用户名: 密码: 验证码:
大尺寸TiAl基合金板材制备技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用添加不同比例的钒元素和铌元素,设计了Ti-45Al-4.5V-4.5Nb-0.3Y,Ti-45Al-6V-3Nb-0.3Y , Ti-45Al-7V-2Nb-0.3Y , Ti-45Al-5.4V-3.6Nb-0.3Y四种TiAl基合金。其典型的组织为近层片组织,相组成为γ相以及少量的B2、α2相和YAl2相。通过热模拟实验,确定Ti-45Al-5.4V-3.6Nb-0.3Y合金在高温下具有较低的流动应力,并表现出较好的塑性。进一步调整铝含量优化成分,得到Ti-41Al-5.4V-3.6Nb-0.3Y和Ti-43Al-5.4V-3.6Nb-0.3Y合金。Ti-41Al-5.4V-3.6Nb-0.3Y合金在热变形过程中的峰值应力达到37.4Mpa,表现出较好的高温塑性,适合高温锻造及轧制。Ti-41Al-5.4V-3.6Nb-0.3Y的抗压强度为2040Mpa,压缩率为23%; Ti-43Al-5.4V-3.6Nb-0.3Y的抗压强度为1700Mpa,压缩率为19%。
     采用水冷铜坩埚真空感应熔炼工艺制备Ti-43Al-9V-0.3Y合金铸锭。结果表明,铸态TiAl基合金的相组成为α2、γ、BB2和少量的YAl2相,铸态组织的平均晶粒在80μm。采用包套锻造方法制备TiAl基合金饼材,锻后合金的相组成仍为α2、γ、B2和YAl2相。经过塑性变形和再结晶过程,合金中的片层组织消失,晶粒得到明显细化。采用包套轧制技术制备了表面质量良好的尺寸为368×120×2mm的TiAl基合金板材。轧态Ti-43Al-9V-0.3Y合金的显微组织为细小的近γ组织,γ晶粒平均尺寸约为20μm,B2相呈网络状分布在γ晶粒周围,此外,还有极少量细小的YAl2颗粒均匀分布在合金当中。轧态Ti-43Al-9V-0.3Y合金力学性能得以提高,抗压强度可高达到2901Mpa,压缩率为41.7%。
Adding different ratio of V and Nb elements, four TiAl based alloys of Ti-45Al-4.5V-4.5Nb-0.3Y,Ti-45Al-6V-3Nb-0.3Y,Ti-45Al-7V-2Nb-0.3Y,Ti-45Al-5.4V-3.6Nb-0.3Y are designed. The typical microstructure of the alloys is near lamellar structure and consists ofα2,γ, B2 and YAl2 phases. By hot compression trial, Ti-45Al-5.4V-3.6Nb-0.3Y alloy exhibits low flow stress and better plasticity. After changing Al content and additional component optimized, Ti-41Al-5.4V-3.6Nb-0.3Y and Ti-43Al-5.4V-3.6Nb-0.3Y alloys are obtained. The peak value of Ti-41Al-5.4V-3.6Nb-0.3Y alloy in the hot compression process reaches to 37.4Mpa, exhibiting better plasticity at high temperature and adapted to forging and rolling. The compression strength of Ti-41Al-5.4V-3.6Nb-0.3Y is 2040Mpa, the compression ratio is 23%; the compression strength of Ti-43Al-5.4V-3.6Nb-0.3Y is 1700Mpa, the compression ratio is 19%.
     The ingots were prepared by Induction Skull Melting(ISM). The results indicate that the as-cast alloy consists ofα2,γ, B2 and YAl2 phases. The average grain size of as-cast alloy is 80μm. TiAl based alloy pancake is prepared by caned forging. The as-forged alloy also consists ofα2,γ, B2 and YAl2 phases. The lamellar structure is disappeared after recrystallization and plastic deforming, the size is finer. By using hot-pack rolling, the TiAl base alloy sheets were prepared with a size of 368×120×2mm. After rolling, the microstructure of as-rolled Ti-43Al-9V-0.3Y alloy is nearγstructure, the average grain size is 20μm. The B2 phases are distributed alongγgrains, and a little YAl2 phase is found in the alloys. The mechanical properties of as-rolled Ti-43Al-9V-0.3Y alloy is increased, the compression strength reaches to 2901Mpa, the compression ratio is 41.7%。
引文
1张永刚,韩雅芳,陈国良等.金属间化合物结构材料.国防工业出版社,北京2001:12-15
    2陈国良,林均品.有序金属间化合物结构材料物理金属学基础.冶金工业出版社,北京1999:25-29
    3山口正治,马越佑吉.金属间化合物.科学出版社,北京1991 : 50-55
    4林栋梁.高温有序金属间化合物研究的新进展.上海交通大学学报,1998,32(2):95-108
    5 Heng Qiang Ye.Recent developments in T13A1 and TiAl Intermetallics researchin China .Materials Science and Engineering, 1999,A263:289-295
    6 D.M.Dimiduk. Gamma Titanium Aluminide alloys-an assessment within thecompetition of aerospace structural materials .Material Science and Engineering, 1999, A263:281-288
    7 T. Tetsui. Development of a TiAl Turbocharger for Passenger Vehicles. Materials Science and Engineering A. 2002,A329-331:582~588
    8 H. Clements, F. Appel, A. Bartels, et al. Processing and Application of Engineeringγ-TiAl Based Alloys. Proceeding of the 10th World Conference on Titanium. Hamburg, 2003:2123~2136
    9陈玉勇,孔凡涛. TiAl基合金新材料研究及精密成形.金属学报. 2002,38(11):1141~1148
    10 C. T. Liu, J. H. Scheibel, P. J. Maziasz, et al. Tensile Properties and Fracture Toughness of TiAl Alloys with Controlled Microstructures. Intermetallics. 1996,4:429~440
    11 A. Loria Edward. Gamma Titanium Aluminides as Prospective Structural Materials. Intermetallics. 2000,8:1339~1345
    12 T. Tetsui, K. Shindo, S. Kaji, S. Kobayashi, M. Takeyama. Fabrication of TiAl Componets by means of Hot Forging and Machining. Intermetallics. 2005,13:971~978
    13 T. Carneiro, Y. W. Kim. Evaluation of ingots and alpha-extrusions of gamma alloys based on Ti-45Al-6Nb. Intermetallics. 2005,13:1000~1007
    14 Y. Y. Chen, F. T. Kong, J. C. Han, Z. Y. Chen, J. Tian. Influence of yttrium onmicrostructre, Mechanical Properties and Deformability of Ti-43Al-9V Alloy. Intermetallics. 2005,13:263~266
    15孔凡涛.稀土对TiAl合金凝固组织及性能影响的研究.哈尔滨工业大学博士论文. 2003
    16杨志尚,章复中,任立斌,周荣章,余宗森.添加钇对TiAl合金组织和性能的影响.北京科技大学学报. 1995,17(5):424~428
    17 C.莱茵斯,M.皮特尔斯编.陈振华等译.钛与钛合金.化学工业出版社, 2005
    18刘峰晓,贺跃辉,刘咏,黄伯云,李智.粉末冶金制备TiAl基合金板材的研究现状及趋势.稀有金属材料与工程. 2005,34(2)
    19门蕴琪,王文生,张振棋等. Nb-TiAl金属间化合物研究现状.材料导报,2000,14(7):15一17
    20 C .Mccullough, J.J.Valencia, C.G.Levi and Mehrabian.Phase equilibrium and solidification in Ti-A1 alloys .Acta Metal, 1989,37(5):1321一1336
    21 Y Y Chen, F T Kong. The 4th international workshop on ordered intermetallic compounds and advanced materials.2001
    22 Y. W. Kim. Strength and Ductility in TiAl Alloys. Intermetallics. 1998,6:623~628
    23 J. C. Tang, B. Y. Huang, Y. H. He, W. S. Liu, K. C. Zhou, A. H. Wu. Hall-Petch Relationship in Two-phase TiAl Alloys with Fully Lamellar Microstructures. Materials Research Bulletin. 2002,37:1315~1321
    24 Liu C T, Maziasz P J. Microstructural control and mechanical properties of dual-phase TiAl alloys.Intermetallics.1998,(6):653~658
    25 F. Appel, U. Christoph, M. Oehring. Creep Deformation in Two-phase Titanium Aluminide Alloys. Materials Science and Engineering A. 2002,A329-331:780~787
    26 J. Lapin. Creep Behavior of a Cast Intermetallic Ti-45.2Al-2W-0.6Si-0.7B Alloy. Scripta Materialia. 2004,50:261~265
    27 T. Matsuo, T. Nozaki, T. Asai, M. Takeyama. Role of Lamellar Plates in Creep of TiAl Alloy with Fully Lamellar Structrue. Materials Science and Engineering A. 2002,A329-331:774-779
    28 J. N. Wang, J. Zhu, J. S. Wu, X. W. Du. Effects of Alloying Elements on Creep of TiAl Alloys with Fine Lamellar Structure. Acta Materialia.2002,50:1307~1318
    29 W. J. Zhang, S. C. Deevi. The Controlling Creep Processes in TiAl Alloy at Low and High Stresses. Intermetallics. 2002,10:603~611
    30 Senkov O N, Uchic M D. Materials Science and Engineering A [J],2003,340:216~224
    31 Senkov O N, Uchic M D et al. Scripta Materialia[J], 2002,46:187~192
    32 Sunil C, James A. JOM [J],1993,7:57~59
    33吴欢译.γ-TiAl薄板的现状及成形技术.稀有金属快报. 2005,24(4):39~41
    34 Kim Y. W. Gamma Titanium Aluminides [C]. Warrendle:TMS,1995:637
    35缪家士,林均品,王艳丽,林志,陈国良.高铌钛铝基合金板材的高温包套轧制.稀有金属材料与工程. 2004,33(4):436~438
    36张俊红,黄伯云,周科朝,李志友,何双珍,刘咏,贺跃辉.包套轧制制备TiAl基合金板材.中国有色金属学报. 2001,11(6):1055~1058
    37章德铭,陈贵清,韩杰才,姚振中. EB-PVD制备γ-TiAl基合金薄板的研究.航空材料学报. 2006,46(4):35~38
    38 Koeppe C, Bartels A, Clemens H et al. Materials Science and Engineering[J], 1995, A201: 182
    39李美栓.金属的高温腐蚀.冶金工业出版社,2001:262~274
    40俞汉清,陈金德.金属塑性成形原理.机械工业出版社, 2001:48~49
    41 Z. C. Liu, J. P. Lin, S. J. Li, G. L. Chen. Effects of Nb and Al on the Microstructures and Mechanical Propertis of High Nb Containing TiAl Base Alloys. Intermetallics. 2002,10:653~659
    42 D. Hu. Effect of Composition on Grain Refinement in TiAl-based Alloys. Intermetallics. 2001,9:1037~1043
    43 J. D. H. Paul, F. Appel, R. Wanger. The Compression Behaviour of Niobium Alloyedγ-titanium Aluminides. Acta mater. 1998,46(4):1075~1085
    44 W. J. Zhang, S. C. Deevi, G. L. Chen. On the Origin of Superior High Strength of Ti-45Al-10Nb Alloys. Intermetallics. 2002,10:403~406
    45 W. J. Zhang, F. Appel. Effect of Al Content and Nh Addition on the Strength and Fault Energy of TiAl Alloys. Materials Science and Engineering A. 2002,A329-331:649~652
    46闫蕴琪,王文生,周廉.细晶8.5Nb-TiAl基合金的研究.稀有金属材料与工程. 2004,33(2):120~124
    47 R. Yang, Y. Y. Cui, L. M. Dong, Q. Jia. Alloy Development and Shell Mould Casting of Gamma TiAl. Journal of Materials Processing Technology. 2003,135:179~188
    48 G. L. Chen, L. C. Zhang. Deformation Mechanism at Large Strains in a High-Nb-containing TiAl at Room Temperature[J]. Materials Science and Engineering A, 2002,A329-331:163~170
    49郭景杰.钛合金ISM熔炼过程热力学与动力学分析.哈尔滨工业大学出版社.1998:13~23
    50 C. Koeppe, A. Bartels, H. Clemens, P. Schretter, W. Glatz. Optimizing the properties of TiAl sheet materials for application in heat protection shields or propelsion systems. Materials Science and Engineering A. 1995,A201:182~193
    51 Rainer Gerling, Arno Bartels, Helmut Clemens, Heinrich Kestler and Frank-Peter Schimansky. Structural characterization and tensile properties of a highniobium containing gamma TiAl sheet obtained by powder metallurgical processing Intermetallics, Volume 12, Issue 3,March 2004:275-280
    52 Masao Takeyama, Satoru Kobayashi. Physical metallurgy for wrought gammatitanium aluninides Microstructure control through phase transformations. Intermetallics,2005:993~999
    53李宝辉.含钇的TiAl基合金显微组织及性能的研究.哈尔滨工业大学博士论文. 2007
    54曹睿,陈剑虹,张继,王国珍.近全层片组织γ-TiAl基合金的室温拉伸断裂机理.稀有金属材料与工程. 2005,34(5):698~702

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700