用户名: 密码: 验证码:
一种钯膜组件透氢性能的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢能,被视为本世纪最具发展潜力的清洁能源,它能代替石油化工等传统化石能源,从而也被视为解决温室效应问题,提高能量利用率的有效替代二次能源。目前世界上绝大部分的氢气生产主要是采用天然气重整以及部分氧化反应,其主要的分离方法是变压吸附。在氢气生产过程中,氢气分离成本占相当大的一部分,钯膜因其独特的氢气选择透过性能引起了人们的关注,它可以分离得到高纯度的氢气,同时它还可以与氢气的生产过程相耦合。目前对钯膜制备方法、钯膜性能以及钯膜反应器都有一些详细的研究,对于大多数钯膜性能的研究主要集中在单纯的钯膜以及钯合金膜,对于钯膜组件性能的研究还比较少,本文就一种新型的钯膜组件性能进行了详细的研究。
     钯膜组件主要包括:Pd-Ag合金膜、多孔烧结金属材料、不锈钢框架以及盲板法兰,利用一个可控制温度的压力容器内测试了钯膜组件的性能。利用电子扫描电镜对钯膜组件的表面以及测试之后的多孔烧结金属材料表面进行表征。研究钯膜组件的即时氢气透过量,操作条件对钯膜组件的影响。在研究操作条件对钯膜组件氢气透过量以及透过效率的影响中发现,钯膜组件的氢气透过量随着温度的升高而增加,随着高压侧氢气压强的升高而增加,随着低压侧氢气分压的减小而增加。钯膜组件的氢气透过效率随着温度的升高而减小,随着高压侧氢气分压的升高而增加,随着低压侧氢气分压的减小而减小。减小Pd-Ag合金膜的厚度有利于提高钯膜组件的氢气透过量。在钯膜组件即时氢气透过性能的研究中发现, 0.2μm规格多孔烧结金属材料不适合在温度高于755 K的环境下作为钯膜组件的支撑体,通过电子扫描电镜观察多孔烧结金属的表面发现在高温高压的环境下,0.2μm规格的多孔烧结金属材料的表面结构发生了变化,导致钯膜组件的氢气透过性能减小。0.5μm规格多孔烧结金属材料在869 K-943 K的范围内仍然可以保持较好的氢气透过性能。多孔烧结金属材料的前期处理有助于增加钯膜表面的光滑度,但是同时也减小了钯膜组件对氢气的选择性透过能力。利用Sieverts’Law描述钯膜组件氢气透过量时需要进行校正,其校正系数η的取值根据实验条件的不同而不同。
The increased demand for pure hydrogen gas in recent years in many sectors, rangingfrom petroleum processing, materials treatment to renewable energy related applications, hasled to a revival of interest in economical hydrogen production technologies. Hydrogen energyis looked upon as a savior in combating the deterioration of the global environment, as meansof securing energythat is independent of the dwindling fossil fuel supplyand an approach to afuture lasting supply of energy resource. Most of the world's hydrogen is generated by steamreforming or partial oxidation of natural gas in parallel fixed bed reactors within hugetop-fired or side-fired furnaces, coupled with pressure swing adsorption (PSA) for hydrogenpurification. Hydrogen separation accounts for a large fraction of energy expenditure andcapital investment in the hydrogen production process. The most widely used technology forhydrogen purification is PSA. Palladium and its alloy membranes have attracted growinginterests for their capability to separate ultra-pure hydrogen from gaseous mixtures. They canalso be integrated with chemical reactors where chemical reaction and hydrogen separationoccur simultaneously to simplify the hydrogen production process. Various membranefabricated methods, performance and membrane reactors have been researched. This paperwas comprehensivelyinvestigated a new palladium membrane module performance.
     Membrane modules, consisting of membrane foil, porous stainless steel substrate, testframe and flange were assembled and tested in an electrically heated vessel. Instantaneoushydrogen permeation flux was measured. Influences of operation conditions on membraneperformance were examined. Microstructure and morphology of the membrane surfaces werecharacterized by scanning electron microscopy. For the conditions investigated, permeationfluxes of the membrane module increased with increasing the hydrogen pressure in the vesselside and increasing the membrane module temperature and decreasing the hydrogen exitpartial pressure by sweep gas. The permeation fluxes increased with decreasing membranethickness. However, the thickness was less than 10μm was not suitable for fabricated on the porous stainless steel. The permeation factor of the module increases with increasing thehydrogen pressure in the vessel side and decreasing the membrane module temperature. Withdecreasing the hydrogen exit partial pressure by sweep gas, the membrane module permeationflux increased, while the permeation factor decreased. It was observed that for operationtemperature higher than 755 K, 0.2?m grade porous 316L stainless steel material was notsuitable for being used as membrane module substrate and the surface of porous stainless steelwas changed. For temperature around 869 K -943 K, 0.5 ?m grade porous 316Lstainless steel material without any pretreatment can be used as membrane module substrate. Pretreatmentof the 0.5 ?m grade substrate helped to smooth membrane foil surface. However, it changedthe surface structure of the material and led to permeabilitydecrease.
引文
[1]毛宗强.氢能-21世界的绿色能源[M].北京,化学工业出版社, 2005: 1-18.
    [2] Steele B.H.C, HeinzelA. Materials for fuel-cell technology[J]. Nature 2001, 414: 345-352.
    [3] RamachandramR, Menon R.K. An overview of industrial uses of hydrogen[J]. International JouranlofHydrogen Energy, 1998, 23:593-598.
    [4] Tong HD, Gielens FC, Gardeniers JGE, Jansen HV, Van Rijin CJM, Elwenspoek MC, Nijdam W.Microfabricated palladium– silver alloy membranes and their application in hydrogen separation[J].Journal of Chemical Engineering Science, 2004, 43: 4182-4187.
    [5]毛宗强.关注氢能,发展氢能[J].求是杂志, 2005, 16:60-61.
    [6]毛宗强.氢能系列讲座-氢气从哪里来[J].太阳能, 2007, 2: 20-22.
    [7]穆亚玲,王香爱.氢能源研究现状[J].时代化工,2008, 22 (10):64-68.
    [8]袁传敏,颜涌捷,曹建勤.生物质制氢气的研究[J ].煤炭转化, 2002, 25 (1):18-22.
    [9]郑祖庆.从生物质制氢[J].科普原地, 2005, 19 (2): 37-38.
    [10]李永峰,任南琪,胡立杰.生物制氢系统及其产氢机制[J ].能源环境保护, 2005, 19 (2) :5 -7.
    [11]阎桂焕,孙立,许敏.几种生物质制氢方式的探讨[J ].能源工程, 2004, 4: 38 -41.
    [12]辛善志,颜涌捷,许庆利,张尤华,周明.生物质制氢技术研究进展[J].河南化工, 2009, 26:4-8.
    [13]王恒秀,李莉,李晋鲁等.一种新型制氢技术[ J ].化工进展, 2001, 7 : 12-15。
    [14]王立群,王同章.流化床气化炉的制气工艺及其在制氢中的应用[J ].江苏大学学报(自然科学版) , 2004 , 25 (6): 532 -535.
    [15]陈冠益,李强, H. Spliethoff,王福权.生物质热解气化制取氢气[J].太阳能学报, 2004, 25 (6):776-781.
    [16]武全萍,王桂娟,李业发.生物质洁净能源利用技术[J].能源与环境. 2004, 2: 41-43.
    [17]闵恩泽,吴巍.可再生生物质资源[J].化工进, 2002, 21 (5) : 357-3591.
    [18]周明,许庆利,蓝平,亓伟,孙秀云,辛善志,颜涌捷.生物质制氢研究进展[J].吉林化工学院学报, 2009, 26 (4): 35-39.
    [19]李鑫,李安定,李斌,杨培尧,臧春城,郑飞.太阳能制氢研究现状及展望[J].太阳能学报, 2005,26(1):127-133.
    [20]冯进来,王宝辉,李宝玉,王志涛.新型太阳能制氢系统的分析与研究进展[J].江西能源, 2004, (2):12-14.
    [21]徐立云.天然气蒸汽转换制氢工艺[J].中国氯碱, 2007, 4: 25-26
    [22]刘少文,李永丹.甲烷重整制氢气的研究进展[J].武汉化工学院学报, 2005, 27 (1): 20-27.
    [23]许珊,王晓来,赵睿.甲烷催化制氢气的研究进展[J].化学进展, 2003, 15 (3): 141-152.
    [24]李文兵,齐智平.甲烷制氢技术研究进展[J].天然气工业, 2005, 25 (2): 165-168
    [25] Hao S.R. Hydrocarbon steam-reforming process: Feedstock and catalysts for hydrogen production inChina [J]. International Journal of Hydrogen Energy, 1998, 23: 315-319.
    [26] Paglieri S.N, Way J.D. Innovations in palladium membrane research[J]. Separation and PurificationMethods, 2002, 31(1): 1-169.
    [27]解东来,叶根银,费广平.小型天然气制氢与PEMFC热电联产技术进展[J].煤气与热力, 2008, 28(8):A08-A11.
    [28]蔡秀兰,董新法,林维明甲烷自热重整制氢技术的研究进展[J].现代化工, 2006, 26 (1): 24-27.
    [29] Berger R.J, Marin G.B, Schouten J.C. Design of adiabatic fixed-bed reactors for the partial oxidationof methane to synthesis gas [J]. Chemical Engineering Science, 2001, 56: 48-49.
    [30] Zhu J, Zhang D, King K.D. Reforming of CH4 by partial oxidation: thermodynamic and kineticanalyses[J]. Fuel, 2001, 80:899.
    [31] Grace J.R, Li X.T, Lim C.J. Equilibrium modelling of catalytic steam reforming of methane inmembrane reactors with oxygen addition[J]. CatalysisToday, 2001, 64: 141-149.
    [32] Xie D, Lim C.J, Grace J.R, Adris A.E.M. Gas and particle circulation in an internally circulatingfluidized bed membrane reactor cold model[J]. Journal of Chemical Engineering Science, 2009, 64:2599-2606
    [33]周向葵,刘俊岐,李俊臣.变压吸附法提纯电解氢气生产高纯氢[J].中国氯碱, 2000, 10 (36):36-37.
    [34]王燕,黄子川,程月玲.变压吸附技术在气体分离替纯中的应用[J].河南化工, 2008, 25 (10):8-10.
    [35] Ryia S.K, Parka J.S, Kimb S.H, Kimc D.W, Kimc H.K. Low temperature diffusion bonding ofPd-based composite membranes with metallic module for hydrogen separation[J]. Journal ofMembrane Science, 2009, 326: 589-594.
    [36] Pizzi D, Worth R, Baschetti M.G, Sarti G, Noda K.I. Hydrogen permeability of 2.5 ?m palladium–silver membranes deposited on ceramic supports[J]. Journal of Membrane Science, 2008, 325:446-453.
    [37] Ma Y.H, Mardilovich I, Engwall E. Thin composite palladium and palladium / alloy membranes forhydrogen separation[J].Annals of the NewYorkAcademy of Science, 2003, 984: 346-360.
    [38] SievertsA, Zapf G. Solubility of H and D in soild Pd(I) [J]. ZPhys Chem1935, A174: 359-364.
    [39] Holleck G.C. Diffusion and solubility of hydrogen in palladium and palladium– sliver alloys[J].Journal of Physical Chemistry, 1970, 74: 503-511.
    [40] Rosset A.J. Diffusion of hydrogen through palladium membranes[J]. Industrial and EngineeringChemistry, 1960, 52(6): 525-528.
    [41] Mundeschau M.V. Hydrogen transport membrane. U.S. Patent 6899744, 2005.
    [42] Ward T.L, Dao T. Model of hydrogen permeation behavior in palladium membrane[J]. Journal ofMembrane Science, 1999, 153: 211-231.
    [43] Nam S.E, Lee S.H, Lee K.H. Preparation of a palladium alloy composite membrane supported in aporous stainless steel by vacuum electrodeposition[J]. Journal of Membrane Science, 1999, 153:163-173.
    [44] McCool B.A, Lin Y.S. Nanostructured thin palladium-silver membranes: Effects of grain size on gaspermeation properties[J]. Journal of Membrane Science, 2001, 36:3221-3227.
    [45] Hurlbert R.C, Konecny JO. Diffusion of hydrogen through palladium[J]. Journal of Chemical Physics,1960, 34: 655-658.
    [46] Federico G, Erik E.E, Ma Y.H. Effects of surface activity, defects and mass transfer on hydrogenpermeance and n-value in composite palladium– porous stainless steel membrane[J]. Catalysis Today2006, 118: 24-31.
    [47]高会元,林跃生,李永丹.金属膜开发应用研究新进展[J].膜科学与技术, 2007, 27 (2): 76-79.
    [48]陈绍华,幸丕峰,陈文梅.稀贵金属在氢气纯化中的应用[J].稀有金属, 2003, 27(1): 97-106.
    [49] Athayde AL, Baker RW, Nguyen P. Metal composite membranes for hydrogen separation[J]. Journalof Membrane Science, 1994, (94): 299-311.
    [50]刘伟,张宝泉,刘秀凤.钯复合膜的研究进展[J].化学进展.2006, 18 (11): 1468-1481.
    [51]王和义,傅以备.钯基合金膜应用研究进展[J].膜科学与技术, 2002, 22 (5): 41-45.
    [52]张雪盈,杨长春,郭彩峰.钯复合膜研究进展[J].有色金属, 2005, 57 (2): 51-57.
    [53]谈萍,汤慧萍,朱纪磊,康新婷,汪学兵,葛渊.渗氢用钯基膜的研究现状[J].稀有金属快报, 2007, 26(11): 13-17.
    [54] Zheng W, Wu L. Preparation and pore size shrinkage of palladium–ceramic composite membrane byelectroless plating under hydrothermal conditions[J]. Materials Science and Engineering, 2000, A283:122–125.
    [55]雷强华,罗德礼,熊义富,钱晓静.用于氢相关领域的钯合金膜的研究进展[J].材料导报, 2007, 21(7): 74-78.
    [56]王和义,傅依备,邢丕峰.陶瓷基钯银合金膜制备技术及性能研究[J].化学学报, 2001, 59 (3):388-393.
    [57]李新利,蒋炜,梁斌.钯铜复合膜透氢性和稳定性研究进展[J].化工进展, 2008 27 (7): 968-972.
    [58]黄彦,李雪,范益群,徐南平.透氢钯复合膜的原理、制备及表征[J].化学进展, 2006, 18 (2/3):88-96.
    [59]俞健,胡小娟,黄彦.多孔不锈钢表面的陶瓷修饰及所负载的透氢钯膜[J].化学进展. 2008, 20(7/8): 1208-1215.
    [60]陈慕容,贺跃辉,江垚,武治锋,汤烈明.化学镀方法制备钯/多孔TiAl合金复合膜[J].粉末冶金材料科学与工程, 2008, 13 (2):115-119.
    [61] Rothernberger K.S, Cugini A.V, Howard B.H, Killmeryer R.P, Michael V.C, Bryan D.M, Robert M.E,Felipe B, Ivan P.M, Ma Y.H. High pressure hydrogen permeance of porous stainless steel coated withathin palladiumfilmvia electroless plating[J]. Journal of Membrane Science, 2004, 244: 55–68.
    [62] Chen S.C, Tu G.C, Caryat C.Y, Hung C.A, Rei MH. Preparation of Palladium membrane byelectroplating on AISI 316Lporous stainless steel supports and its use for methanol steam reformer[J].Journal of Membrane Science, 2008, 314: 5–14.
    [63] Nam SE, Lee KH. Hydrogen separation by Pd alloy composite membranes: introduction of diffusionbarrier[J]. Journalof Membrane Science, 2001, 192: 177-185.
    [64]王和义,傅依备,邢丕峰.陶瓷基钯银合金膜制备技术及性能研究[J].化学学报, 2001, 59 (3):388-393.
    [65] Lin W.H, C.H. Characterization of Pd-Ag membrane prepared by electroless deposition[J]. Journal ofMembrane Science, 2005, 194 (1): 157-166.
    [66] Jayaraman V, Lin Y.S, Pakala M, et al.Thin palladium films formed in support pores by metal-organicchemical vapor deposition method and application to hydrogen separation[J]. Journal of MembraneScience, 1995, 99: 89-100.
    [67] Tosti S, Bettinali L, Violante V. Rolled thin Pd and Pd-Ag membranes for hydrogen separation andproduction[J]. International Journal of Hydrogen Energy, 2000, 25: 319-325.
    [68] Collins J.P, Way J.D. Preparation and characterization of a composite palladium-ceramic membrane[J]. Industrial and Engineering Chemistry Research, 1993, 32: 3006-3013.
    [69] Abate S, Genovese C, Perathoner S, Centi G. Performances and stability of a Pd-based supported thinfilm membrane prepared by EPD with a novel seeding procedure. Part 1-Behaviour in H2:N2mixtures[J]. CatalysisToday, 2009, 145: 63-71.
    [70]余强,蒋柏泉,张文龙. Y-La, Y-Nd, Y-Pr混合稀土元素对化学镀制备钯复合膜的影响[J].南昌大学学报, 2002, 24(1): 51-54.
    [71]赵洪宾,熊国兴.应用等离体溅射法制备钯-银合金复合膜及其膜表征[J].中国科学, 1999, 29 (2):174-180.
    [72]李安武,熊国兴, R. Hughes.致密钯膜中裂缺的修补[J].中国科学, 1999, 29 (2): 169-173.
    [73]王焕章,吴立群,徐南平.致密超薄钯膜的制备及其性能研究[J].南京化工大学学报, 2000, 22 (5):5-10.
    [74] Li A, Grance J.R, Lim C.J. Preparation of thin Pd-based composite membrane on planar metallicsubstrate[J]. Journal of Membrane Science, 2007 (306): 159-165.
    [75] Sing B, Sheth A.C, Dahote N.B. Laser synthesis of palladium-alumina composite membranes forproduction of high purity hydrogen from gasification [J]. Applied surface Science, 2006 (253):1247-1254.
    [76] Itoh N, Akiha T, Sato T. Preparation of thin palladium composite membrane tube by a CVD techniqueand its hydrogen permselectivity[J]. CatalysisToday, 2005, (104): 231-237.
    [77] Huang Y, Dittmeyer R. Preparation of thin palladium membranes on a porous support with roughsurface[J]. Journal of Membrane Science, 2007, (302): 160-170.
    [78] Nair B. K. R, Choi J, Harold M. P. Electroless plating and permeation features of Pd and Pd/Aghollow fiber composite membranes[J]. Journal of Membrane Science, 2007, 288: 67-84.
    [79] Hou K, Hughes R. Preparation of thin and highly stable Pd/Ag composite membranes and simulativeanalysis of transfer resistance for hydrogen separation[J]. Journal of Membrane Science, 2003, (214):43–55.
    [80] Su C, Jin T, Kuraoka K, MatsumuraY, Yazawa T. Thin palladium film supported on SiO2-modifiedporous stainless steel for a high-hydrogen-flux membrane[J]. Industrial and Engineering ChemistryResearch, 2005 (44): 3053-3058.
    [81] Wang D, Tong J, Xu H, Matsumura Y. Preparation of palladium membrane over porous stainless steeltube modified with zirconiumoxide[J]. Catalysis Today, 2004, (93–95): 689–693.
    [82] Tong H.D, Vanden Berg A.H.J, Gardeniersa J.G.E, Jansen H.V, Gielens F.C, Elwenspoek M.C.Preparation of palladium–silver alloy films by a dual-sputtering technique and its application inhydrogen separation membrane [J].Thin Solid Films, 2005, (479): 89– 94.
    [83] Pizzi D, Worth R, Baschetti M. G, Sarti G. C, Noda K. Hydrogen permeability of 2.5μm palladium-silver membranes deposition on ceramic supports[J]. Journal of Membrane Science, 2008,325:446-453.
    [84] Xie D.L, Adris A.M, Lim C.J, Grance J.R. Test on a modular fluidized bed membrane reactor forautothermal steam methane reforming[J].Acta energiae solaris sinica, 2009, 30: 704-707.
    [85] Chen Z, Grace J.R, Lim C.J, Li A, Experimental studies of pure hydrogen production in acommercialized fluidized bed membrane reactor with SMR and ATR catalysts[J]. International Journalof Hydrogen Energy, 2007, 32: 2359-2366.
    [86] Xie D.L, Grace J.R, Lim C. Development of an internally circulating fluidized bed membrane reactorfor hydrogen production from natural gas[J]. Journal of Wuhan University of Technology, 2006, 28:252-257.
    [87] Mahecha-Botero A, Boyd T, Gulamhusein A, et al. Pure hydrogen generation in a fluidized-bedmembrane reactor: Experimental findings[J]. Chemical Engineering Science, 2008, 63:2752-2762.
    [88] Shirasakia Y, Tsunekia T, Otaa Y, et al. Development of membrane reformer system for highlyefficient hydrogen production from natural gas[J]. International Journal of Hydrogen Energy, 2009, 34:4482-4487.
    [89] Patil C.S, Annaland M, Kuipers J.A.M. Fluidised bed membrane reactor for ultrapure hydrogenproduction via methane steam reforming: Experimental demonstration and model validation[J].Chemical Engineering Science, 2007, 62: 2989-3007.
    [90] Ntoh N, Xu W, Haraya K. Radial mixing diffusion of hydrogen in a packed-bed type of palladiummembrane reactor[J]. Industrial & Engineering Chemistry, 1994, 33: 197-202.
    [91] Y. Shirasaki, M. Gondaira, etal. Hydrogen producing apparatus[J], US Patent 5,639,431, 1997,7, 17.
    [92] Shirasakia Y, Tsunekia T, Otaa Y, et al., Development of membrane reformer system for highlyefficient hydrogen production from natural gas[J]. International Journal of Hydrogen Energy, 2009, 34:4482-4487.
    [93] Chen Z, Po F, Grace J.R, et al., Sorbent-enhanced / membrane-assisted steam-methane reforming[J],Chemical Engineering Science, 2008, 63: 170 - 182.
    [94]解东来,费广平.钯膜组件呈环形放射状排列的流化床膜反应器[P].中国: ZL 200720060236.X,2008.
    [95]解东来,费广平.一种环形放射状排列流化床膜反应器[P].中国: ZL200710031742.0, 2009.
    [96] Ye G.Y, Xie D.L, Qiao W.Y, Grace J.R, Lim C.J, Modeling of fluidized bed membrane reactors forhydrogen production from steam methane reforming with aspen plus[J]. International Journal ofHydrogen Energy, 2009, 34:4755-4762.
    [97] Adris A.M, Lim C.J, Grace J.R. The fluidized-bed membrane reactor for steam methane reforming:model verification and parametric study[J]. Chemical Engineering Science, 1997, 52: 1609-1622.
    [98] Li A.W.; Grace J.R.; Lim C.J. Preparation of thin Pd-based composite membrane on planar metallicsubstrate. Part II. Preparation of membranes by electroless plating and characterization[J]. Jouranl ofMembrane Science, 2007, 306: 159–165.
    [100] http://www.mottcorp.com.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700