用户名: 密码: 验证码:
磁性铁酸盐纳米材料的控制合成及性质表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性材料由于其广泛的用途已越来越被人们所重视。本论文主要利用溶剂热方法合成铁基磁性纳米材料,内容包括合成单分散的铁酸盐纳米粒子及其表面改性,水中可分散的四氧化三铁纳米粒子的制备等,对纳米粒子尺寸、分散性的控制及形成机理进行了研究。并通过连续合成方法扩大了产物的产量,对磁性纳米材料的工业化发展有一定的促进作用。
     1.单分散铁酸盐纳米粒子的控制合成,磁性质及表面改性
     我们通过加热无机盐和SDBS的辛醇溶液,得到了在非极性溶剂中单分散的不同Co,Ni,Fe组分的Co_xNi_yFe_(3-x-y)O_4纳米粒子,其中x=0.6,0.3,0.2,0,y=0,0.6,0.7,0.8。合成的纳米粒子通过XRD,TEM,HR-TEM,SAED,IR,TG和其他分析手段进行了详尽的表征。合成纳米粒子的尺寸可通过改变反应时间来调节。通过跟踪反应过程提出了溶剂热反应中纳米粒子的形成机理。研究了纳米粒子的尺寸和组分对磁性质的影响,并对同一尺寸、不同组分的纳米粒子的磁性质进行了比较。此外,通过对合成的纳米粒子进行简单的醋酸洗涤,我们得到了水中分散的纳米粒子。本章的工作在于使用廉价无毒的无机盐前驱体合成了多组分,单分散的铁酸盐纳米粒子,精确控制了纳米粒子的尺寸,并通过表面改性的方法使其在非极性和极性溶剂中分散,扩大了其应用。
     2.绿色合成水中分散的四氧化三铁纳米粒子
     在本文中,我们使用无毒廉价的无水三氯化铁(FeCl_3)作为铁源,一缩二乙二醇(DEG)作为还原剂和溶剂,在无水醋酸钠(NaAc)的存在下合成了水中分散的四氧化三铁纳米粒子。和以往的方法比较,我们的合成方法中不存在有毒的无机离子或有机物原料,反应过程中不需要严格的气氛保护,合成出的纳米粒子在水中有很好的分散性,这大大扩大了合成产物在生物领域的应用。并且,我们合成的四氧化三铁纳米粒子的尺寸可通过简单的调节反应温度和时间来调节,尺寸在3-11纳米尺寸范围内可控。同时,为研究产物的形成过程,我们对反应进行了跟踪,提出了形成四氧化三铁纳米粒子的反应机理,并证实了合成产物的低毒性。
     3.连续溶剂热方法大量合成NiFe_2O_4和γ-Fe_2O_3纳米粒子
     通过连续溶剂热方法合成了单分散的磁性NiFe_2O_4和γ-Fe_2O_3纳米粒子。连续合成方法克服了以往合成中遇到的低产量的缺点,大大提高了生产效率,生产速率大于1g/h。合成的NiFe_2O_4可在环己烷中分散,而γ-Fe_2O_3纳米粒子则能在乙醇中稳定存在,这和我们使用的反应溶剂及表面活性剂有关。用XRD,TEM,HR-TEM,IR,TGA,ICP和其他技术对合成的磁性纳米粒子进行了表征。并对合成产物的磁性质进行了研究。反应参数如温度、浓度等对反应产物的影响也在文章中进行了详细的跟踪比较。
Magnetic materials have attracted much interest because of their extensive use in many fields.In this paper,the main contents are related to preparation of iron-based magnetic nano-materials by a solvothermal method,including synthesis of magnetic product such as monodisperse ferrite nanoparticles,the water-dispersible Fe_3O_4 nanoparticles;the investigation of controlling mechanism for the size,dispersibility and formation of the nanoparticles.And mass production of magnetic nanoparticles has been carried out by continuous synthesis,which has a certain role in promoting the industrial development of magnetic nano-materials.
     1.Monodispersed Co,Ni-ferrite Nanoparticles with Tunable Sizes:Controlled Synthesis,Magnetic Properties and Surface Modification
     Ferrite(Co_xNi_yFe_(3-x-y)O_4,x=0.6,0.3,0.2,0,y=0,0.6,0.7,0.8)nanoparticles monodispersed in nonpolar solvents have been prepared with different Co,Ni,Fe compositions by heating mixtures of inorganic salts and SDBS in n-octanol.The as-prepared nanoparticles were characterized in detail by XRD,TEM,HR-TEM, SAED,IR,TG analysis and other techniques.The nanoparticle sizes could be tuned by adjusting the reaction time.The formation mechanism of the nanopartieles during the solvothermal process is proposed based on the experimental results.The effects of size and composition of the nanoparticles on magnetic properties were investigated, and the magnetic properties of nanoparticles with the same size but different compositions were compared.Furthermore,water-dispersible nanoparticles were obtained by simply washing the as-prepared nanoparticles with acetic acid.The objective of this work is to develop a route to synthesize monodispersed ferrite nanoparticles in both nonpolar and polar solvents with multiple compositions and precisely controlled sizes using low-cost inorganic salts as precursors.The acetate-modified nanoparticles might have significant broader applications.
     2.Environmentally-Friendly Preparation of Water-Dispersible Magnetite Nanoparticles
     Herein,an improved polyol reduction process to water-dispersible Fe_3O_4 nanoparticles using the cost-effective anhydrous FeCl_3 as the iron source and diethylene glycol(DEG) as the reductant and solvent in presence of anhydrous CH_3COONa was designed.Compared to the previous reports,no toxic inorganic ions or organic species existed,no atmosphere potection was needed,and the as-prepared Fe_3O_4 nanoparticles exhibited excellent water-dispersibility,favoring application in biological science.The particle size(3-11 nm) can be tuned by simply adjusting the reaction temperature and time.The formation mechanism of Fe_3O_4 nanoparticles is proposed and their low cytotoxicity has also been proved.
     3.Mass production of NiFe_2O_4 andγ-Fe_2O_3 nanoparticles by continuous solvothermal synthesis
     Monodispersed magnetic NiFe_2O_4 andγ-Fe_2O_3 nanoparticles have been prepared by a continuous solvothermal method.We overcame the usual low yield shortcomings for synthesizing high quality nanoparticles by continuous synthesis using the previous system we had reported.Generally,the hourly output of our magnetic product was more than 1g.NiFe_2O_4 nanoparticles we prepared can disperse in cyclohexane, andγ-Fe_2O_3 nanoparticles can be stable in ethanol,which may be caused by the different solvent and surfactant we used in the reaction system.The as-prepared nanoparticles were characterized by XRD,TEM,HR-TEM,IR,TGA,ICP and other techniques.Magnetic properties of the as-prepared magnetic nanoparticles were studied.The effect of the reaction parameters such as temperature,concentrations were also investigated in detail.
引文
1.Kerman,K.;Saito,M.;Yamamura,S.;Takamura,Y.;Tamiya,E.;Nano material-based electrochemical biosensors for medical applications,Trac-Trend Anal Chem.2008,27,585-592.
    2.Mulvaney,P.;Book Review:The Chemistry of Nanomaterials.By C.N.R.Rao,Achim M(u|¨)ller,and Anthony K.Cheetham(Eds.),Adv.Mater.2005,17,1203-1204.
    3.Welch,C.W.;Compton,R.G.;The use of nanoparticles in electroanalysis:a review,Anal Bioanal Chem.2006,384,601-619.
    4.Bakunin,V.N.;Suslov,A.Y.;Kuzmina,G.N.;Parenago,O.P.;Synthesis and application of inorganic nanoparticles as lubricant components - a review,J Nanopart Res.2004,6,273-284.
    5.M.Lazzati,M.A.L.-Q.;Block Copolymers as a Tool for Nanomaterial Fabrication,Adv.Mater.2003,15,1583-1594.
    6.Kruis,F.E.;Fissan,H.;Peled,A.;Synthesis of nanoparticles in the gas phase for electronic,optical and magnetic applications-a review,Journal of Aerosol Science.1995,29,511-535.
    7.Silva,A.K.A.;Egito,E.S.T.;Nagashima,T.;Araujo,I.B.;Silva,E.L.;Soares,L A.L.;Cardco,A.S.;Development of superparamagnetic microparticles for biotechnological purposes,Drug Dev Ind Pharm.2008,34,1111-1116.
    8.Tartaj,P.;Nanomagnets-from fundamental physics to biomedicine,Curr Nanosci.2006,2,43-53.
    9.Safarik,I.;Safarikova,M.;Magnetic nanoparficles and biosciences,Monatsh Chem.2002,133,737-759.
    10.Rao,C.N.R.;Cheetham,A.K.;Science and technology of nanomatedals:current status and future prospects,J Mater.Chem.2001,11,2887-2894.
    11.Wang,J.;Nanomaterial-based electrochemical biosensors,Analyst.2005,130,421-426.
    12.Daniel,M.C.;Astruc,D.;Gold nanoparticles:Assembly,supramolecular chemistry,quantura-size-related properties,and applications toward biology,catalysis,and nanotechnology,Chem.Rev.2004,104,293-346.
    13.Emery,S.R.;Haskins,W.E.;Nie,S.M.;Direct observation of size-dependent optical enhancement in single metal nanoparticles,J.Am.Chem.Soc.1998,120,8009-8010.
    14.Xu,X.H.N.;Huang,S.;Brownlow,W.;Salaita,K.;Jeffers,R.B.;Size and temperature dependence of surface plasmon absorption of gold nanoparticles induced by tris(2,2'-bipyridine)ruthenium(Ⅱ),J.Phys.Chem.B 2004,108,15543-15551.
    15.Shibata,T.;Bunker,B.A.;Zhang,Z.Y.;Meisel,D.;Vardeman,C.E;Gezelter,J.D.;Size-dependent spontaneous alloying of Au-Ag nanoparticles,J.Am.Chem.Soc.2002,124,11989-11996.
    16.Roduner,E.;Size matters:why nanomaterials are different,Chem.Soc.Rev.2006,33,583-592.
    17.Andrievski,R.A.;Glezer,A.M.;Size effects in properties of nanomaterials,Scripta Mater.2001,44,1621-1624.
    18.Fu,H.B.;Yao,J.N.;Size effects on the optical properties of organic nanoparticles,J.Am.Chem.Soc.2001,123,1434-1439.
    19.Qhobosheane,M.;Santra,S.;Zhang,P.;Tan,W.H.;Biochemically functionalized silica nanoparticles,Analyst.2001,126,1274-1278.
    20.Earhart,C.;Jana,N.R.;Erathodiyil,N.;Y'mg,J.Y.;Synthesis of carbohydrate-conjugated nanoparticles and quantum dots,Langmuir 2008,24,6215-6219.
    21.Lee,J.;Tanaka,T.;Lee,J.;Mori,H.;Effect of substrates on the melting temperature of gold nanoparticles,Calphad.2007,31,105-111.
    22.Xie,D.;Qi,W.H.;Wang,M.P.;Size and shape dependent melting-thermodynamic properties of metallic nanoparticles,Acta Metall Sin.2004,40,1041-1044.
    23.Ngo,A.T.;Bonville,P.;Pileni,M.P.;Spin canting and size effects in nanoparticles of nonstoichiometric cobalt ferdte,J Appl Phys.2001,89,3370-3376.
    24.Deivaraj,T.C.;Chen,W.X.;Lee,J.Y.;Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol,J.Mater.Chem.2003,13,2555-2560.
    25.Del Fatti,N.;Vallee,F.;Ultrafast electron interactions in metal clusters,C.R.Physique.2002,3,365-380.
    26.Voisin,C.;Christofilos,D.;Fatti,N.D.;Vallee,F.;Prevel,B.;Cottancin,E.;Lerme,J.;Pellarin,M.;Broyer,M.;Size-dependent electron-electron interactions in metal nanoparticles,Phys.Rev.Lett.2000,85,2200-2203.
    27.Jang,H.D.;Kim.S.K.;Kim,S.J.;Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties,J Nanopart Res.2001,3,141-147.
    28.Testino,A.;Bellobono,I.R.;Buscaglia,V.;Canevali,C.;D'Arienzo,M.;Polizzi,S.;Scotti,R.;Morazzoni,F.;Optimizing the photocatalytic properties of hydrothermal TiO_2 by the control of phase composition and particle morphology.A systematic approach,J.Am.Chem.Soc.2007,129,3564-3575.
    29.Win,K.Y.;Feng,S.S.;Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs,Biomaterials.2005,26,2713-2722.
    30.Shimizu,T.;Teraaishi,T.;Hasegawa,S.;Miyake,M.;Size evolution of alkanethiol-protected gold nanoparticles by heat treatment in the solid state,J Phys.Chem.B.2003,107,2719-2724.
    31.Bakuzis,A.F.;Morais,P.C.;Pelegtini,F.;Surface and exchange anisotropy fields in MnFe_2O_4 nanoparticles:Size and temperature effects,J.Appl.Phys.1999,85,7480-7482.
    32.Drachev,V.P.;Khaliullin,E.N.;Kim,W.;Alzoubi,F.;Rantian,S.G.;Safonov,V.P.;Armstrong,R.L.;Shalacv,V.M.;Quantum size effect in two-photon excited luminescence from silver nanoparticles,Phys.Rev.B.2004,69,035318.
    33.Lima,E.;Vargas,J.M.;Rechenberg,H.R.;Zysler,R.D.;Interparticle Interactions Effects on the Magnetic Order in Surface of Fe_3O_4 Nanoparticles,J. Nanosci.Nanotechno.2008,8,5913-5920.
    34.Borgohain,K.;Singh,J.B.;Rao,M.V.R.;Shripathi,T.;Mahamuni,S.;Quantum size effects in CuO nanoparticles,Phys.Rev.B.2000,61,11093-11096.
    35.Ledoux,G.;Gong,J.;Huisken,F.;Guillois,O.;Reynaud,C.;Photoluminescence of size-separated silicon nanocrystals:Confirmation of quantum confinement,Appl.Phys.Lett.2002,80,4834-4836.
    36.Kim,T.Y.;Park,N.M.;Kim,K.H.;Sung,G.Y.;Ok,Y.W.;Seong,T.Y.;Choi,C.J.;Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films,Appl.Phys.Lett.2004,85,5355-5357.
    37.Xu,L.;Wang,L.;Huang,X.F.;Zhu,J.M.;Chen,H.M.;Chen,K.J.;Surface passivation and enhanced quantum-size effect and photo stability of coated CdSe/CdS nanocrystals,Physica E.2000,8,129-133.
    38.Qadri,S.B.;Skelton,E.F.;Dinsmore,A.D.;Hu,J.Z.;Kim,W.J.;Nelson,C.;Ratna,B.R.;The effect of particle size on the structural transitions in zinc sulfide,J.Appl.Phys.2001,89,115-119.
    39.Banerjee,R.;Jayakrishnan,R.;Ayyub,P.;Effect of the size-induced structural transformation on the band gap in CdS nanoparticles,J.Phys.:Condens.Matter 2000,12,10647-10654.
    40.Pustovit,V.N.;Shahbazyan,T.V.;Finite-size effects in surface-enhanced Raman scattering in noble-metal nanoparticles:a semiclassical approach,J.Opt.Soc.Am.A 2006,23,1369-1374.
    41.Batlle,X.;Labarta,A.;Finite-size effects in fine particles:magnetic and transport properties,J.Phys.D:Appl.Phys.2002,3,15-42.
    42.Zhou,P.H.;Xue,D.S.;Finite-size effect on magnetic properties in Prussian blue nanowire arrays,J.Appl.Phys.2004,96,610-614.
    43.Wang,Z.L.;Petroski,J.M.;Green,T.C.;El-Sayed,M.A.;Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals,J.Phys.Chem.B 1998,102,6145-6151.
    44.Luo,W.H.;Hu,W.Y.;Xiao,S.F.;Size effect on the thermodynamic properties of silver nanoparticles,J.Phys.Chem.C 2008,112,2359-2369.
    45.Ercolessi,F.;Andreoni,W.;Tosatti,E.;Melting of small gold particles:Mechanism and size effects,Phys.Rev.Lett.1991,66,911-914.
    46.Iglesias,O.;Labarta,A.;Finite-size and surface effects in maghemite nanoparticles:Monte Carlo simulatios,Phys.Rev.B 2001,63,184416.
    47.Kachkachi,H.;Nogues,M.;Tronc,E.;Garanin,D.A.;Finite-size versus surface effects in nanoparticles,J.Magn.Magn.Mater.2000,221,158-163.
    48.Kachkachi,H.;Ezzir,A.;Nognes,M.;Tronc,E.;Surface effects in nanoparticles:application to maghemite gamma-Fe_2O_3,Eur.Phys.J.2000,14,681-689.
    49.Cai,W.P.;Hofmeister,H.;Rainer,T.;Surface effect on the size evolution of surface plasmon resonances of Ag and Au nanoparticles dispersed within mesoporous silica,Physica E-Low-Dimensional Systems & Nanostructures.2001,11,339-344.
    50.Hilger,A.;Cuppers,N.;Tenfelde,M.;Kreibig,U.;Surface and interface effects in the optical properties of silver nanoparticles,Eur.Phys.J.D 2000,10,115-118.
    51.Brown,D.M.;Wilson,M.R;MacNee,W.;Stone,V.;Donaldson,K.;Size-Dependent Proinflammatory Effects of Ultrafine Polystyrene Particles:A Role for Surface Area and Oxidative Stress in the Enhanced Activity of Ultrafines,Toxicol.Appl.Pharmacol.2001,17.5,191-199.
    52.Kim,G.H.;Quantum tunneling of magnetization in a general magnetic field,J Appl.Phys.1998,84,391-400.
    53.Wernsdorfer,W.;Boner Orozco,E.;Hasselbach,K;Benoit,A.;Mailly,D.;Kubo,O.;Nakano,H.;Barbara,B.;Macroscopic Quantum Tunneling of Magnetization of Single Ferrimagnetic Nanoparticles of Barium Ferrite,Phys.Rev.Lett.1997,79,4014.
    54.Zhou,Q.F.;Xu,Z.;The preparation of nano-scale plate silver powders by visible light induction method,J.Mater.Sci.2004,39,2487-2491.
    55.Schmid,G.;Simon,U.;Gold nanoparticles:assembly and electrical properties in 1-3 dimensions,Chem.Commun.2005,697-710.
    56.Ram,S.;Self-confined dimension of thermodynamic stability in co-nanoparticles in fcc and bcc allotropes with a thin amorphous Al_2O_3 surface layer,Acta.Mater.2001,49,2297-2307.
    57.Gubin,S.P.;Koksharov,Y.A.;Khomutov,G.B.;Yurkov,G.Y.;Magnetic nanoparticles:Preparation methods,structure and properties,Usp.Khim.2005,74,539-574.
    58.Sztrum,C.G;Hod,O.;Rabani,E.;Self-assembly of nanoparticles in three-dimensions:Formation of stalagmites,J.Phys.Chem.B 2005,109,6741-6747.
    59.Hu,J.T.;Odom,T.W.;Lieber,C.M.;Chemistry and physics in one dimension:Synthesis and properties of nanowires and nanotubes,Acc.Chem.Res.1999,32,435-445.
    60.Wautelet,M.;Duvivier,D.;The characteristic dimensions of the nanoworld,Eur J.Phys.2007,28,953-959.
    61.Murphy,C.J.;Jana,N.R.;Controlling the aspect ratio of inorganic nanorods and nanowires,Adv.Mater.2002,14,80-82.
    62.Ranjit,K.T.;Martyanov,I.;Demydov,D.;Uma,S.;Rodrigues,S.;Klabunde,K.J.;A review of the chemical manipulation of nanomaterials using solvents:Gelation dependent structures,J Sol-Gel Sci.Technol.2006,40,335-339.
    63.Khomutov,G.B.;Bykov,I.V.;Gainutdinov,R.V.;Gubin,S.P.;Obydenov,A.Y.;Polyakov,S.N.;Tolstikhina,A.L.;Two-dimensional photochemical synthesis of plate-like nanoparticles,Colloids Surf.,A 2002,198,347-358.
    64.Chen,Z.;Cao,M.H.;He,X.Y.;One-step fabrication of nickel hierarchical superstructures,Chem.Lett.2008,37,736-737.
    65.Xu,C.;Wang,L.;Zou,D.B.;Ying,T.K.;Ionic liquid-assisted synthesis of hierarchical CuS nanostructures at room temperature,Mater.Lett.2008,62,3181-3184.
    66.Babayan,Y.;Barton,J.E.;Greyson,E.C.;Odom,T.W.;Templated and hierarchical assembly of CdSe/ZnS quantum dots,Adv.Mater.2004,16,1341-1345.
    67.Jia,C.;Cheng,Y.;Bao,F.;Chen,D.Q.;Wang,Y.S.;pH value-dependant growth of alpha-Fe2O3 hierarchical nanostructures,J.Cryst.Growth 2006,294,353-357.
    68.Jayakumar,O.D.;Salunke,H.G.;Kadam,R.M.;Mohapatra,M.;Yaswant,G.;Kulshreshtha,S.K.;Magnetism in Mn-doped ZnO nanoparticles prepared by a co-precipitation method,Nanotechnology 2006,17,1278-1285.
    69.Yang,H.M.;Song,X.L.;Zhang,X.C.;Ao,W.Q.;Qiu,G.Z.;Synthesis of vanadium-doped SnO_2 nanoparticles by chemical co-precipitation method,Mater.Lett.2003,57,3124-3127.
    70.Hu,M.Z.C.;Miller,G.A.;Payzant,E.A.;Rawn,C.J.;Homogeneous (co)precipitation of inorganic salts for synthesis of monodispersed barium titanate particles,J.Mater.Sci.2000,35,2927-2936.
    71.Trentler,T.J.;Denler,T.E.;Bertone,J.F.;Agrawal,A.;Colvin,V.L.;Synthesis of TiO_2 nanocrystals by nonhydrolytic solution-based reactions,J.Am.Chem.Soc.1999,121,1613-1614.
    72.Sun,S.;Zeng,H.;Robinson,D.B.;Raoux,S.;Rice,P.M.;Wang,S.X.;Li,G.;Monodisperse MFe_2O_4(M=Fe,Co,Mn) Nanoparticles,J.Am.Chem.Soc.2004,126,273-279.
    73.Rockenberger,J.;Scher,E.C.;Alivisatos,A.P.;A New Nonhydrolytic Single-Precursor Approach to Surfactant-Capped Nanocrystals of Transition Metal Oxides,J.Am.Chem.Soc.1999,121,11595-11596.
    74.Yin,M.;O'Brien,S.;Synthesis of Monodisperse Nanocrystals of Manganese Oxides,J.Am.Chem.Soc.2003,125,10180-10181.
    75.Hyeon,T.;Lee,S.S.;Park,J.;Chung,Y.;Na,H.B.;Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process,J.Am.Chem.Soc.2001,123,12798-12801.
    76.Park,J.;Lee,E.;Hwang,N.M.;Kang,M.S.;Kim,S.C.;Hwang,Y.;Park,J.G.;Noh,H.J.;Kini,J.Y.;Park,J.H.;Hyeon,T.;One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles,Angew.Chem.Int.Edit.2005,44,2872-2877.
    77.Park,J.;An,K.J.;Hwang,Y.S.;Park,J.G.;Noh,H.J.;Kim,J.Y.;Park,J.H.;Hwang,N.M.;Hyeon,T.;Ultra-large-scale syntheses of monodisperse nanocrystals,Nat.Mater.2004,3,891-895.
    78.Jana,N.R.;Chen,Y.F.;Peng,X.G.;Size- and shape-controlled magnetic(Cr,Mn,Fe,Co,Ni) oxide nanocrystals via a simple and general approach,Chem.Mater.2004,16,3931-3935.
    79.Narayanaswamy,A.;Xu,H.F.;Pradhan,N.;Kim,M.;Peng,X.G.;Formation of nearly monodisperse In_2O_3 nanodots and oriented-attached nanoflowers:Hydrolysis and alcoholysis vs pyrolysis,J.Am.Chem.Soc.2006,128,10310-10319.
    80.Jun,Y.W.;Choi,J.S.;Cheon,J.;Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes,Angew.Chem.Int.Edit.2006,45,3414-3439.
    81.Si,R.;Zhang,Y.W.;You,L.P.;Yah,C.H.;Rare-earth oxide nanopolyhedra,nanoplates,and nanodisks,Angew.Chem.Int.Edit.2005,44,3256-3260.
    82.Tannenbaum,R.;Zubris,M.;Goldberg,E.P.;Reich,S.;Dan,N.;Polymer-directed nanocluster synthesis:Control of particle size and morphology,Macromolecules.2005,38,4254-4259.
    83.Hyeon,T.;Chemical synthesis of magnetic nanoparticles,Chem.Commun.2003,927-934.
    84.冯守华.水热与溶剂热合成化学,吉林师范大学学报(自然科学版).2008,29,7-11.
    85.Piticescu,R.R.;Monty,C.;Taloi,D.;Motoc,A.;Axinte,S.;Hydrothermal synthesis of zirconia nanomaterials,J.Eu.r Ceram.Soc.2001,21,2057-2060.
    86.Piticescu,R.M.;Piticescu,R.R.;Taloi,D.;Badilita,V.;Hydrothermal synthesis of ceramic nanomaterials for functional applications,Nanotechnology 2003,14,312-317.
    87.Takami,S.;Sato,T.;Mousavand,T.;Ohara,S.;Umetsu,M.;Adschiri,T.;Hydrothermal synthesis of surface-modified iron oxide nanoparticles,Mater.Lett.2007,61,4769-4772.
    88.Byrappa,K.;Adschiri,T.;Hydrothermal technology for nanotechnology,Prog.Cryst.Growth Charact.Mater.2007,53,117-166.
    89.Adschiri,T.;Hakuta,Y.;Sue,K.;Arai,K.;Hydrothermal synthesis of metal oxide nanoparticles at supercritical conditions,J.Nanopart.Res.2001,3,227-235.
    90.Rajamathi,M.;Seshadri,R.;Oxide and chalcogenide nanoparticles from hydrothermal/solvothermal reactions,Curr.Opin.Solid State Mater.Sci.2002,6,337-345.
    91.Kim,C.S.;Moon,B.K.;Park,J.H.;Choi,B.C.;Seo,H.J.;Solvotherinal synthesis of nanocrystalline TiO_2 in toluene with surfactant,J.Cryst.Growth 2003,25 7,309-315.
    92.Chen,D.H.;He,X.R.;Synthesis of nickel ferrite nanoparticles by sol-gel method,Mater.Res.Bull.2001,36,1369-1377.
    93.Xu,H.;Qin,D.H.;Yang,Z.;Li,H.L.;Fabrication and characterization of highly ordered zirconia nanowire arrays by sol-gel template method,Mater.Chem.Phys.2003,80,524-528.
    94.Hwang,B.J.;Santhanam,R.;Liu,D.G.;Characterization of nanoparticles of LiMn_2O_4 synthesized by citric acid sol-gel method,J.Power.Sources.2001,97-8,443-446.
    95.Seip,C.T.;Carpenter,E.E.;O'Connor,C.J.;John,V.T.;Li,S.C.;Magnetic properties of a series of ferrite nanoparticles synthesized in reverse micelles,IEEE Trans.Magn.1998,34,1111-1113.
    96.Lin,J.;Zhou,W.L.;O'Connor,C.J.;Formation of ordered arrays of gold nanoparticles from CTAB reverse micelles,Mater.Lett.2001,49,282-286.
    97.Zhang,J.;Sun,L.D.;Liao,C.S.;Yah,C.H.;Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method,Solid State Commun.2002,124,45-48.
    98.Egorova,E.M.;Revina,A.A.;Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin,Colloids Surf,A 2000,168,87-96.
    99.Reverchon,E.;Adami,R.;Nanomaterials and supercritical fluids,J Supercrit Fluid.2006,37,1-22.
    100.Aymonier,C.;Loppinet-Serani,A.;Reveron,H.;Garrabos,Y.;Cansell,F.;Review of supercritical fluids in inorganic materials science,J.Supercrit.Fluid.2006,38,242-251.
    101.Hakuta,Y.;Hayashi,H.;Arai,K.;Fine particle formation using supercritical fluids,Curr.Opin.Solid State Mater.Sci.2003,7,341-351.
    102.Cabanas,A.;Darr,J.A.;Lester,E.;Poliakoff,M.;A continuous and clean one-step synthesis of nano-particulate Ce_(1-x)Zr_xO_2 solid solutions in near-critical water,Chem.Commun.2000,901-902.
    103.Cansell,F.;Chevalier,B.;Demourgues,A.;Etourneau,J.;Even,C.;Garrabos,Y.;Pessey,V.;Petit,S.;Tressaud,A.;Weill,F.;Supercritical fluid processing:a new route for materials synthesis,J.Mater.Chem.1999,9,67-75.
    104.Watkins,J.J.;Blackburn,J.M.;McCarthy,T.J.;Chemical fluid deposition:Reactive deposition of platinum metal from carbon dioxide solution,Chem.Mater.1999,11,213-215.
    105.Moner-Girona,M.;Roig,A.;Molins,E.;Llibre,J.;Sol-gel route to direct formation of silica aerogel microparticles using supercritical solvents,J.Sol-Gel Sci.Technol.2003,26,645-649.
    106.Desmoulins-Krawiec,S.;Aymonier,C.;Loppinet-Serani,A.;Weill,F.;Gorsse,S.;Etourneau,J.;Cansell,F.;Synthesis of nanostructured materials in supercritical ammonia:nitrides,metals aad oxides,J.Mater.Chem.2004,14,228-232.
    107.Pessey,V.;Garriga,R.;Weill,F.;Chevalier,B.;Etourneau,J.;Cansell,F.;Control of particle growth by chemical transformation ha supercritical CO_2/ethanol mixtures,J Mater.Chem.2002,12,958-965.
    108.Li,Z.W.;Zhu,Y.F.;Surface-modification of SiO_2 nanoparticles with oleic acid,Appl.Surf.Sci.2003,211,315-320.
    109.Zhu,T.;Vasilev,K.;Kreiter,M.;Mittler,S.;Knoll,W.;Surface modification of citrate-reduced colloidal gold nanoparticles with 2-mercaptosuccinic acid,Langmuir 2003,19,9518-9525.
    110.Cropek,D.;Kemme,P.A.;Makarova,O.V.;Chen,L.X.;Rajh,T.;Selective photocatalytic decomposition of nitrobenzene using surface modified TiO_2nanoparticles,J.Phys.Chem.C 2008,112,8311-8318.
    111.Makarova,O.V.;Rajh,T.;Thurnauer,M.C.;Martin,A.;Kemme,P.A.;Cropek,D.;Surface modification of TiO_2 nanoparticles for photochemical reduction of nitrobenzene,Environ.Sci.Technol.2000,34,4797-4803.
    112.Talapin,D.V.;Rogaeh,A.L.;Mekis,I.;Haubold,S.;Kornowski,A.;Haase,M.;Weller,H.;Synthesis and surface modification of amino-stabilized CdSe,CdTe and InP nanocrystals,Colloids Surf.,A 2002,202,145-154.
    113.Posthumus,W.;Magusin,P.C.M.M.;Brokken-Zijp,J.C.M.;Tinnemans,A.H. A.;van der Linde,R.;Surface modification of oxidic nanoparticles using 3-methacryloxypropyltrimethoxysilane,J.Colloid Interf Sci.2004,269,109-116.
    114.Bruce,I.J.;Sen,T.;Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations,Langmuir 2005,21,7029-7035.
    115.Kuchibhatla,S.V.N.T.;Karakoti,A.S.;Seal,S.;Colloidal stability by surface modification,JOM 2005,57,52-56.
    116.Lee,S.Y.;Harris,M.T.;Surface modification of magnetic nanoparticles capped by oleic acids:Characterization and colloidal stability in polar solvents,J.Colloid Interf Sci.2006,293,401-408.
    117.Delville,A.;Electrostatic stability of a large collection of charged anisotropic nanoparticles:A Monte Carlo study exploiting a hierarchical approach,J.Phys.Chem.B 2006,110,11950-11957.
    118.Kitchens,C.L.;McLeod,M.C.;Roberts,C.B.;Solvent effects on the growth and steric stabilization of copper metallic nanoparticles in AOT reverse micelle systems,J.Phys.Chem.B 2003,107,11331-11338.
    119.Anand,M.;Bell,P.W.;Fan,X.;Enick,R.M.;Roberts,C.B.;Synthesis and steric stabilization of silver nanoparticles in neat carbon dioxide solvent using fluorine-free compounds,J.Phys.Chem.B 2006,110,14693-14701.
    120.Laaksonen,T.;Ahonen,P.;Johaus,C.;Kontturi,K.;Stability and electrostatics of mercaptoundecanoic acid-capped gold nanoparticles with varying counterion size,Chemphyschem.2006,7,2143-2149.
    1.(a) Alivisatos,A.P.Semiconductor clusters,nanocrystals,and quantum dots.Science 1996,271,933-937.
    (b) Sun,S.;Murray,C.B.;Weller,D.;Folks,L.;Moser,A.Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices.Science 2000,287,1989-1992.
    (c) McMichael,R.D.;Shull,R.D.;Swartzendruber,L.J.;Bennett,L.H.;Walson,R.E.Magnetocaloric effect in superparamagnets.J.Magn.Magn.Mater.1992,111,29-33.
    (d) Berkovsky,B.M.;Medvedev,V.F.;Krakov,M.S.Magnetic fluids:Engineering applications;Oxford University Press:Oxford,U.K.,1993.
    (e) Redl,F.X.;Cho,K.-S.;Murray,C.B.;O' Brien,S.Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots.Nature 2003,423,968-971.
    (f) Park,J.;Joo,J.;Kwon,S.;Jang,Y.;Hyeon,T.Synthesis of monodisperse spherical nanocrystals.Angew.Chem.,Int.Ed.2007,46,4630-4660.
    2.Shafi,K.V.P.M.;Koltypin,Y.;Gedanken,A.;Prozorov,R.;Balogh,J.;Lendvai, J.;Felner,I.Sonochemical preparation of nanosized amorphous NiFe_2O_4 particles.J.Phys.Chem.B 1997,101,6409-6414.
    3.(a) Feldmann,C.;Jungk,H.-O.Polyol-mediated preparation of nanoscale oxide particles.Angew.Chem.,Int.Ed.2001,40,359-362.
    (b) Lu,Z.L.;Zou,W.Q.;Lv,L.Y.;Liu,X.C.;Li,S.D.;Zhu,J.M.;Zhang,F.M.;Du,Y.W.Large low-field magnetoresistance in nanocrystalline magnetite prepared by sol-gel method.J.Phys.Chem.B 2006,110,23817-23820.
    4.(a) Liu,C.;Zou,B.;Rondinone,A.J.;Zhang,Z.J.Reverse micelle synthesis and characterization of superparamagnetic MnFe_2O_4 spinel ferrite nanocrystallites.J.Phys.Chem.B 2000,104,1141-1145.
    (b) Lee,Y.;Lee,J.;Bae,C.J.;Park,J.-G.;Noh,H.-J.;Park,J.-H.;Hyeon,T.Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions.Adv.Funct.Mater.2005,15,503-509.
    5.Zhou,Z.;Xue,J.;Wang,J.;Chan,H.;Yu,T.;Shen,Z.NiFe_2O_4 nanoparticles formed in situ in silica matrix by mechanical activation.J.Appl.Phys.2002,91,6015-6020.
    6.(a) Olsson,R.T.;Salazar-Alvarez,G.;Hedenqvist,M.S.;Gedde,U.W.;Lindberg,F.;Savage,S.J.Controlled synthesis of near-stoichiometric cobalt ferrite nanoparticles.Chem.Mater.2005,17,5109-5118.
    (b) Si,S.;Kotal,A.;Mandal,T.K.;Giri,S.;Nakamura,H.;Kohara,T.Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes.Chem.Mater.2004,16,3489-3496.
    7.Moumen,N.;Pileni,M.P.New syntheses of cobalt ferrite particles in the range 2-5 nm:Comparison of the magnetic properties of the nanosized particles in dispersed fluid or in powder form.Chem.Mater.1996,8,1128-1134.
    8.(a) Rockenberger,J.;Scher,E.C.;Alivisatos,A.P.A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides.J.Am.Chem.Soc.1999,121,11595-11596.
    (b) Hyeon,T.;Lee,S.S.;Park,J.;Chung,Y.;Na,H.B.Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process,J.Am.Chem.Soc.2001,123,12798-12801.
    (c) Hyeon,T.;Chung,Y.;Park,J.;Lee,S.S.;Kim,Y.W.;Park,B.H. Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals.J Phys.Chem.B 2002,106,6831-6833.
    (d) Kang,E.;Park,J.;Hwang,Y.;Kang,M.;Park,J.-G.;Hyeon,T.Direct synthesis of highly crystalline and monodisperse manganese ferrite nanocrystals.J Phys.Chem.B 2004,108,13932-13935.
    (e) Sun,S.;Zeng,H.Size- controlled synthesis of magnetite nanoparticles.J.Am.Chem.Soc.2002,124,8204-8205.
    (f) Sun,S.;Zeng,H.;Robinson,D.B.;Raoux,S.;Rice,P.M.;Wang,S.X.;Li,G.Monodisperse MFe_2O_4(M=Fe,Co,Mn) nanoparticles,J.Am.Chem.Soc.2004,126,273-279.
    (g) Song,Q.;Zhang,Z.J.Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals.J.Am.Chem.Soc.2004,126,6164-6168.
    (h) Pinna,N.;Grancharov,S.;Beato,P.;Bonville,P.;Antonietti,M.;Niederberger,M.Magnetite nanocrystals:nonaqueous synthesis,characterization,and solubility.Chem.Mater.2005,17,3044-3049.
    9.Hong,R.Y.;Pan,T.T.;Li,H.Z.Microwave synthesis of magnetic Fe_3O_4nanoparticles used as a precursor of nanocomposites and ferrofluids.J.Magn.Magn.Mater.2006,303,60-68.
    10.(a) Sepelak,V.;Feldhoff,A.;Heitjans,P.;Krumeich,F.;Menzel,D.;Litterst,F.J.;Bergmann,I.;Becker,K.D.Nonequilibrium cation distribution,canted spin arrangement,and enhanced magnetization in nanosized MgFe_2O_4 prepared by a one-step mechanochemical route.Chem.Mater.2006,18,3057-3067.
    (b) Manova,E.;Kunev,B.;Paneva,D.;Mitov,I.;Petrov,L.;Estourne's,C.;D'Orle'ans,C.;Rehspringer,J.L.;Kurmoo,M.Mechano-synthesis,characterization,and magnetic properties of nanoparticles of cobalt ferrite,CoFe_2O_4.Chem.Mater.2004,16,5689-5696.
    11.(a) Daou,T.J.;Pourroy,G.;Begin-Colin,S.;Greneche,J.M.;Ulhaq-Bouillet,C.;Legare,P.;Bernhardt,P.;Leuvrey,C.;Rogez,G.Hydrothermal synthesis of monodisperse magnetite nanoparticles.Chem.Mater.2006,18,4399-4404.
    (b) Si,S.;Li,C.;Wang,X.;Yu,D.;Peng,Q.;Li,Y.Magnetic monodisperse Fe_3O_4nanoparticles,Cryst.Growth Des.2005,5,391-393.
    12.Song,Q.;Zhang,Z.J.Correlation between spin-orbital coupling and the superparamagnetic properties in magnetite and cobalt ferrite spinel nanocrystals.J. Phys.Chem.B 2006,110,11205-11209.
    13.(a) Vestal,C.R.;Zhang,Z.J.Synthesis of CoCrFeO_4 nanoparticles using microemulsion methods and size-dependent studies of their magnetic properties.Chem.Mater.2002,14,3817-3822.
    (b) Han,M.;Vestal,C.R.;Zhang,Z.J.Quantum couplings and magnetic properties of CoCr_xFe_(2-x)O_4(0<x<1) spinel ferrite nanoparticles synthesized with reverse micelle method.J.Phys.Chem.B 2004,108,583-587.
    14.He,T.;Chen,D.;Jiao,X.;Wang,Y.;Duan,Y.Solubility-controlled synthesis of high-quality Co_3O_4 nanocrystals.Chem.Mater.2005,17,4023-4030.
    15.(a) Vestal,C.R.;Zhang,Z.J.Effects of surface coordination chemistry on the magnetic properties of MnFe_2O_4 spinel ferrite nanoparticles.J.Am.Chem.Soc.2003,125,9828-9833.
    (b) Liu,C.;Zou,B.;Rondinone,A.J.;Zhang,Z.J.Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings.J.Am.Chem.Soc.2000,122,6263-6267.
    (c)Fried,T.;Shemer,G.;Markovich,G.Ordered two-dimensional arrays of ferrite nanoparticles.Adv.Mater.2001,13,1158-1161.
    (d) Liu,C.;Zhang,Z.J.Size-dependent superparamagnetic properties of Mn spinel ferrite nanoparticles synthesized from reverse micelles.Chem.Mater.2001,13,2092-2096.
    (e) Path,C.;Mishra,N.C.;Anand,S.;Das,R.P.;Sahu,K.K.;Upadhyay,C.;Verma,H.C.Appearance of superpara- magnetism on heating nanosize Mn_(0.65)Zn_(0.35)Fe_2O_4.Appl.Phys.Lett.2000,76,475-477.
    (f) Antic,B.;Kremenovic,A.;Nikolic,A.S.;Stoiljkovic,M.Cation distribution and size-strain microstructure analysis in ultrafine Zn-Mn ferrites obtained from acetylacetonato complexes.J.Phys.Chem.B 2004,108,12646-12651.
    (g) Yang,T.;Shen,C.;Li,Z.;Zhang,H.;Xiao,C.;Chen,S.;Xu,Z.;Shi,D.;Li,J.;Gao,H.Highly ordered self-assembly with large area of Fe_3O_4nanoparticles and the magnetic properties.J.Phys.Chem.B 2005,109,23233-23236.
    (h) Park,T.-J.;Papaefthymiou,G.C.;Viescas,A.J.;Moodenbaugh,A.R.;Wong,S.S.Size-dependent magnetic properties of single-crystalline multiferroic BiFeO_3nanoparticles.Nano Lett.2007,7,766-772.
    16.(a) Zhao,M.;Kircher,M.F.;Josephson,L.;Weissleder,R.Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake.Bioconjugate Chem.2002,13,840-844.
    (b) Tartaj,P.;Morales,M.;Veintemillas- Verdaguer,S.;Gonza'lez-Carre(?)o,T.;Serna,C.J.The preparation of magnetic nanoparticles for applications in biomedicine.J.Phys.D:Appl.Phys.2003,36,182-197.
    (c) Schellenberger,E.A.;Reynolds,F.;Weissleder,R.;Josephson.L.Surface- functionalized nanoparticle library yields probes for apoptotie cells.Chem.Bio.Chem.2004,5,275-279.
    (d) Dobson,J.Magnetic nanoparticles for drug delivery.Drug.Dev.Res.2006,67,55-60.
    (e) Wang,X.;Zhang,R.;Wu,C.;Dai,Y.;Song,M.;Gutmann,S.;Gao,F.;Lv,G.;Li,J.;Li,X.;Guan,Z.;Fu,D.;Chen,B.The application of Fe_3O_4 nanoparticles in cancer research:A new strategy to inhibit drug resistance.J.Biomed.Mater.Res.A 2007,80,852-860.
    17.(a) Xie,J.;Xu,C.;Xu,Z.;Hou,Y.;Young,K.L.;Wang,S.X.;Pourmand.N.;Sun,S.Linking hydrophilic macromolecules to monodisperse magnetite(Fe_3O_4)nanoparticles via trichloro-s-triazine.Chem.Mater.2007,19,1201-1202.
    (b) Tao,K.;Dou,H.;Sun,K.Facile interfacial coprecipitation to fabricate hydrophilic amine-capped magnetite nanoparticles.Chem.Mater.2006,18,5273-5278.
    (c)Caruntu,D.;Caruntu,G.;Chen,Y.;O'Connor,C.J.;Goloverda,G.;Kolesnichenko,V.L.Synthesis of variable-sized nanocrystals of Fe_3O_4 with high surface reactivity.Chem.Mater.2004,16,5527-5534.
    (d) Li,Z.;Chen,H.;Bao,H.;Gao,M.One-pot reaction to synthesize water-soluble magnetite nanocrystals.Chem.Mater.2004,16,1391-1393.
    (e) Li,Y.;Afzaal,M.;O'Brien,P.The synthesis of amine-capped magnetic(Fe,Mn,Co,Ni) oxide nanocrystals and their surface modification for aqueous dispersibility.J.Mater.Chem.2006,16,2175-2180.
    (f) Li,Z.;Wei,L.;Gao,M.Y.;Lei,H.One-pot reaction to synthesize biocompatible magnetite nanoparticles.Adv.Mater.2005,17,1001-1005.
    (g) Kim,M.;Chen,Y.;Liu,Y.;Peng,X.Super-stable,high-quality Fe_3O_4 dendron-nanocrystals dispersible in both organic and aqueous solutions.Adv.Mater.2005,17,1429-1432.
    (h) Mikhaylova,M.;Kim,D.K.;Bobrysheva,N.;Osmolowsky,M.;Semenov,V.;Tsakalakos,T.;Muhammed,M.Superpara-magnetism of magnetite nanoparticles:dependence on surface modification.Langmuir 2004,20,2472-2477.
    (i) Harris,L.A.;Goff,J.D.; Carmichael,A.Y.;Riffle,J.S.;Harburn,J.J.;St.Pierre,T.G.;Saunders,M.Magnetite nanoparticle dispersions stabilized with triblock copolymers.Chem.Mater.2003,15,1367-1377.
    (j) Zhao,S.-Y.;Qiao,R.;Zhang,X.L.;Kang,Y.S.Preparation and reversible phase transfer of CoFe_2O_4 nanoparticles.J.Phys.Chem.C 2007,111,7875-7878.
    18.He,T.;Chen,D.;Jiao,X.Controlled synthesis of Co_3O_4 nanoparticles through oriented aggregation.Chem.Mater.2004,16,737-743.
    19.(a) LaMer,V.K.;Dinegar,R.H.Theory,production and mechanism of formation of monodispersed hydrosols.J.Am.Chem.Soc.1950,72,4847-4854.
    (b) Sugimoto,T.Preparation of monodispersed colloidal particles.Adv.Colloid Interf.Sci.1987,28,65-108.
    20.(a) Marqusee,J.A.;Ross,J.Kinetics of phase transitions:Theory of Ostwald ripening.J.Chem.Phys.1983,79,373-378.
    (b) Dadyburjor,D.B.;Ruckenstein,E.Kinetics of Ostwald ripening.J.Cryst.Growth 1977,40,279-290.
    21.Peng,X.;Wickham,J.;Alivisatos,A.P.Kinetics of Ⅱ-Ⅵ and Ⅲ-Ⅴ colloidal semiconductor nanocrystal growth:"Focusing" of size distributions.J.Am.Chem.Soc.1998,120,5343-5344.
    22.Chen,D.;Chen,D.;Jiao,X.;Zhao,Y.Hollow-structured hematite particles derived from layered iron(hydro)oxyhydroxide-surfactant composites.J.Mater.Chem.2003,13,2266-2270.
    23.(a) Yu,H.;Chen,M.;Rice,P.M,;Wang,S.X.;White,R.L.;Sun,S.Dumbbell-like bifunctional Au-Fe_3O_4 nanoparticles.Nano Lett.2005,5,379-382.
    (b)Martinez,B.;Obradors,X.;Balcells,L.;Rouanet,A.;Monty,C.Low temperature surface spin-glass transition in γ-Fe_2O_3 nanoparticles.Phys.Rev.Lett.1998,80,181-184.
    (c) Berkowitz,E.;Lahut,J.A.;Jacobs,I.S.;Levinson,L.M.Spin pinning at ferrite-organic interfaces.Phys.Rev.Lett.1975,34,594-597.
    24.Deng,H.;Li,X.;Peng,Q.;Wang,X.;Chen,J.;Li,Y.Monodisperse magnetic single-crystal ferrite microspheres.Angew.Chem.,Int.Ed.2005,44,2782-2785 and the references therein.
    1.Laurent,S.;Forge,D.;Port,M.;Roch,A.;Robic,C.;Vander Elst,L.;Muller,R.N.Magnetic iron oxide nanoparticles:Synthesis,stabilization,vectorization,physicochemical characterizations,and biological applications.Chem.Rev.2008,108,2064-2110.
    2.Hyeon,T.Chemical synthesis of magnetic nanoparticles.Chem.Commun.2003,927-934.
    3.Jeong,U.;Teng,X.;Wang,Y.;Yang,H.;Xia,Y.Superparamagnetic colloids:Controlled synthesis and niche applications.Adv.Mater.2007,19,33-60.
    4.Bergemann,C.;Muller-Schulte,D.;Oster,J.;Brassard,L.;Lubbe,A.S.Magnetic ion-exchange nano- and microparticles for medical,biochemical and molecular biological applications.J.Magn.Magn.Mater.1999,194,45-52.
    5.Coroiu,I.Relaxivities of different superparamagnetic particles for application in NMR tomography.J.Magn.Magn.Mater.1999,201,449-452.
    6.Freed,J.H.Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids.Ⅱ.Finite jumps and independent T_1 processes.J.Chem.Phys.1978,68,4034-4037.
    7.Hogemann,D.;Ntziachristos,V.;Josephson,L.;Weissleder,R.High throughout magnetic resonance imaging for evaluating targeted nanoparticle probes.Biocon.Chem.2002,13,116-121.
    8.Rheinlander,T.;Kotitz,R.;Weitschies,W.;Semmler,W.Magnetic fractionation of magnetic fluids.J.Magn.Magn.Mater.2000,219,219-228.
    9.Sun,S.H.;Murray,C.B.;Weller,D.;Folks,L.;Moser,A.Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices.Science 2000,287,1989-1992.
    10.Hyeon,T.;Lee,S.S.;Park,J.;Chung,Y.;Bin Na,H.Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process.J.Am.Chem.Soc.2001,123,12798-12801.
    11.Sun,S.H.;Zeng,H.Size-controlled synthesis of magnetite nanoparticies.J.Am.Chem.Soc.2002,124,8204-8205.
    12.Sun,S.H.;Zeng,H.;Robinson,D.B.;Raoux,S.;Rice,P.M.;Wang,S.X.;Li,G.X.Monodisperse MFe_2O_4(M=Fe,Co,Mn) nanoparticles.J.Am.Chem.Soc.2004,126,273-279.
    13.Park,J.;Joo,J.;Kwon,S.G.;Jang,Y.;Hyeon,T.Synthesis of monodisperse spherical nanocrystals.Angew.Chem.,Int.Ed.2007,46,4630-4660.
    14.Xie,J.;Xu,C.J.;Xu,Z.H.;Hou,Y.L.;Young,K.L.L.;Wang,S.X.;Pourmand,N.;Sun,S.H.Linking hydrophilic macromolecules to monodisperse magnetite (Fe_3O_4) nanoparticles via trichloro-s-triazine.Chem.Mater.2006,18,5401-5403.
    15.Zhao,S.Y.;Qiao,R.;Zhang,X.L.;Kang,Y.S.Preparation and reversible phase transfer of CoFe_2O_4 nanoparticles.J.Phys.Chem.C 2007,111,7875-7878.
    16.Tao,K.;Dou,H.J.;Sun,K.Facile interfacial coprecipitation to fabricate hydrophilic amine-capped magnetite nanoparticles.Chem.Mater.2006,18,5273-5278.
    17.Li,Y.;Afzaal,M.;O'Brien,P.The synthesis of amine-capped magnetic(Fe,Mn,Co,Ni) oxide nanocrystals and their surface modification for aqueous dispersibility.J.Mater.Chem.2006,16,2175-2180.
    18.Kim,M.;Chen,Y.F.;Liu,Y.C.;Peng,X.G.Super-stable,high-quality Fe_3O_4dendron-nanocrystals dispersible in both organic and aqueous solutions.Adv.Mater.2005,17,1429-1432.
    19.Li,Z.;Wei,L.;Gao,M.Y.;Lei,H.One-pot reaction to synthesize biocompatible magnetite nanoparticles.Adv.Mater.2005,17,1001-1005.
    20.Mikhaylova,M.;Kim,D.K.;Bobrysheva,N.;Osmolowsky,M.;Semenov,V.;Tsakalakos,T.;Muhammed,M.Superparamagnetism of magnetite nanoparticles:Dependence on surface modification.Langmuir 2004,20,2472-2477.
    21.Caruntu,D.;Remond,Y.;Chou,N.H.;Jun,M.J.;Caruntu,G.;He,J.B.;Goloverda,G.;O'Connor,C.;Kolesnichenko,V.Reactivity of 3d transition metal cations in diethylene glycol solutions.Synthesis of transition metal ferrites with the structure of discrete nanoparticles complexed with long-chain carboxylate anions.Inorg.Chem.2002,41,6137-6146.
    22.Daou,T.J.;Pourroy,G.;Begin-Colin,S.;Greneche,J.M.;Ulhaq-Bouillet,C.;Legate,P.;Bernhardt,P.;Leuvrey,C.;Rogez,G.Hydrothermal synthesis of monodisperse magnetite nanoparticles.Chem.Mater.2006,18,4399-4404.
    23.Caruntu,D.;Caruntu,G.;Chen,Y.;O'Connor,C.J.;Goloverda,G.;Kolesnichenko,V.L.Synthesis of variable-sized nanocrystals of Fe_3O_4 with high surface reactivity.Chem.Mater.2004,16,5527-5534.
    24.Li,Z.;Chen,H.;Bao,H.B.;Gao,M.Y.One-pot reaction to synthesize water-soluble magnetite nanocrystals.Chem.Mater.2004,16,1391-1393.
    25.Cai,W.;Wan,J.Facile synthesis of superparamagnetie magnetite nanoparticles in liquid polyols.J.Colloid Interf.Sci.2007,305,366-370.
    26.Li,Z.;Sun,Q.;Gao,M.Y.Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone:Mechanism leading to Fe_3O_4.Angew.Chem.,Int.Ed.2005,44,123-126.
    27.Wang,L.Y.;Bao,J.;Wang,L.;Zhang,F.;Li,Y.D.One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres.Chem.Eur.J.2006,12,6341-6347.
    28.Zhu,A.P.;Yuan,L.H.;Dai,S.Preparation of well-dispersed superparamagnetic iron oxide nanoparticles in aqueous solution with biocompatible N-succinyl-O-carboxymethylchitosan.J.Phys.Chem.C 2008,112,5432-5438.
    29.Temesghen,W.;Sherwood,P.M.A.Analytical utility of valence band X-ray photoelectron spectroscopy of iron and its oxides,with spectral interpretation by cluster and band structure calculations.Anal.Bioanal.Chem.2002,373,601-608.
    30.Fujii,T.;de Groot,F.M.F.;Sawatzky,G.A.;Voogt,F.C.;Hibma,T.;Okada,K.In situ XPS analysis of various iron oxide films grown by NO_2-assisted molecular-beam epitaxy.Phys.Rev.B 1999,59,3195-3202.
    31.Gao,Y.;Chambers,S.A.Heteroepitaxial growth of α-Fe_2O_3,γ-Fe_2O_3 and Fe_3O_4thin films by oxygen-plasma-assisted molecular beam epitaxy.J.Cryst.Growth 1997,174,446-454.
    32.Zhou,Z.H.;Xue,J.M.;Wang,J.;Chan,H.S.O.;Yu,T.;Shen,Z.X.NiFe_2O_4nanoparticles formed in situ in silica matrix by mechanical activation.J.Appl.Phys.2002,91,6015-6020.
    33.Deng,H.;Li,X.L.;Peng,Q.;Wang,X.;Chen,J.P.;Li,Y.D.Monodisperse magnetic single-crystal ferrite microspheres.Angew.Chem.,Int.Ed.2005,44,2782-2785.
    34.Jia,X.;Chen,D.R.;Jiao,X.L.;He,T.;Wang,H.Y.;Jiang,W.Monodispersed Co,Ni-ferrite nanoparticles with tunable sizes:Controlled synthesis,magnetic properties,and surface modification.J.Phys.Chem.C 2008,112,911-917.
    35.Woo,K.;Hong,J.;Choi,S.;Lee,H.W.;Ahn,J.P.;Kim,C.S.;Lee,S.W.Easy synthesis and magnetic properties of iron oxide nanoparticles.Chem.Mater.2004,16,2814-2818.
    36.Bao,N.Z.;Shen,L.M.;Wang,Y.H.;Padhan,P.;Gupta,A.A facile thermolysis route to monodisperse ferrite nanocrystals.J.Am.Chem.Soc.2007,129,12374-+.
    37.Hui,C.;Shen,C.;Yang,T.;Bao,L.;Tian,J.;Ding,H.;Li,C.;Gao,H.-J.Large-scale Fe_3O_4 nanoparticles soluble in water synthesized by a facile method.J.Phys.Chem.C 2008,112,11336-11339.
    38.Jordan,A.;Scholz,R.;Maier-Hauff,K.;Johannsen,M.;Wust,P.;Nadobny,J.;Schirra,H.;Schmidt,H.;Deger,S.;Loening,S.;Lanksch,W.;Felix,R.Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia.J.Magn.Magn.Mater.2001,225,118-126.
    39.Morales,M.P.;Bomati-Miguel,O.;de Alejo,R.P.;Ruiz-Cabello,J.;Veintemillas-Verdaguer,S.;O'Grady,K.Contrast agents for MRI based on iron oxide nanoparticles prepared by laser pyrolysis.J.Magn.Magn.Mater.2003,266,102-109.
    40.Nosko,M.Comparative toxicity of triacetin and diethylene glycol diacetate.Probl Khig.1977,3,25-34.
    41.Kim,D.-H.;Lee,S.-H.;Kim,K.-N.;Kim,K.-M.;Shim,I.-B.;Lee,Y.-K.Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application.J Magn.Magn.Mater.2005,293,287-292.
    42.Wan,S.R.;Huang,J.S.;Guo,M.;Zhang,H.K.;Cao,Y.J.;Yan,H.S.;Liu,K.L.Biocompatible superparamagnetic iron oxide nanoparticle dispersions stabilized with poly(ethylene glycol)oligo(aspartic acid) hybrids.J.Biomed.Mater.Res.Part A 2007,80A,946-954.
    43.Wuang,S.C.;Neoh,K.G.;Kang,E.T.;Pack,D.W.;Leckband,D.E.Synthesis and functionalization of polypyrrole-Fe_3O_4 nanoparticles for applications in biomedicine.J.Mater.Chem.2007,17,3354-3362.
    44.Lattuada,M.;Hatton,T.A.Functionalization of monodisperse magnetic nanoparticles.Langmuir 2007,23,2158-2168.
    45.Grancharov,S.G.;Zeng,H.;Sun,S.H.;Wang,S.X.;O'Brien,S.;Murray,C.B.;Kirtley,J.R.;Held,G.A.Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor.J.Phys.Chem.B 2005,109,13030-13035.
    46.Gibson,J.D.;Khanal,B.P.;Zubarev,E.R.Paclitaxel-functionalized gold nanoparticles,J.Am.Chem.Soc.2007,129,11653-11661.
    1.Kodama,R.H.Magnetic nanoparticles.J.Magn.Magn.Mater.1999,200,359-372.
    2.Moser,A.;Takano,K.;Margulies,D.T.;Albrecht,M.;Sonobe,Y.;Ikeda,Y.;Sun,S.H.;Fullerton,E.E.Magnetic recording:advancing into the future.J.Phys.D Appl.Phys.2002,35,157-167.
    3.Singh,G.P.;Baumgart,P.;Baugh,E.;Poon,C.;Strand,T.Review of laser-based applications advancing magnetic recording hard disk drive technology.Proc.SPIE 2005,5713,417-431.
    4.Christodoulides,J.A.;Huang,Y.;Zhang,Y.;Hadjipanayis,G.C.;Panagiotopoulos,I.;Niarchos,D.CoPt and FePt thin films for high density recording media.J.Appl.Phys.2000,87,6938-6940.
    5.Zahn,M.Magnetic fluid and nanoparticle applications to nanotechnology.J.Nanopar.Res.2001,3,73-78.
    6.Jordan,A.;Scholz,R.;Maier-Hauff,K.;Johannsen,M.;Wust,P.;Nadobny,J.;Schirra,H.;Schmidt,H.;Deger,S.;Loening,S.;Lanksch,W.;Felix,R.Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia.J.Magn.Magn.Mater.2001,225,118-126.
    7.Tartaj,P.;Morales,M.D.;Veintemillas-Verdaguer,S.;Gonzalez-Carreno,T.;Serna,C.J.The preparation of magnetic nanoparticles for applications in biomedicine.J.Phys.D Appl.Phys.2003,36,182-197.
    8.Gupta,A.K.;Gupta,M.Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications.Biomaterials 2005,26,3995-4021.
    9.Rife,J.C.;Miller,M.M.;Sheehan,P.E.;Tamanaha,C.R.;Tondra,M.;Whitman,L.J.Design and performance of GMR sensors for the detection of magnetic microbeads in biosensors.Sen.Actu.a-Phys.2003,107,209-218.
    10.Abu-Reziq,R.;Alper,H.;Wang,D.S.;Post,M.L.Metal supported on dendronized magnetic nanoparticles:Highly selective hydroformylation catalysts.J.Am.Chem.Soc.2006,128,5279-5282.
    11.Zhang,Y.;Kohler,N.;Zhang,M.Q.Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake.Biomaterials 2002,23,1553-1561.
    12.Bruce,I.J.;Sen,T.Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations.Langmuir 2005,21,7029-7035.
    13.Mikhaylova,M.;Kim,D.K.;Bobrysheva,N.;Osmolowsky,M.;Semenov,V.;Tsakalakos,T.;Muhammed,M.Superparamagnetism of magnetite nanoparticles:Dependence on surface modification.Langmuir 2004,20,2472-2477.
    14.Lee,S.Y.;Harris,M.T.Surface modification of magnetic nanoparticles capped by oleic acids:Characterization and colloidal stability in polar solvents.J.Colloid Interf.Sci.2006,293,401-408.
    15.Shen,X.C.;Fang,X.Z.;Zhou,Y.H.;Liang,H.Synthesis and characterization of 3-aminopropyltriethoxysilane-modified superparamagnetic magnetite nanoparticles.Chem.Lett.2004,33,1468-1469.
    16.Berry,C.C.;Curtis,A.S.G.Functionalisation of magnetic nanoparticles for applications in biomedicine.J.Phys.D-Appl.Phys.2003,36,R198-R206.
    17.Gupta,A.K.;Wells,S.Surface-modified superparamagnetic nanoparticles for drug delivery:Preparation,characterization,and cytotoxicity studies.IEEE Trans.Nanobiosci.2004,3,66-73.
    18.Gruttuer,C.;Teller,J.New types of silica-fortified magnetic nanoparticles as tools for molecular biology applications.J.Magn.Magn.Mater.1999,194,8-15.
    19.Kim,D.K.;Zhang,Y.;Voit,W.;Rao,K.V.;Muhammed,M.Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles.J.Magn.Magn.Mater.2001,225,30-36.
    20.Lai,J.I.;Shafi,K.V.P.M.;Ulman,A.;Loos,K.;Lee,Y.J.;Vogt,T.;Lee,W.L.;Ong,N.P.Controlling the size of magnetic nanoparticles using pluronic block copolymer surfactants.J.Phys.Chem.B 2005,109,15-18.
    21.Kim,D.K.;Zhang,Y.;Kehr,J.;Klason,T.;Bjelke,B.;Muhammed,M.Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain,J.Magn.Magn.Mater 2001,225,256-261.
    22.Zeng,H.;Rice,P.M.;Wang,S.X.;Sun,S.H.Shape-controlled synthesis and shape-induced texture of MnFe_2O_4 nanoparticles.J.Am.Chem.Soc.2004,126,11458-11459.
    23.Ye,X.G.;Wai,C.M.Making nanomaterials in supercritical fluids:A review.J.Chem.Edu.2003,80,198-204.
    24.Reverchon,E.;Adami,R.Nanomaterials and supercritical fluids.J.Supercr.Fluids 2006,3 7,1-22.
    25.Byrappa,K.;Ohara,S.;Adschiri,T.Nanoparticles synthesis using supercritical fluid technology-towards biomedical applications.Adv.Drug Del.Rev.2008,60,299-327.
    26.Aymonier,C.;Loppinet-Serani,A.;Reveron,H.;Garrabos,Y.;Can.sell,E Review of supercdtical fluids in inorganic materials science.J.Supercr Fluids 2006,38,242-251.
    27.Xu,C.B.;Teja,A.S.Continuous hydrothermal synthesis of iron oxide and PVAprotected iron oxide nanoparticles.J.Supercr Fluids 2008,44,85-91.
    28.Kim,J.;Park,Y.S.;Veriansyah,B.;Kim,J.D.;Lee,Y.W.Continuous synthesis of surface-modified metal oxide nanoparticles using supercritical methanol for highly stabilized nanofluids.Chem.Mater 2008,20,6301-6303.
    29.Kimura,Y.;Abe,D.;Ohmori,T.;Mizutani,M.;Harada,M.Synthesis of platinum nano-particles in high-temperatures and high-pressures fluids.Colloids Surf.A-Physicochem.Engineer Asp.2003,231,131-141.
    30.Cabanas,A.;Poliakoff,M.The continuous hydrothermal synthesis of nanoparticulate ferrites in near critical and supercritical water,J.Mater Chem.2001,11,1408-1416.
    31.Hao,Y.L.;Teja,A.S.Continuous hydrothermal crystallization of alpha-Fe_2O_3and Co_3O_4 nanopartieles,J.Mater Res.2003,18,415-422.
    32.Cote,L.J.;Teja,A.S.;Wilkinson,A.P.;Zhang,Z.J.Continuous hydrothermal synthesis and crystallization of magnetic oxide nanoparticles.J.Mater Res.2002,17,2410-2416.
    33.董文,阚世海,FeCl_3瞬时水解形成的胶体溶液及胶体粒子的表征,水资源保护,1997,1,2-34.
    34.Jia,X.;Chen,D.R.;Jiao,X.L.;He,T.;Wang,H.Y.;Jiang,W.Monodispersed Co,Ni-ferrite nanoparticles with tunable sizes:Controlled synthesis,magnetic properties,and surface modification.J.Phys.Chem.C 2008,112,911-917.
    35.Rechenberg,H.R.;Sousa,E.C.;Depeyrot,J.;Sousa,M.H.;Aquino,R.;Tourinho,F.A.;Perzynski,R.Surface spin disorder in nickel fen-ite nanomagnets studied by in-field Mossbauer spectroscopy.Hyperfine Interact.2008,184,9-14.
    36.Zhang,Y.D.;Ge,S.H.;Zhang,H.;Hui,S.;Budnick,J.I.;Hines,W.A.;Yacaman,M.J.;Miki,M.Effect of spin disorder on magnetic properties of nanostructured Ni-ferrite.J.Appl.Phys.2004,95,7130-7132.
    1.Pang,L.L.;Li,J.S.;Jiang,J.H.;Le,Y.;Shen,G.L.;Yu,R.Q.A novel detection method for DNA point mutation using QCM based on Fe_3O_4/Au core/shell nanoparticle and DNA ligase reaction.Sens.Actuators,B 2007,127,311-316.
    2.Xu,C.;Xie,J.;Ho,D.;Wang,C.;Kohler,N.;Walsh,E.G.;Morgan,J.R.;Chin,Y.E.;Sun,S.Au-Fe_3O_4 dumbbell nanoparticles as dual-functional probes.Angew.Chem.,Int.Ed.2008,47,173-176.
    3.Yu,H.;Chen,M.;Rice,P.M.;Wang,S.X.;White,R.L.;Sun,S.H.Dumbbell-like bifunctional Au-Fe_3O_4 nanoparticles.Nano Lett.2005,5,379-382.
    4.Park,H.Y.;Schadt,M.J.;Wang,L.;Lim,I.I.S.;Njoki,P.N.;Kim,S.H.;Jang,M.Y.;Luo,J.;Zhong,C.J.Fabrication of magnetic core@shell Fe oxide@Au nanopartieles for interfaeial bioactivity and bio-separation.Langmuir 2007,23,9050-9056.
    5.Byrappa,K.;Ohara,S.;Adschiri,T.Nanoparticles synthesis using supercritical fluid technology-towards biomedical applications.Adv.Drug Del.Rev.2008,60,299-327.
    6.杨玉东,梁勇,线全刚,生物医用铁基磁性纳米粒子的制备、性能及应用,材料科学与工程学报.2004,22,617。
    7.Zhao,W.R.;Gu,J.L.;Zhang,L.X.;Chen,H.R.;Shi,J.L.Fabrication of uniform magnetic nanoeomposite spheres with a magnetic core/mesoporous silica shell structure.J.Am.Chem.Soc.2005,127,8916-8917.
    8.Hyeon,T.;Lee,S.S.;Park,J.;Chung,Y.;Bin Na,H.Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process.J.Am.Chem.Soc.2001,123,12798-12801.
    9.Park,J.;An,K.J.;Hwang,Y.S.;Park,J.G.;Nob,H.J.;Kim,J.Y.;Park,J.H.;Hwang,N.M.;Hyeon,T.Ultra-large-scale syntheses of monodisperse nanoerystals.Nat.Mater.2004,3,891-895.
    10.Lu,J.;Jiao,X.;Chert,D.;Li,W.Solvothermal synthesis and characterization of Fe_3O_4 and γ-Fe_2O_3 nanoplates.J.Phys.Chem.C 2009,113,4012-4017.
    11.Jia,X.;Chert,D.R.;Jiao,X.L.;Zhai,S.M.Environmentally-friendly preparation of water-dispersible magnetite nanoparticles.Chem.Commun.2009,968-970.
    12.Zhang,W.M.;Wu,X.L.;Hu,J.S.;Guo,Y.G.;Wan,L.J.Carbon coated Fe_3O_4nanospindles as a superior anode material for lithium-ion batteries.Adv.Funct.Mater.2008,18,3941-3946.
    13.郭培民,赵沛,张殿伟,低温下碳还原氧化铁的催化机理研究,钢铁钒钛,2006,27,1-5.
    14.Song,O.;Zhang,Z.J.Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals.J.Am.Chem.Soc.2004,126,6164-6168.
    15.Park,J.;Lee,E.;Hwang,N.M.;Kang,M.S.;Kim,S.C.;Hwang,Y.;Park,J.G.;Noh,H.J.;Kini,J.Y.;Park,J.H.;Hyeon,T.One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles.Angew.Chem.,Int.Ed.2005,44,2872-2877.
    16.Woo,K.;Hong,J.;Choi,S.;Lee,H.W.;Ahn,J.P.;Kim,C.S.;Lee,S.W.Easy synthesis and magnetic properties of iron oxide nanoparticles.Chem.Mater 2004,16,2814-2818.
    17.Liang,X.;Wang,X.;Zhuang,J.;Chen,Y.T.;Wang,D.S.;Li,Y.D.Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals.Adv.Funct.Mater 2006,16,1805-1813.
    18.Lee,Y.;Lee,J.;Bae,C.J.;Park,J.G.;Noh,H.J.;Park,J.H.;Hyeon,T.Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions.Adv.Funct.Mater 2005,15,503-509.
    19.Liu,C.;Zhang,Z.J.Size-dependent superparamagnetic properties of Mn spinel ferrite nanoparticles synthesized from reverse micelles.Chem.Mater 2001,13,2092-2096.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700