟本.山西高原油松种群遗传多样性[J].生态环境,2005,14(5):719-722.
    [90]李毳,柴宝峰,王孟本.华北地区油松种群遗传多样性分析[J].植物研究,2006,26(1):98-102.
    [91]王意龙,李毳,柴宝峰.山西高原天然油松群体过氧化物酶和多酚氧化酶分析[J].生态环境,2007,16(2):530-532.
    [92]李立芹.东北地区两针松植物亲缘关系和系统演化的研究[D].东北林业大学硕士论文,2001.
    [93]李敏俐,郑彩霞.油松雌性不育系(28号无性系)的RAPD分析[J].北京林业大学学报,2002,24(4):35-38.
    [94]包秀兰.常规育种结合RAPD技术对油松种子园遗传改良的研究[D].内蒙古农业大学硕士学位论文,2005.
    [95]张冬梅,杨娅,沈熙环,等.油松SSR-PCR引物筛选及反应体系的建立[J].北京林业大学学报,2007,29(2):13-17.
    [96]刘占林,杨雪.5种松树的遗传多样性和遗传分化研究[J].西北植物学报,2007,27(12):2385-2392.
    [97]Li C,Chai B F,Wang M B.Population genetic structure of Pinus tabulaeformis in Shanxi plateau,China[J].Russian Journal of Ecology,2008,39(1):34-40.
    [98]阮成江,何祯祥,周长芳.植物分子生态学[M].北京:化学工业出版社,2005.
    [99]顾红雅.分子生态学[M].上海:上海科学技术出版社,2002.
    [100]Holt R D.Linking species and ecosystems:where's Darwin in:Jones C G,Lawton J H,eds,Linking species and ecosystems.New York:Chapman and Hall,1995:273-279.
    [101]郑万钧.中国树木志[M].北京:中国林业科学出版社,1983:286-288.
    [102]Murray,B.Nuclear DNA amounts in gyrrmosperms.Annals of Botany,1998,82(Supplement A):3-15.
    [103]Leitch I J,Hanson L,Winfield M,Parker J and Bennett M D.Nuclear DNA C-values complete familial representation in gymnosperms.Annals of Botany,2001,88:843-849.
    [104]Bennett M D and Leitch I J.Plant DNA C-values database[M](release 2.0,2003).
    [105]张浩宇.关帝山油松天然林生长截距模型及林分优势高生长过程研究[D].山西农业大学硕士论文,2005.
    [106]崔州平.浅析油松的林学特性.内蒙古林业[J],2000,8:31-32.
    [107]龚月桦,周永学,樊军锋,等.美国黄松、班克松和油松的抗寒性比较[J].应用生态学报,2006,17(8):1389-1392.
    [108]中国树木志编委会主.中国主要树种造林技术[M].中国林业出版社,1983,103-116.
    [109]申元村,向理平.青海省自然地理[M].海洋出版社,1991:51-60.
    [110]张峰.山西油松林分布区气候因素的排序研究[J].山西大学学报,1990,13(3):322-327.
    [111]张金屯.典范主分量分析及其在山西植被与气候关系分析中的应用[J].地理学报,1998,53(3):256-263.
    [112]上官铁梁.山西植被的水平地带性分析[J].山西大学学报(自然科学版),1989,12(1):104-111.
    [113]Zhang J T.A study on relations of vegetation,climate and soils in Shanxi Province,China[J].Plant Ecolegy,2002,162(1):23-31.
    [114]张建民,张峰,樊龙锁.山西历山种子植物区系研究[J].植物研究,2002,22(4):444-452.
    [115]张峰,上官铁梁,郑凤英.山西关帝山种子植物区系研究[J].植物研究,1998,18(1):20-27.
    [116]张旭强,史荣耀,郎彩勤.山西历山自然保护区鸟类资源的变迁及保护[J].四川动物,2003,22(4):244-251.
    [117]张金屯.山西芦芽山植被垂直带的划分[J].地理科学,1989,9:46-353.
    [118]张金屯.芦芽山森林优势植物种群竞争与群落演替[J].山西大学学报(自然科 学版),1987,10(2):83-87.
    [119]上官铁梁,张峰,邱富财.芦芽山自然保护区野生植物资源[J].山地学报,2000,18(1):89-94.
    [120]张峰.山西关帝山野生植物资源研究[J].山地研究,1994,12(3):181
    [121]Zhang F,Shangguan T,Anders T.The vertical belts of natural vegetation partitioning of the Guandi Mountains by using ordered plot clustering,Shanxi,North China[J].Bulletin of Botanical Research,1997,17(4):447-454.
    [122]上官铁梁,张峰.云项山植被及其垂直分布研究[J].山地研究,1991,9(1):19-26.
    [123]张忠泽,武贵峰,骈铁虎.灵空山树种资源简介[J].山西林业科技,2003,4:38-39.
    [124]郝向春.灵空山森林水源涵养、水土保持效益价值评价[J].山西林业科技,2000,4:8-10.
    [125]闫明,毕润成,钟章成.太岳山植物资源的调查与研究[J].国土与自然资源研究,2003,3:82-84.
    [126]景宏玉,马维义,王成祖,等.山西省国营林场概揽[M].山西省国营林场管理局,山西省林业勘察设计院,399-340.
    [127]邹喻苹,葛颂,王晓东.系统与进化植物学中的分子标记[M].北京,科学出版社,2001,30-51.
    [128]Tulsieram L K,Glaubitz J C,Kiss G,et al.Single tree genetic linkage mapping in conifers using haploid DNA from Megagmetophytes[J].Biotechnology,1992,8:689-692.
    [129]Mosseler A,Egger K N,Hughes G A.Low levels of genetic diversity in red pine confirmed by random amplified polymorphic DNA markers[J].Canadian Journal of Forest Research,1992,22(9):1332-1337.
    [130]张恒庆,安利佳,祖元刚.红松RAPD中各种组成成分含量对实验结果的影响[J].植物研究,1999,19(2):183-186..
    [131]冯富娟,王凤友,刘彤.红松ISSR-PCR实验系统影响因素[J].植物学通报.2004,21(3):326-331.
    [132]汪小全,邹喻苹,张大明,等.RAPD应用于遗传多样性和系统学研究中的问题 [J].植物学报,1996,38(12):954-962.
    [133]Nei M.Molecular populations genetics and evolution[M].North-Holland Publishing Company.1975.
    [134]King L M,Schaal B A.Ribosomal-DNA variation and distribution in Rudbeckia missouriensis[J].Evolution,1989,43(5):1117-1119.
    [135]Nei M.Genetics structure of populations[M].Honolulu,Univ of Hawaii Press,1973.
    [136]Wright,S.Evolution of Mendelian populations[J].Genetics,1931,16:91-176.
    [137]Hamrick J L.Gene flow and distribution of genetic variation in plant populations.In:Urbanska K ed.Differentiation patterns in Higher plants[M].New York,Academic Press.1987,53-67.
    [138]夏铭,周晓峰,赵士洞.天然红松群体遗传多样性的RAPD分析[J].生态学报,2001,21(5):730-737.
    [139]税珺,黄少伟,陈炳铨.火炬松原生种源和引种群体RAPD遗传多样性[J].华南农业大学学报,2005,26(3):74-81.
    [140]Szmidt A E,Wang X R,Lu M Z.Empirical assessment of allozyme and RAPD variation in Pinus sylvestris(L.) using haploid tissue analysis[J].Heredity,1996,76:412-420.
    [141]李丹,彭少麟.三个不同海拔梯度马尾松种群的遗传多样性及其与生态因子的相关性[J].生态学报,2001,21(3):415-421.
    [142]张恒庆,安利佳,祖元刚.凉水国家自然保护区天然红松林遗传变异的RAPD分析[J].植物研究,2000,20(2):201-206.
    [143]张志勇,李德铢.极度濒危植物五针白皮松的保护遗传学研究[J].云南植物研究,2003,25(5):544-550.
    [144]富裕华,饶九欢,周学仁,等.山西油松种群特点和亲子代性状的变异[J].山西农业科学,1995,23(3):40-45.
    [145]李斌,顾万春.植物遗传多样性研究进展[J].遗传,2003,25(6):740-748.
    [146]Hamelin R C,Beaulieu J,Plourde A.Genetic diversity in populations of Cronartium ribicola in plantations and natural stands of Pinus strobes[J].Theoretical and Applied Genetics,1995,91(8):1214-1221.
    [147]张恒庆,刘德利,金荣一,等.天然红松遗传多样性在时间尺度上变化的RAPD分析[J].植物研究,2004,24(2):205-210.
    [148]Hudson R R.Levels of DNA polymorphism and divergence yield important insights into evolutionary processes[J].Proc.Natl.Acad.Sci.USA,1993,90(16):7425-7426.
    [149]Hong Y P,Hipkins V D,Strauss S H.Chloroplast DNA diversity among trees,populations and species in the California closed-cone pines[J].Genetics,1993,135(4):1187-1196.
    [150]王洪新,胡志昂.植物的繁育系统、遗传结构和遗传多样性保护[J].生物多样性,1996,4(1):92-96.
    [151]胡新生.群体遗传结构的理解[J].林业科学,2002,38(2):19-128.
    [152]应俊生.中国裸子植物分布区的研究(1)——松科植物的地理分布[J].植物分类学报,1989,27(1):27-38.
    [153]Karron J D.A comparison of levels of genetic polymorphism and self-compatibility in geographically restricted and widespread plant congeners[J].Evolutionary Ecology,1987,1:47-58.
    [154]Slatkin M.Gene flow and the geographic structure of populations[J].Science,1987,236:147-164.
    [155]Hamrick J L.Isozymes and the analysis of genetic structure in plant populations.In:Soltis D E,Soltis P M eds.Isozymes in Plant Biology[M].London:Chapman and Hall,1990,87-105.
    [156]杨传平,魏利,姜静,等.应用ISSR-PCR对西伯利亚红松19个种源的遗传多样性分析[J].东北林业大学学报,2005,33(1):1-3.
    [157]冯富娟,王凤友,李长松.长白山不同海拔条件下红松的遗传分化[J].东北林业大学学报,2004,32(3):1-3.
    [158]吴隆坤,李岩.凉水、丰林国家自然保护区红松遗传多样性的ISSR分析[J].沈阳师范大学学报(自然科学版),2005,23(2):204-206.
    [159]魏丽.应用ISSR分子标记对西伯利亚红松遗传多样性研究[D].东北林业大学硕士论文.2004.
    [160]Naydenov K D,Tremblay F M,Bergeron Y,Alexandrov A,Fenton N.Structure of Pinus sylvestris L.populations in Bulgaria revealed by chloroplast microsatellites and terpenes analysis:Provenance tests[J].Biochemical Systematics and Ecology,2005,33:1226-1245.
    [161]Petit R J,Duminil J,Fineschi S et al.Comparative organization of chloroplast,mitochondrial and nuclear diversity in plant populations[J].Molecular Ecology,(2005),14:689-701.
    [162]曲若竹,侯林,吕红丽,等.群体遗传结构中的基因流[J].遗传,2004,26(3):77-382.
    [163]Morton N E.Parameters of the human genome[J].Proc Natl Acad Sci,USA 1991,88:7474-7476.
    [164]Bennett M D,Smith J B.Nuclear DNA amounts in angiosperms[M].Philosophical Transactions of the Royal Society of London Series B,1991,334:309-345.
    [165]Saylor L C.Karyotype analysis of the genus Pinus-Subgenus Strobus[J].Silvae Genetics,1983,32(3-4) 119-124.
    [166]董厚德.辽宁东部的的主要植被类型及其分布[J].植物生态学与地植物学丛刊,1981,5(4):241-257.
    [167]李斌,顾万春.白皮松保育遗传学—天然群体遗传多样性评价与保护策略[J].林业科学,2005,41(1):57-64.
    [168]Ge S,Hong D Y,Wang H Q,et al.Population genetic structure and conversation of an endangered conifer,Cathaya argyrophylla(Pinaceae)[J].International Journal of Plant Science,1998,159(2):351-357.
    [169]Ellstrand N C,Elam D R.Population genetic consequences of small population size:implications for plant conservation[J].Annual Review of Ecology System,1993,24:217-242.
    [170]Dvorak W S,Hamrick J L,Hodge G R.Assessing the sampling efficiency of ex situ gene conservation efforts in natural pine populations in central America[J].Forest Genetics,1999,6(1):21-28.
    [171]Frankham R,Ballou J D,Briscoe D A.Introduction to Conservation Genetics[M]. UK:Ambridge University Press,2002.
    [172]Zhi Y Z,Yong Y C,De Z L.Detection of Low Genetic Variation in a Critically Endangered Chinese Pine,Pinus squamata,Using RAPD and ISSR Markers.Biochemical Genetics,2005,43:239-249
    [173]Adam R P,Schwarzbach A E,Pandey R N.The concordance of terpenoid,ISSR and RAPD markers,and ITS sequence data sets among genotypes:an example from Juniperus[J].Biochemical Systematics and Ecology,2003,31:375-387.
    [174]Richard G O,Jeffrey D P.Chloroplast DNA systematics:a review of methods and data analysis[J].American Journal ofBotaniy,1994,81:1205-1224.
    [175]Taberlet P T,Gielly L,Patou G,et al.Universal primers for amplification of three non-coding regions of chloroplast DNA[J].Plant Molecular Biology,1991,17:1105-1109.
    [176]Borsch T,Hilu K W,Quandt D,et al.Noncoding plastid trnT-tmF sequences reveal a well resolved phylogeny of basal angiosperms[J].Journal of Evolutionary Biology,2003,16(4):558-576.
    [177]Hamilton M B.Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation[J].Molecular Ecology,1999,8:513-525.
    [178]张茜,杨瑞,王饮,等.基于叶绿体DNAtrnT-trnF序列研究祁连圆柏的谱系地理学[J].植物分类学报,2005,43(6):503-512.
    [179]#12
    [180]Fujii N,Ueda K,Shimizu T.Intraspecific sequence variation of chloroplast DNA in Japanese alpine plants[J].Journal of Phytogeography and Taxon,1996,44,72-81.
    [181]Zhao H E,Wang X Q,Chen J Y,et al.The origin of garden chrysanthemums and molecular phylogeny of dendranthema in China based on nucleotide sequences of nrDNA ITS,trnT-trnL and trnL-trnF intergenic spacer regions in cpDNA[J].Molecular plant breeding,2003,1(5):597-604.
    [182]Zhuge Q,Ding Y L,Xu C,et al.A preliminary analysis of phylogenetic relationships of Arundinaria and related genera based on nucleotide sequences of nrDNA and cpDNA(trnL-F intergenic spacer)[J].Journal of Forestry Research,2005,16(1):5-8.
    [183]Frankis M P.Genetic inter-relationships in Pinaceae[J].Notes Royal Botanic Garden Edinburgh,1988,45:527-548.
    [184]Wang X Q,Tank D C,Sang T.Phylogeny and divergence times in Pinaceae:evidence from three genomes[J].Molecular Biology and Evolution,2000,17:773-781.
    [185]Galtier N,Piganeau G,Mouchiroud D,Duret L.GC-content evolution in mammalian genomes:the biased gene conversion hypothesis[J].Genetics,2001,159:907-911.
    [187]陈天华,赖焕林,李宽钰,等.松科植物属间核型进化关系初探[J].南京林业大学学报,1992,16(2):37-41.
    [188]张金谈.中国松科花粉形态研究[J].植物研究,1989,9(3):87-95.
    [189]Wu R J,Lu F Z.Preliminary research into the karyotype evolution among 51 species of genus pinus[J].Journal of Fufian college of Forest,1994,14:73-76.
    [190]向巧萍,向秋云,Liston A等.ITS片断在冷杉属植物中的长度多态性及其在松科系统与演化研究中的应用[J].植物学报,2000,42(9):946-951.
    [191]Halanych K M.5S ribosomal RNA sequence inappropriate for phylogenetic reconstruction.Molecular biology and Evolution[J],1991,8:249-253.
    [192]阚显照,乔才元,高卉,等.长苞铁杉nrDNA内转录间隔区及5.8S的二级结构分析研究[J].激光生物学报,2007,16(3):327-333.
    [193]郑万钧,傅立国,等.中国植物志(第七卷)[M].北京:科学出版社,1978.
    [194]Melchior H,Werdemann.In Engler A(ed):Syllabus der Pflanzenfamilien[M]Ed.12.Gebruder Bomtracger.Berlin—Nikolussee,1954.
    [195]Kr(u|¨)ssmann G.Manual of Cultivated Conifers[M].Portland:Timber Press.1985,1:377-379..
    [196]Takhtajan A L.Flodstic regions of the world[M].Berkeley:University of California Press.1986.
    [197]王荷生.植物区系地理[M].北京:科学出版社,1992.
    [198]Florin,R.The distribution of conifer and taxa genera in time and space[J].Acta Horticultura Bergen,1963,20:121-312.
    [199]Miller.C.N.Mesozoic conifer Rev.The origin of modern conifer families[M].Origin and evolution of gymnosperms.Columbia University Press,New York.1988:448-486

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700