用户名: 密码: 验证码:
荧光有机小分子试剂在磷酸根阴离子家族典型成员分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光有机小分子化合物由于具有很好的光学特性,在阴离子的分析中得到广泛的应用。筛选或合成新的特异性识别检测阴离子的荧光有机小分子是近年来超分子化学领域的发展方向和趋势。本文以含磷酸根阴离子为研究对象,探讨了藏红T分子与六偏磷酸根的相互作用,并根据藏红T作用前后光谱的变化建立了两种简单、快速检测六偏磷酸钠的新方法。此外,合成了缩邻氨基苯酚化合物,研究了它与焦磷酸盐的作用。具体包括以下三个方面:
     (1)研究了藏红T与六偏磷酸钠分别在弱酸性的NaAc-HAc缓冲及弱碱性的Tris-HCl缓冲中的相互作用,结果发现,在两种介质中随着六偏磷酸钠的加入,藏红T在520nm的吸收峰强度均明显降低,同时在476nm处出现新的吸收峰;实验还发现加入六偏磷酸钠后,藏红T的在578nm处荧光强度会降低,但是其荧光寿命没有发生变化,表明SHMP静态猝灭ST的荧光。据此,在弱酸性条件下根据SHMP存在时ST吸光度的变化,建立了一种检测食品添加剂六偏磷酸钠的新方法,线性范围为1.0×10-6mol/L-1.1×10-5mol/L,检测限为3.4×10-7mol/L。该方法应用于饮料中六偏磷酸钠的检测,相对误差小于4.6%,回收率在95.0%-104.0%之间。
     (2)在pH8.5的Tris-HCl缓冲溶液,藏红T(ST)与钙黄绿素(Calcein)能发生有效地荧光共振能量转移,而六偏磷酸钠(SHMP)的加入使得藏红T荧光猝灭,同时增大了ST与Calcein之间的距离,导致了荧光共振能量转移效率的降低。六偏磷酸钠的浓度在3.0×10-6mol/L-1.0×10-5mol/L范围内呈很好的线性关系,对6.0×10-6mol/L的连续平行测定11次,其相对标准偏差(RSD)为3.1%,应用于饮料中六偏磷酸钠的分析检测,结果令人满意。
     (3)合成荧光试剂缩水杨醛邻氨基苯酚,在pH 5.0的NaAc-HAc缓冲溶液中,考察了该试剂与Br-、Cl-、ClO3-、HCO3-、NO3-、Pi、SO2-、CTP、GTP、UTP、H2PO4-、ppi等阴离子的相互作用,结果表明该试剂只对ppi有较好的选择性识别能力,ppi的加入导致缩水杨醛邻氨基苯酚溶液荧光强度降低,据此建立了一种检测ppi的新方法。该方法可用于合成样中ppi的检测,回收率在95%以上。
Because of the good optical properties, the fluorescent and small organic molecules have been widely applied in the fields of anionic analysis. Specific screening or synthesis of new fluorescent and small organic molecules for anionic recognition and detection supply much more opportunities and challenges in this evolution for supramolecular chemistry in recent years. In this thesis, the typical members in phosphate anion family is the main object of the study. We have discussed the interaction between ST and SHMP, in accordance with changes in spectra of ST, two newly, rapidly and simplely methods was established for SHMP's detection. In addition, fluorescence reagent Salicylaldehyde-o-Aminophenol was synthesized. With the addition of ppi, the fluorescent intensity of Salicylaldehyde-o-Aminophenol was decreased. A direct fluorescence analytical method was proposed to determine the ppi based on the decrease of fluorescent intensity with the increase of the concentration of ppi. The mainly points are as follows:
     (1) We have respectively researched the interaction between ST and SHMP in the acid HAc-NaAc buffer and alkaline Tris-HCl buffer. The results showed that the absorbency of ST was decreased at 520nm after adding the SHMP, And a new peak appeared at 476 nm in visible absorption spectra. Further found that the fluorescent intensity of ST was decreased at 578nm, but the fluorescent lifetime of the ST is not changed, which showed the fluorescence of ST is statically quenched by SHMP. Based on the change of absorbance, we have established a new method to detect the SHMP. Under the optimized conditions, the linear range was 1.0×10-6 mol/L-1.1×10-5 mol/L with the detection limit of 3.4×10-7mol/L. The application of the established method in the determination of tea drink samples gave a recovery rate of 95.0%-104.0%, with a relative standard deviation of less than 4.6%.
     (2) In a medium of pH 8.5 tris-HCl buffer, it was found that safranine T (ST) can react with calcein to efficiently produce fluorescence resonance energy transfer (FRET), safranine T get aggregation and its fluorescence receded after adding sodium hexametaphosphat(SHMP), which results in a decrease of the FRET between safranine T and calcein. The ratio of fluorescent intensity at 520nm and 578nm was linear with the concentration of melamine over the range of 3.0×10-6-1.0×10-5 mol/L. the Relative Standard Deviation (RSD) was 3.1% for determination of 6.0×10-6mol/L sodium hexametaphosphat (n=11). The proposed method is high selectively, simply and rapid. it was successfully applied to determine the concentration of two synthetic samples.
     (3) Fluorescence reagent salicylaldehyde-o-aminophenol was synthesized. In the buffer solution medium of HAc-NaAc at pH 5.0, the reagent can react with ppi more selective than other anions, such as Br-、Cl-、ClO3-、HCO3-、NO3-Pi、SO2-、CTP、GTP、UTP、H2PO4-、ppi. The complex compound made fluorescence intensity decrease and the degree of decreasing was linear with the concentration of ppi. Based on this, a new method for the direct determination of ppi was established. This method could be used to detect synthetic samples, and the recovery was larger than 95%.
引文
[1]J. M. Lehn. SuPramolecular Chemistry-Scope and Perspectives Moleeules, Supermolecules, and Molecular Devices[J]. Anew. Chem. Int. Ed.,1988,27:89-112.
    [2]D. J. Cram. The Design of Molecular Hosts, Guests, and Their Complexes[J]. Anew. Chem. Int. Ed.,1988,27:1009-1020.
    [3]C. J. Pedersen. The Discovery of Crown Ethers[J]. Anew. Chem. Int. Ed.,1988,27:1021-1027.
    [4]P. A. Gale. Anion coordination and anion-directed assembly:highlights from 1997 and 1998[J]. Cood Chem Rev,2000,199(1):181.
    [5]P. D. Beer, P. A. Gale. Anion Recognition and Sensing: The State of the Art and Future Perspectives[J]. Anew. Chem. Int. Ed.,2001,40(3):486-516.
    [6]Hyun-Woo Rhee, Chang-Ro Lee, Seung-Hyon Cho, et al. Selective Fluorescent Chemosensor for the Bacterial Alarmone (p)ppGpp[J]. J. Am. Chem. Soc.,2008,130:784-785.
    [7]Sessler J L, Camiolo S, Gale P A. Pyrrolic and polypyrrolic anion binding agents[J]. Coordination Chemistry Reviews,2003,240(1-2):17-55.
    [8]Beer P D, Hayes E J. Transition metal and organometallic anion complexation agents[J]. Coordination Chemistry Reviews,2003,240(1-2):167-189.
    [9]Fabbrizzi L, Licchelli M, Taglietti A. The design of fluorescent sensors for anions:taking profit from the metal-ligand interaction and exploiting two distinct paradigms[J]. Dalton Trans.,2003, 3471-3479.
    [10]Gale P A. Anion and ion-pair receptor chemistry: highlights from 2000 and 2001[J]. Coordination Chemistry Reviews,2003,240(1-2):191-221.
    [11]Suksai C, Tuntulani T. Chromogenic anion sensors[J]. Chemical Society Reviews,2003,32(4): 192-202.
    [12]Aoki S, Kimura E. Recent progress in artificial receptors for phosphate anions in aqueous solution[J]. Rev. Mol. Biotech.,2002,90(2):129-155.
    [13]Zeng Z. Y., He Y. B., Wei L. H., et al. The synthesis of two novel neutral receptors and their anion binding properties[J]. Can. J. Chem.,2004,82 (3):454-460.
    [14]Magnusson, L. U., A. Farewell, Nystrom, T. ppGpp: a global regulator in Escherichia coli.[J] Trends Microbiol,2005,13(5):236-242.
    [15]Artsimovitch I., Patlan V., Sekine S., et al. Structural basis for transcription regulation by alarmone ppGpp.[J] Cell,2004,117(3):299-310.
    [16]Wang J. D., Sanders G. M., Grossman A. D. Nutritional control of elongation of DNA replication by (p)ppGpp.[J] Cell,2007,128(5):865-875.
    [17]谢雄飞,肖锦.水体富营养化评述[J].四川环境,2000,19(2):22-25.
    [18]UK Environmental Angency. Environmental ISSUES series-aquatic eutiophicationin England and Wales[R]. UK Environmental Angency Consultative Report, December 1998.
    [19]R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallogr. Sect. A,1976,32,751-767.
    [20]任海仙.新型阴离子受体的合成及其识别性能研究,硕士毕业论文,2007,西北师范大学。
    [21]Denekamp C., Suwinska K., Salman H, et al. Anion-Binding Properties of the Tripyrrolemethane Group:A Combined Experimental and Theoretical Study[J]. J. Chem. Eur.,2007,13(2),657-665.
    [22]Gunnlaugsson T, Glynn M, Tocci G M, et al. Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors [J]. Coordination Chemistry Reviews,2006,250(23-24):3094-3117.
    [23]H. Miyaji, H. K. Kim, E. K. Sim, et al. Coumarin-Strapped Calix[4]pyrrole:(?) A Fluorogenic Anion Receptor Modulated by Cation and Anion Binding[J]. J. Am. Chem. SOc.,2005,127(36): 12510-12512.
    [24]尹振明,杨文智,何家骐等.邻-二(吡咯-2-甲酰胺基)亚苯的合成、晶体结构及阴离子识别[J].高等化学学报,2004,25(7):1260-1263.
    [25]区升举,张丙广,廖海平.基于2,4-二硝基苯腙的比色法阴离子探针[J].无机化学学报,2006,22(5):817-822.
    [26]Gunnlaugsson, T., Kruger, R. E., Jensen, P., et al. Colorimetric "Naked Eye" Sensing of Anions in Aqueous Solution[J]. J. Org. Chem.,2005,70(26):10875-10878.
    [27]Yang YK., Tae J.Acridinium Salt Based Fluorescent and Colorimetric Chemosensor for the Detection of Cyanide in Water[J]. Org.Lett,2006,8(25):5721-5723.
    [28]魏太保,王军,张有明.人工合成受体的阴离子识别研究(Ⅳ)含有酚羟基化合物的设计合成及阴离子识别研究[J].无机化学学报,2006,22(12):2212-2216.
    [29]吴芳英,胡美华,谭晓华等.硝基苯偶氮酚衍生物应用于阴离子识别[J].高等化学学报,2004,26(8):1415-1418.
    [30]Mariusz P and Mark E M. Polymeric Membrane Electrodes with High Nitrite Selectivity Based on Rhodium(III) Porphyrins and Salophens as Ionophores[J]. Anal Chem,2009,81:3637-3644.
    [31]Ganjiali M R, Poursaberi T, Basiripour T, et al. Highly selective thiocyanate poly(vinyl chloride) membrane electrode based on a cadmium-Schiff base complex[J]. J Anal Chem,2001,370:1091-1095.
    [32]许金钩,王尊本.荧光分析法[M].北京:科学出版社,2006.
    [33]曾振亚,何永炳,孟令芝.阴离子荧光受体研究进展[J].化学进展,2005,17(2):254-265.
    [34]Gonmalves M S T. Fluorescent Labeling of Biomolecules with Organic Probes[J]. Chemical Reviews,2008,109(1):190-212.
    [35]吴芳英,赵永强.硫脲类阴离子受体的设计合成与阴离子识别[J].分析试验室,2008,27(9):22-25.
    [36]Martinez-Manez R, Sancenon F. Fluorogenic and Chromogenic Chemosensors and Reagents for Anions[J]. Chemical Reviews,2003,103(11):4419-4476.
    [37]Lakowicz JR. Principles of Fluorescenece Spectroscopy[M].3rd ed., New York:Springer,2006: 443.
    [38]SWATHI R S, SEBASTIAN K L. Distance dependence of fluorescence resonance energy transfer[J]. J. Chem. Sci.,2009,121(5):777-787.
    [39]Pramanik A, Das G. An efficient phosphate sensor: tripodal quinoline excimer transduction[J]. Tetrahedron,2009,65(11):2196-2200.
    [40]Liao J H, Chen C T, Fang J M. A novel phosphate chemosensor utilizing anion-induced fluorescence change[J]. ORGANIC LETTERS,2002,4(4):561-564.
    [41]Kuo L J, Liao J H, Chen C T, et al. Two-arm ferrocene amide compounds: Synclinal conformations for selective sensing of dihydrogen phosphate ion[J]. ORGANIC LETTERS2003,5(11):1821-1824.
    [42]Anzenbacher P, Jr. K J, Sessler J L. Second Generation Calixpyrrole Anion Sensors[J]. J. Am. Chem. Soc.,2000,122(38):9350-9351.
    [43]Seiichi Nishizawa, Yuichi Kato, Teramae N. Fluorescence Sensing of Anions via Intramolecular Excimer Formation in a Pyrophosphate-Induced Self-Assembly of a Pyrene-Functionalized Guanidinium Receptor[J]. J. Am. Chem. Soc.,1999(121):9463-9464.
    [44]Zhao M, Wang M, Liu H, et al. Continuous On-Site Label-Free ATP Fluorometric Assay Based on Aggregation-Induced Emission of Silole[J]. Langmuir,2009,25:676-678.
    [45]Nishizawa S, Cui Y Y, Minagawa M, et al. Conversion of thioureas to fluorescent isothiouronium-based photoinduced electron transfer sensors for oxoanion sensing[J]. Journal of the Chemical Society-Perkin Transactions 2,2002(5):866-870.
    [46]Wang S L, Chang Y T. Combinatorial synthesis of benzimidazolium dyes and its diversity directed application toward GTP-selective fluorescent chemosensors[J]. Journal of the American Chemical Society,2006,128(32):10380-10381.
    [47]Kwon J Y, Singh N J, Kim H N, et al. Fluorescent GTP-sensing in aqueous solution of physiological pH[J]. Journal of the American Chemical Society,2004,126(29):8892-8893.
    [48]曾振亚,吴进龙,隗兰华等.含双蒽基团酰胺受体分子的合成及阴离子识别研究[J].高等学校化学学报,2003,24(11):2005-2009.
    [49]Yet W-S, Hong J-I. Thiouronium-Thymine Conjugate as a New Carrier for Selective Transport of 5'-AMP[J]. Tetrahedron Letters,1998,39,3769-3772.
    [50]Wu J L, Wei L H, Zeng Z Y, et al. Synthesis of novel anionic receptors with (Thio) urea and amide binding sites and the recognition properties for anions[J]. Chinese Journal of Chemistry,2003,21(12):1553-1557.
    [51]Gunnlaugsson T, Davis A P, O'Brien J E, et al. Fluorescent sensing of pyrophosphate and bis-carboxylates with charge neutral PET chemosensors[J]. ORGANIC LETTERS,2002,4(15):2449-2452.
    [52]黎朝,陈瑶函,江云宝.3-羟基-2-萘甲酰胺基苯基硫脲激发态分子内质子转移阴离子荧光传感[J].中国科学B辑:化学(Science In China),2009,39(2):144-152.
    [53]a S K K, b D S, a S J H, et al. A new imidazolium acridine derivative as fluorescent chemosensor for pyrophosphate and dihydrogen phosphate[J]. Tetrahedron,2008,6402-6405.
    [54]Aldakov D, Pavel Anzenbacher J. Dipyrrolyl quinoxalines with extended chromophores are efficient fluorimetric sensors for pyrophosphate(?)[J]. CHEM. COMMUN.,2003,1394-1395.
    [55]Kim S K, Singh N J, Kim S J, et al. New fluorescent photoinduced electron transfer chemosensor for the recognition of H2PO4[J]. ORGANIC LETTERS,2003,5(12):2083-2086.
    [56]Kim S K, Moon B S, Park J H, et al. A fluorescent cavitand for the recognition of GTP[J]. Tetrahedron Letters,2005,46(39):6617-6620.
    [57]Anzenbacher P, Jr. K J, Sessler J L. Second Generation Calixpyrrole Anion Sensors[J]. J. Am. Chem. Soc.,2000,122(38):9350-9351.
    [58]Gupta V K, Ludwig R, Agarwal S. Anion recognition through modified calixarenes: a highly selective sensor for monohydrogen phosphate[J]. Analytica Chimica Acta, 2005,538(1-2): 213-218.
    [59]Sessler J L, Davis J M, Kral V, et al. Water soluble sapphyrins:potential fluorescent phosphate anion sensors[J]. Organic & Biomolecular Chemistry,2003,1(22):4113-4123.
    [60]Kim I B, Han M H, Phillips R L, et al. Nano-Conjugate Fluorescence Probe for the Discrimination of Phosphate and Pyrophosphate[J]. Chemistry-a European Journal,2009,15(2): 449-456.
    [61]Aldakov D, Pavel Anzenbacher J. Sensing of Aqueous Phosphates by Polymers with Dual Modes of Signal Transduction[J]. J. AM. CHEM. SOC.,2004,4752-4753.
    [62]Coskun A, Baytekin B T, Akkaya E U. Novel fluorescent chemosensor for anions via modulation of oxidative PET: a remarkable 25-fold enhancement of emission[J]. TetrahedronLetters,2003, 44,5649-5651.
    [63]Su G Y, Liu Z P, Xie Z J, et al. A visible light excitable fluorescent sensor for triphosphate/pyrophosphate based on a diZn(2+) complex bearing an intramolecular charge transfer fluorophore[J]. Dalton Transactions,2009,38:7888-7890.
    [64]Huang X M, Guo Z Q, Zhu W H, et al. A colorimetric and fluorescent turn-on sensor for pyrophosphate anion based on a dicyanomethylene-4H-chromene framework[J]. Chemical Communications,2008,41,5143-5145.
    [65]Zhao X Y, Liu Y, Schanze K S. A conjugated polyelectrolyte-based fluorescence sensor for pyrophosphate[J]. Chemical Communications,2007,28:2914-2916.
    [66]Zhang J F, Park M, Ren W X, et al. A pellet-type optical nanomaterial of silica-based naphthalimide-DPA-Cu(II) complexes:recyclable fluorescence detectionOf pyrophosphate[J]. Chem.Commun.,2011,47(12):3568-3570.
    [67]McDonough M J, Reynolds A J, Lee W Y G., et al. Selective recognition of pyrophosphate in water using a backbone modified cyclic peptide receptor[J]. Chem. Commun.,2006,2971-2973.
    [68]Lee J H. Park J, Lah M S, et al. High-Affinity Pyrophosphate Receptor by a Synergistic Effect between Metal Coordination and Hydrogen Bonding in Water[J]. ORGANIC LETTERS,2007, 93,729-3731.
    [69]Lee H N, Xu Z, Kim S K, et al. Pyrophosphate-Selective Fluorescent Chemosensor at Physiological pH:Formation of a Unique Excimer upon Addition of Pyrophosphate[J]. J. AM. CHEM. SOC.,2007,3828-3829.
    [70]Cho H K, Leea a D H, Hong J-I. A fluorescent pyrophosphate sensor via excimer formation in water[J]. Chem. Commun.,2005,1690-1692.
    [71]Dong Hoon Lee, Ja Hyun Im, Seung Uk Son, et al. An Azophenol-based Chromogenic Pyrophosphate Sensor in Water[J]. J. AM. CHEM. SOC.,2003,9(125):7753.
    [72]Padilla-Tosta M E, Lloris J M, Martinez-Maez R, et al. ATP Recognition Through a Fluorescence Change in a Multicomponent Dinuclear System Containing a Ru(Tpy)22+ Fluorescent Core and a Cyclam-Cu2+ Complex[J]. European Journal of Inorganic Chemistry,2001,5:1221-1226.
    [73]Mizukami S, Nagano T, Urano Y, et al. A Fluorescent Anion Sensor That Works in Neutral Aqueous Solution for Bioanalytical Application[J]. Journal of the American Chemical Society,2002,124(15):3920-3925.
    [74]Lee D H, Kim S Y, Hong J-I. Quencher-fluorophore ensemble for detection of pyrophosphate in water[J]. Tetrahedron Letters,2007,48,4477-480.
    [75]Chen K H, Liao J H, Chan H Y, et al. A Fluorescence Sensor for Detection of Geranyl Pyrophosphate by the Chemo-Ensemble Method[J]. Journal of Organic Chemistry,2009,74(2):895-898.
    [76]中华人民共和国卫生部,中国国家标准化管理委员会.食品添加剂食用卫生标准,GB2760-2007,2007:46.
    [77]崔晗,陈溪,黄大亮等.离子色谱法同时测定水产品中的柠檬酸盐和多聚磷酸盐[J].分析试验室,2009,28(增刊):67-69.
    [78]王大凯,邹运香,许多等.低酸度淋洗液离子色谱法测定多聚磷酸盐[J].分析测试学报,1995,14(3):97-100.
    [79]宋秀贤,牟世芬.多聚磷酸盐的离子色谱法分析研究[J].环境化学,1994,13(1):87-94.
    [80]王野秋,顾明通,姜淑荣等.电导检测离子色谱法测定多聚磷酸盐[J].分析测试学报,1994,13(6):28-31.
    [81]中国食品添加剂生产运用工业协会.食品添加剂分析检验手册[M].北京:中国轻工业出版社,1999:402.
    [82]中国食品添加剂生产运用工业协会.食品添加剂分析检验手册[M].北京:中国轻工业出版社.1999:27.
    [83]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.食品添加剂-六偏磷酸钠,GB 1890-2005,2005:1-7.
    [84]赵希娟,李春梅,黄承志等.分光光度法测定饮料中六偏磷酸钠添加剂[J].分析化学,2009, 37(9):1345-1348.
    [85]Severino D, Junqueira H C, Gugliotti M, et al. Influence of Negatively Charged Interfaces on the Ground and Excited State Properties of Methylene Blue[J]. Photochemistry and Photobiology, 2003.77(5):459-468.
    [86]Kelkar V K, Valaulikar B S, Kunjappu J T, et al. Aggregation characteristics of laser dye rhodamine 6G in aqueous surfactant solutions [J]. Photochemistry and Photobiology,1990,52(4):717-721.
    [87]Rosch U, Yao S, Wortmann R, et al. Fluorescent H-Aggregates of Merocyanine Dyes[J]. Angew. Chem. Int. Ed,2006,45,7026-7030.
    [88]Choi M Y, Pollard J A, Webb M A, et al. Counterion-Dependent Excitonic Spectra of Tetra(p-carboxyphenyl)porphyrin Aggregates in Acidic Aqueous Solution[J]. J. Am. Chem. Soc.,2003,125,810-820.
    [89]Valdes-Aguilera O, Neckers D C. Aggregation Phenomena in Xanthene Dyed[J]. Acc. Chem. Res,1989,22,171-177.
    [90郭祥群,李芳,赵一兵等.番红花红T与表面活性剂的作用及其在标记DNA中的应用[J].高等化学学报,1996,17(9):1361-1365.
    [91]Hvastkovs E, Buttry D. Electrochemical Detection of DNA Hybridization via Bis-Intercalation of a Naphthylimide-Functionalized Viologen Dimer[J]. Anal. Chem.,2007,79,6922-6926.
    [92]高峰,杜军,章丽等.阴离子表面活性剂与酚藏花红的作用及其在核酸荧光法测定中的应用[J].应用化学,2004,21(7):722-726.
    [93]Zhang G m, Pang Y h, Shuang S m, et al. Spectroscopic studies on the interaction of Safranine T with DNA in cyclodextrin and carboxymethyl--cyclodextrin[J]. Journal of Photochemistry and PhotobiologyA:Chemistry,2005,169,153-158.
    [94]Nygren J, Svanvik N, Kubista M. The Interactions Between the Fluorescent Dye Thiazole Orange and DNA[J]. Biopolymers 1998,46,39-51.
    [95]陈彪,黄承志.蛋白质-SDS-罗丹明B体系的共振光散射光谱及其分析应用[J].分析试验室2007,26(4):1-5.
    [96]程定玺,王韶华.碱性藏花红-十二烷基苯磺酸钠-蛋白质体系的荧光反应及其分析应用[J].光谱学与光谱分析,2007,27(1):104-107.
    [97]刘保生,张红医,王甫丽等.溴酚蓝测定血清白蛋白质的研究[J].光谱学与光谱分析,2003,23(5):999-1001.
    [98]徐红,刘绍璞,罗红群.藏红T褪色分光光度法测定微量肝素[J].分析试验室,2006,25(6):32-34.
    [99]Bhattacharya S C, Das H, Moulik S P. Visible and fluorescence spectral studies on the interaction of safranineT with surfactant micelles [J]. J. Phoroehem Photobio. A:Chem.,1993,74,239-245.
    [100]Robinson B H, Loffler A, Schwarz G. Thermodynamic behaviour of acridine orange in solution. Model system for studying stacking and charge-effects on self-aggregation[J]. J. Chem. Soc., Faraday Trans.1,1973,6956-6969.
    [101]Wiam J M. The Metachromatic Reaction of Hexameta-phosphate [J]. J. Am. Chem. Soc.,1947,69(12):3146-3147.
    [102]朱永春,张辉,姜凤茹.弱酸电离常数和电离度测定方法的改进[J].大学化学,1994,9(2),37-38.
    [103]曾云鹗,张华山,陈震华.《现代化学试剂手册》[M].1989,1,428-429.
    [104]Wang X, Guo X Q. Ultrasensitive Pb2+ detection based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles[J]. Analyst,2009,134(7): 1348-1354.
    [105]Zhang X L, Xiao Y, Qian X H. A Ratiometric Fluorescent Probe Based on FRET for Imaging Hg2+ Ions in Living Cells[J]. Angewandte Chemie-International Edition,2008,47(42):8025-8029.
    [106]李小燕,李树伟,潘建章等.荧光共振能量转移体系测定Cr(Ⅵ)的研究[J].四川师范大学学报(自然科学版),2005,28(6):712-714.
    [107]Zhou Z G, Yu M X, Yang H, et al. FRET-based sensor for imaging chromium(III) in living cells[J]. Chemical Communications,2008,29:3387-3389.
    [108]李小燕,李树伟,曾铭等.利用荧光共振能量转移体系测定食品中N02-的研究[J].分析试验室,2006,25(4):38-41.
    [109]Wichmann O, Wittbrodt J, Schultz C. A small-molecule FRET probe to monitor phospholipase A(2) activity in cells and organisms[J]. Angewandte Chemie-International Edition,2006,45(3):508-512.
    [110]Huang S, Xiao Q, He Z K, et al. A high sensitive and specific QDs FRET bioprobe for MNase[J]. Chemical Communications,2008,45:5990-5992.
    [111]李原芳,刘希东,黄承志.藏红T与核酸作用的荧光特性研究[J].西南师范大学学报,1998,23(6):672-676.
    [112]林旭聪,谢增鸿,李嘉倩等.钙黄绿素-藏红T与DNA作用机理的光谱研究[J].分析测试技术与仪器,2003,9(3):147-151.
    [113]Wiam J M. The Metachromatic Reaction of Hexameta-phosphate [J]. J. Am. Chem. Soc.,1947,69(12):3146-3147.
    [114]SWATHI R S, SEBASTIAN K L. Distance dependence of fluorescence resonance energy transfer[J]. J. Chem. Sci.,2009,121(5):777-787.
    [115]Lakowicz JR. Principles of Fluorescenece Spectroscopy[M].3rd ed., New York:Springer,2006: 443.
    [116]Lipscomb W N, Strater N. Recent Advances in Zinc Enzymology[J]. Chemical Reviews,1996,96(7):2375-2434.
    [117]Nyren P. Enzymatic method for continuous monitoring of DNA polymerase activity [J]. Analytical Biochemistry,1987,167(2):235-238.
    [118]Tabary T, Ju L-Y, Cohen J H M. Homogeneous phase pyrophosphate (PPi) measurement (H3PIM) A non-radioactive, quantitative detection system for nucleic acid specific hybridization methodologies including gene amplification[J]. Journal of Immunological Methods,1992,156(1):55-60.
    [119]Caswell A, Guilland-Cumming D F, Hearn P R, et al. Pathogenesis of chondrocalcinosis and pseudogout. Metabolism of inorganic pyrophosphate and production of calcium pyrophosphate dihydrate crystals[J]. Annals of the Rheumatic Diseases,1983,42(Suppl 1):27-37.
    [120]Doherty M. Pyrophosphate arthropathy--recent clinical advances[J]. Annals of the Rheumatic Diseases,1983,42(Suppl 1):38-44.
    [121]Akinyanju J, Smith R J. Accumulation of ppGpp and pppGpp during nitrogen deprivation of the cyanobacterium Anabaena cylindrica[J]. FEBS Lett.1979,107,173-176.
    [122]Krohn M, Wagner R. Procedure for the Rapid Preparation of Guanosine Tetraphosphate (ppGpp) from Escherichia coli Ribosomes[J]. Analytical Biochemistry,1995,225(1):188-190.
    [123]Doherty M, Becher C, Regan M, et al. Association between Synovial Fluid Levels of Inorganic Pyrophosphate and Short Term Radiographic Outcome of Knee Osteoarthritis[J]. Annals of the Rheumatic Diseases,1996,66,432-436.
    [124]Timms A E, Zhang Y, Russell R G, et al. Genetic Studies of Disorders of Calcium Crystal Deposition[J]. Rheumatology,2002,41,725-729.
    [125]Wuthier R E, Bisaz S, Russell R. Relation-ship between pyrophosphate amorphous calcium phosphate and other factors in the sequence of calcification in vivo[J]. Calcif Tissue Res.,1972, 10,198-206.
    [126]Mansurova S E, Deryabina O A. A simple colorimetric assay method for pyrophosphate in the presence of a 1000-fold excess of orthophosphate:Application of the method to the study of pyrophosphate metabolism in mitochondria[J]. Analytical Biochemistry, 1989, 176(2): 390-394.
    [127]Siegel S A, Hummel C F, Carty R P. The role of nucleoside triphosphate pyrophosphohydrolase in in vitro nucleoside triphosphate-dependent matrix vesicle calcification[J]. J. Biol. Chem., 1983,258,8601-8607.
    [128]Huang M S, Sage A P, Lu J, et al. Phosphate and pyrophosphate mediate PKA-induced vascular cell calcification[J]. Biochemical and Biophysical Research Communications,2008,374(3): 553-558.
    [129]Ronaghi M, Karamohamed S, Pettersson B, et al. Real-Time DNA Sequencing Using Detection of Pyrophosphate Release[J]. Analytical Biochemistry,1996,242(1):84-89.
    [130]Xu S, He M, Yu H, et al. A Quantitative Method to Measure Telomerase Activity by Bioluminescence Connected with Telomeric Repeat Amplification Protocol[J]. Analytical Biochemistry,2001,299(2):188-193.
    [131]Nyren P, Lundin A. Enzymatic method for continuous monitoring of inorganic pyrophosphate synthesis[J]. Analytical Biochemistry,1985,151(2):504-509.
    [132]March J G, Simonet B M, Grases F. Determination of pyrophosphate in renal calculi and urine by means of an enzymatic method[J]. Clinica Chimica Acta,2001,314(1-2):187-194.
    [133]Aldakov D, Pavel Anzenbacher J. Sensing of Aqueous Phosphates by Polymers with Dual Modes of Signal Transduction[J]. Journal of the American Chemical Society,2004,126(15): 4752-4753.
    [134]Lee J H, Park J, Lah M S, et al. High-Affinity Pyrophosphate Receptor by a Synergistic Effect between Metal Coordination and Hydrogen Bonding in Water[J]. Organic Letters,2007,9(19): 3729-3731
    [135]Climent E, Casasus R, Marcos M D, et al. Colorimetric sensing of pyrophosphate in aqueous media using bis-functionalised silica surfaces[J]. Dalton Trans.,2009,4806-4814.
    [136]Nishiyabu R, Pavel Anzenbacher J. Sensing of Antipyretic Carboxylates by Simple Chromogenic Calix[4]pyrroles[J]. Journal of the American Chemical Society,2005,127(23): 8270-8271.
    [137]Martmez-Manez R, Sancanon F. Fluorogenic and Chromogenic Chemosensors and Reagents for Anions.[J]. Chem.Rev.,2003,103,4419-4476.
    [138]Callan J F, de Silva A P, Magri D C. Luminescent Sensors and Switches in the Early 21st Century[J]. Tetrahedron,2005,61,8551-8588.
    [139]Nishizawa S, Kato Y, Teramae N. Fluorescence Sensing of Anions via Intramolecular Excimer Formation in a Pyrophosphate-Induced Self-Assembly of a Pyrene-Functionalized Guanidinium Receptor[J]. Journal of the American Chemical Society,1999121(40): 9463-9464.
    [140]Singh N J, Jun E J, Chellappan K, et al. Quinoxaline Imidazolium Receptors for Unique Sensing of Pyrophosphate and Acetate by Charge Transfer[J]. Organic Letters,2007,9(3): 485-488.
    [141]Aldakov D, Anzenbacher P. Dipyrrolyl quinoxalines with extended chromophores are efficient fluorimetric sensors for pyrophosphate[J]. Chemical Communications,2003(12):1394-1395.
    [142]de Silva A P, Gunaratne H Q N, Gunnlaugsson T A, et al. Signaling Recognition Events with Fluorescent Sensors and Switches[J]. Chem.Rev.,1997,97,1515-1566.
    [143]Czarnik A W. Chemical Communication in Water Using Fluorescent Chemosensors[J]. Acc.Chem.Res.,1994,27,302-308.
    [144]Gunnlaugsson T, Davis A P, O'Brien J E, et al. Fluorescent Sensing of Pyrophosphate and Bis-carboxylates with Charge Neutral PET Chemosensors[J]. Organic Letters,2002,4(15): 2449-2452
    [145]程孟琪,蔡铁军,龙云飞等.水杨醛缩邻氨基苯酚稀土金属配合物的合成与表征[J].稀有金属,2005,29(3):315-319

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700