用户名: 密码: 验证码:
HSP70对Wnt5a表达、释放及其促炎功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最近研究发现,Wnt5a是一个高度特异的自分泌及旁分泌的巨噬细胞来源的效应分子,参与了炎症反应过程。Wnt5a释放到细胞外,成为一种重要的细胞因子,介导局部或全身炎症反应,成为目前感染及危重病防治研究的又一个重要分子靶点。热休克蛋白是热休克反应诱导产生的一类蛋白质,其中的诱导型热休克蛋白70(HSP70)是最重要的成员,也是诱导产生最多的成员。本研究先观察Wnt5a在烧伤感染病人血清中含量的改变,并探讨诱导型HSP70对Wnt5a表达、释放及促炎功能的影响。
     首先,本研究观察了Wnt5a在烧伤病人血清中的改变。结果如下:(1)烧伤病人血清中Wnt5a的含量显著高于正常对照组。动态观察发现,病情好转血清中Wnt5a含量降低,而病情恶化血清中Wnt5a持续升高;(2)烧伤病人血清中HSP70含量高于正常对照组,但病人的严重程度与血清中HSP70含量的变化关系不大。以上结果表明,Wnt5a,参与了烧伤病人炎症的发病过程,且检测Wnt5a可作为炎症严重程度的诊断指标。
     炎症因子主要是由微生物或微生物组份刺激单核巨噬细胞产生的,其中LPS诱导巨噬细胞产生与释放炎症因子是一个广泛采用的模型。本研究随后探讨了内毒素(LPS)及促炎因子TNF-α对Wnt5a表达释放的影响。研究发现,LPS能诱导巨噬细胞RAW264.7中Wnt5a表达上调及向胞外释放,同时能诱导促炎因子TNF-α的释放;用Wnt5a刺激巨噬细胞,能诱导TNF-α释放的显著提高;用TNF-α刺激巨噬细胞同样能诱导Wnt5a的表达释放上调。这与文献报道一致,促炎因子能促进Wnt5a的表达释放,Wnt5a又能促进其他炎症因子的表达释放。因此,本研究进一步证明Wnt5a是一个新的炎症因子,可能参与了烧伤病人炎症的发生发展过程。
     文献报道,抑炎因子白细胞介素(IL)-10与活化蛋白C(APC)能抑制Wnt5a的表达而抑制炎症反应,因此认为Wnt5a可以作为炎症治疗的新靶点。热休克反应(HSR)和HSP70在炎症中的作用也有一些研究。有人认为HSP70能抑制某些炎症因子的释放和表达,也有人认为,HSP70可能具有促炎功能。作为一个新发现的炎症介质,Wnt5a在炎症中功能还知道的很少。HSR和HSP70对Wnt5a的影响也都不清楚。
     热休克蛋白(heat shock proteins,HSPs)是一高度保守的应激蛋白家族,广泛存在于原核细胞和真核细胞中。HSP70是热休克蛋白家族中最重要的成员,其基本功能是参与新生蛋白质的折叠、解聚、移位等,故有“分子伴侣”(molecular chaperone)之称。长期以来,热休克蛋白被认为是细胞内的蛋白质,只能在细胞内发挥功能。为了观察细胞内的HSP70对Wnt5a的表达与释放的影响,在证明Wnt5a能为LPS诱导表达与释放,且Wnt5a又能刺激巨噬细胞释放其它炎症因子的基础上,本研究首次观察了HSP70对Wnt5a表达与释放及其促炎功能的影响。本研究首先构建了HSP70的表达载体。将HSP70的真核表达质粒导入巨噬细胞得到了高效表达。利用热休克预处理与转基因技术,分别探讨高表达HSP70的细胞受LPS或其他炎症因子刺激时释放Wnt5a的改变。结果发现,与未处理的细胞相比,温和的热休克(42℃)预处理后的细胞,在受到LPS与TNF-α刺激时候,(1)细胞内表达的Wnt5a降低;(2)向细胞外释放的Wnt5a减少。受LPS刺激后,转HSP70基因的细胞与转空载体的细胞相比,(1)细胞内表达的Wnt5a下降;(2)细胞向胞外分泌的Wnt5a减少。当用TNF-α代替LPS刺激细胞重复上述实验,得到类似结果。
     本研究同样观察了细胞内HSP70的上升对Wnt5a促炎功能的影响,发现不管是温和热休克(42℃)还是转HSP70基因,均能显著抑制Wnt5a诱导的TNF-α释放。上述结果表明,巨噬细胞内HSP70的表达上调既能显著抑制炎性刺激导致的Wnt5a的表达与释放,又能显著抑制Wnt5a的促炎功能。
     近年研究发现,HSP70能被释放到细胞外环境中,称为细胞外HSP70(extracellular HSP70),而且细胞外HSP70可能作为免疫系统的“危险信号”,调节免疫细胞的功能,参与免疫性疾病的病理过程。近年来研究发现,脓毒症病人血中HSP70水平明显升高。为了进一步探讨细胞外(包括血清中)HSP70对Wnt5a的影响,本研究采用重组人HSP70刺激巨噬细胞,然后观察其对Wnt5a释放的影响。结果显示,HSP70本身对Wnt5a的释放没有显著影响,但能显著抑制LPS诱导的巨噬细胞Wnt5a的释放。本研究同时检测了巨噬细胞IL-10的释放,表明细胞外HSP70能显著促进IL-10向细胞外释放。随后本研究观察了TLR2与TLR4在巨噬细胞抗炎因子IL-10分泌中的作用,发现IL-10的分泌依赖于TLR4。
     综上所述,烧伤患者血清中Wnt5a及HSP70水平均明显升高,并且血清中Wnt5a含量的高低与烧伤脓毒症的严重程度有关;LPS与TNF-α能促进巨噬细胞Wnt5a的表达上调与分泌上升,Wnt5a反过来又能刺激巨噬细胞释放TNF-α;热休克及转基因均能显著上调巨噬细胞内HSP70的表达,细胞内HSP70表达的上升既能抑制LPS及TNF-α诱导的Wnt5a的表达与释放,又能抑制Wnt5a诱导的TNF-α的释放;采用重组纯化的HSP70处理巨噬细胞同样能抑制LPS诱导的Wnt5a的释放,同时通过TLR4促进抑炎细胞因子IL-10的释放。因此,HSP70可能成为防治脓毒症的潜在药物。
Recent study found that Wnt5a is a highly specific autocrine and paracrine macrophaged-derived effector molecule which triggers inflammation. Wnt5a secreted outside the cells becomes an important cytokine that mediates partial or full inflammation, so it has been a novel molecular target for the prevention and treatment of inflammation-related diseases. Heat shock proteins(HSPs) are a kind of proteins that are induced by heat shock response(HSR), of which heat shock protein 70 is the most important member and the most induced one. In this study the change of Wnt5a in level in burn patients are first investigated, and then the effects of HSP70 on expression and release and proinflammatory function of Wnt5a are also studied for the first time.
     Firstly, the changes of Wnt5a levels in sera of burn patients with sepsis were investigated. The results were: (1) the levels of serum Wnt5a of burn patients with sepsis are found to be greater than those of controls; dynamic observation showed that the serum Wnt5a concentrations were associated with the severity of burn patients, and Wnt5a levels going up or down with the severity of the burn patients. (2) the similar results were obtained when serum HSP70 levels were investigated. These results suggest that Wnt5a may take part in the process of sepsis in burn patients with sepsis and may be as a diagnostic parameter to severity of sepsis.
     Inflammatory cytokines are produced by monocytes/macrophages stimulated with mycobacteria or conserved bacterial structures. The use of LPS to induce macrophages to produce inflammatory cytokines is a widely applied model. In this study the investigation of the effects of LPS and TNF-αon the expression and release of Wnt5a was then performed. It was found that LPS could induce the expression and release of wnt5a from macrophage Raw264.7, and at the same time the release of the proinflammatory cytokine TNF-α; the release of TNF-αfrom raw264.7 was also induced by wnt5a, and vise versa. These results are consistent with the reports from other literatures. Therefore we demonstrated that wnt5a is a new inflammatory mediator, functioning in the processes of sepsis of burn patients.
     Previous study reported that the anti-inflammatory cytokine interleukin (IL)-10 and activated protein C (APC) can inhibit the expression and release of wnt5a, suggesting that wnt5a may be a new target molecule for treatment and prevention of sepsis. HSR and HSP70 were studied in the processes of sepsis. Some researchers think they inhibit the expression and release of inflammatory cytokines while others think they promote their release. As a new inflammatory mediator little is known about wnt5a in the processes of sepsis. The effects of HSR and HSP70 on wnt5a are unknown.
     HSPs are a superfamily of highly conserved proteins distributing throughout prokaryotic cells and eukaryotic cells, of which HSP70 is the most important member. Their basic functions are to take part in folding, disaggregation and translocalization of neonate proteins, so they are called molecular chaperone. HSPs are thought to be intracellular proteins that function only within cells during the long-term period. In order to investigate the effects of intracellular HSP70 on the expression and release of wnt5a, and based upon the facts that wnt5a can be expressed and released from macrophages by induction of LPS and TNF-α, and that wnt5a can induce the release of other cytokines such as TNF-α, this study for the first time investigated the effects of intracellular HSP70 on the expression, release and pro-inflammation of wnt5a. We first constructed HSP70 expression vector, then the expression vector was transduced into macrophage Raw264.7 for overexpression. Using HS pretreatment and gene transffection it was found: (1) overexpression of hsp70 can inhibit the expression and release of wnt5a induced by LPS; (2) when the experiment was done using TNF-αin stead of LPS the similar results were obtained; (3) the overexpression of hsp70 can inhibit pro-inflammatory function of wnt5a by inhibiting the release of other pro-inflammatory cytokines including TNF-αby induction of wnt5a. All these results demonstrated that intracellular hsp70 can significantly inhibit the expression and release of wnt5a induced by LPS and TNF-α, and also inhibit the pro-inflammatory function of wnt5a.
     Recent study shows that hsp70 can be released to external milieu that was called extracellular hsp70,and extracellular hsp70 may regulate the function of immune cells as a "dangerous signal" in immune systems, participating in the processes of inflammatory diseases. In recent years it was found that the levels of serum hsp70 in patients with sepsis or septic shock were higher than those in normal controls. In this study recombinant human hsp70 was used to stimulate macrophage raw264.7 so as to investigate the effects of extracellular hsp70 on wnt5a.The results showed that the recombinant purified hsp70 itself did not affect the release of wnt5a, but it can markedly inhibit the release of wnt5a induced by LPS. The anti-inflammatory cytokine IL-10 was detected at the same time, and it was found that the pretreatment of the recombinant hsp70 can promote the release of IL-10 from macrophage raw264.7. The receptors TLR2 and TLR4 were studied with the corresponding antibodies, and it was found that the recombinant hsp70 promoted the release of IL-10 in a TLR4 dependent manner.
     Taken together, the levels of serum wnt5a and hsp70 in burn patients significantly increased, and the concentrations of serum wnt5a may be related to the severity of sepsis of the burn patients. LPS and TNF-αincreased the production of wnt5a, and wnt5a in return stimulated the release of the proinflammatory cytokine TNF-α. HS and gene transfection can lead to the increasing expression of HSP70 in macrophages, and the intracellular hsp70 can inhibit both the expression and release of wnt5a induced by LPS and TNF-α, and the release of TNF-αinduced by wnt5a. Recombinant hsp70 can also inhibit the release of Wnt5a induced by LPS possibly by promoting the release of anti-inflammatory cytokine IL-10 in a TLR4 dependent manner.
引文
[1]N.C.Riedemann, R.F. Guo, P.A. Ward. The enigma of sepsis. J Clin Invest. 2003, 112(4): 460-467
    [2]D.C. Angus, W.T. Linde-Zwirble, J. Lidicker, G. Clermont, J. Carcillo, M. R. Pinsky. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001, 29(7):1303-10
    [3]Wheeler AP, Bernard GR. Treating patients with severe sepsis. N Engl J Med. 1999, 340(3): 207-14
    [4]Cavaillon JM, Annane D. Compartmentalization of the inflammatory response in sepsis and SIRS. J Endotoxin Res. 2006, 12(3): 151-70
    [5]K.J. Tracey. The inflammatory reflex. Nature, 2002,420(6917): 853-859
    [6]P. Hunter. Sepsis under siege: a new understanding of sepsis might lead to the development of therapies to treat septic shock. EMBO Rep. 2006, 7(7):667-9
    [7]S.J. George. Wnt pathway: a new role in regulation of inflammation. Arterioscler Thromb Vasc Biol. 2008, 28(3):400-2
    [8]Chaussabel D, Semnani RT, McDowell MA, Sacks D, Sher A, Nutman TB. Unique gene expression profiles of human macrophages and dendritic cells to phylogen- etically distinct parasites. Blood. 2003, 102(2):672-81
    [9]Nau GJ, Richmond JF, Schlesinger A, Jennings EG, Lander ES, Young RA. Human macrophage activation programs induced by bacterial pathogens. Proc Natl Acad Sci U S A. 2002, 99(3): 1503-8.
    [10]Lehtonen A, Ahlfors H, Veckman V, Miettinen M, Lahesmaa R, Julkunen I. Gene expression profiling during differentiation of human monocytes to macrophages or dendritic cells. J Leukoc Biol. 2007, 82(3):710-20
    [11]Sen M, Lauterbach K, E1-Gabalawy H, Firestein GS, Corr M, Carson DA. Expression and function of wingless and frizzled homologs in rheumatoid arthritis. Proc Nati Acad Sci U S A. 2000, 97(6):2791-6
    [12] Smith K, Bui TD, Poulsom R, Kaklamanis L, Williams G, Harris AL. Up-regulation of macrophage wnt gene expression in adenoma-carcinoma progression of human colorectal cancer. Br J Cancer. 1999, 81(3):496-502
    [13]Gordon MD, Dionne MS, Schneider DS, Nusse R. WntD is a feedback inhibitor of Dorsal/NF-kappaB in Drosophila development and immunity. Nature. 2005, 437(7059):746-9
    [14]Blumenthal A, Ehlers S, Lauber J, Buer J, Lange C, Goldmann T, Heine H, Brandt E, Reiling N. The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. Blood. 2006, 108(3):965-73.
    [15]Pereira C, Schaer DJ, Bachli EB, Kurrer MO, Schoedon G. Wnt5A/CaMKII signaling contributes to the inflammatory response of macrophages and is a target for the antiinflammatory action of activated protein C and interleukin-10. Arterioscler Thromb Vasc Biol. 2008, 28(3):504-10
    [16]Schulte G, Bryja V. The Frizzled family of unconventional G-protein-coupled receptors. Trends Pharmacol Sci. 2007, 28(10):518-25
    [17]Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem. 2006, 281(32):22429-33.
    [18]Viola JP, Carvalho LD, Fonseca BP, Teixeira LK. NFAT transcription factors: from cell cycle to tumor development. Braz J Med Biol Res. 2005, 38(3):335-44.
    [19]Mikels AJ, Nusse R. Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol. 2006, 4(4):e115.
    [20]Thiele A, Wasner M, M(?)ller C, Engeland K, Hauschildt S. Regulation and possible function of beta-catenin in human monocytes. J Immunol, 2001, 167(12):6786-93.
    [21]Lobov IB, Rao S, Carroll TJ, Vallance JE, Ito M, Ondr JK, Kurup S, Glass DA, Patel MS, Shu W, Morrisey EE, McMahon AP, Karsenty G, Lang RA. WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature. 2005, 437(7057):417-21
    [22]Masckauchan TN, Agalliu D, Vorontchikhina M, Ahn A, Parmalee NL, Li CM, Khoo A, Tycko B, Brown AM, Kitajewski J. Wnt5a signaling induces proliferation and survival of endothelial cells in vitro and expression of MMP-1 and Tie-2. Mol Biol Cell. 2006, 17(12):5163-72
    [23]Quasnichka H, Slater SC, Beeching CA, Boehm M, Sala-Newby GB, George SJ. Regulation of smooth muscle cell proliferation by beta-catenin/T-cell factor signaling involves modulation of cyclin D1 and p21 expression. Circ Res. 2006, 99(12):1329-37.
    [24]Wang X, Xiao Y, Mou Y, Zhao Y, Blankesteijn M, Hall JL. A role for the P-catenin/T-cell factor signaling cascade in vascular remodeling. Circ Res. 2002, 90:340-347.
    [25]Wang X, Adhikari N, Li Q, Hall JL. The LDL receptor related protein LRP6 regulates proliferation and survival through the Wnt cascade in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol. 2004, 287:H2376-H2383
    [26]Cheng CW, Yeh JC, Fan TP, Smith SK, Charnock-Jones DS. Wnt5a-mediated non-canonical Wnt signalling regulates human endothelial cell proliferation and migration. Biochem Biophys Res Commun. 2008, 365(2):285-90
    [27]Pukrop T, Klemm F, Hagemann T, Gradl D, Schulz M, Siemes S, Tr(?)mper L, Binder C. Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proc Natl Acad Sci U S A. 2006, 103(14):5454-9.
    [28]L. E. Hightower. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell. 1991, 66(2):191-7
    [29]Ferrari S, Finelli P, Rocchi M, Bianchi ME. The active gene that encodes human high mobility group 1 protein (HMG1) contains introns and maps to chromosome 13. Genomics. 1996, 35(2):367-71.
    [30]F.U. Hartl. Molecular chaperones in cellular protein folding. Nature, 1996, 381 (6583): 571-579
    [31]Gyrd-Hansen M, Nylandsted J, Jaattela M. Heat shock protein 70 promotes cancer cell viability by safeguarding lysosomal integrity. Cell Cycle. 2004, 3(12):1484-5.
    [32]Nylandsted J, Gyrd-Hansen M, Danielewicz A, Fehrenbacher N, Lademann U, H(?)yer-Hansen M, Weber E, Multhoff G, Rohde M, Jaattela M. Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med. 2004, 200(4):425-35.
    [33]Brundel BJ, Shiroshita-Takeshita A, Qi X, Yeh YH, Chartier D, van Gelder IC, Henning RH, Kampinga HH, Nattel S. Induction of heat shock response protects the heart against atrial fibrillation. Circ Res. 2006, 99(12): 1394-1402
    [34]Hotchkiss R, Nunnally I. Lindquist S, Taulien J. Perdrizet G, Karl I. Hyperthermia protects mice against the lethal effects of endotoxin. Am J Physiol. 1993, 265(6 Pt 2):R1447-57
    [35]Klosterhalfen B, Hauptmann S, Tietze L, Tons C, Winkeltau G, Kupper W, Kirkpatrick CJ. The influence of heat shock protein 70 induction on hemodynamic variables in a porcine model of recurrent endotoxemia. Shock. 1997, 7(5):358-63
    [36]H.W.Chen, H.K.Kuo, T.S.Lu, S.J. Wang, R.C. Yang. Cytochrome c oxidase as the target of the heat shock protective effect in septic liver. Int J Exp Pathol. 2004, 85(5): 249-256
    [37]H.P.Dong, H.W. Chen, C.Hsu, H.Y. Chiu, L.C. Lin, R.C. Yang. Previous heat shock treatment attenuates lipopolysaccharide-induced hyporesponsiveness of platelets in rats. Shock, 2005, 24(3):239-244
    [38]Y. Wang, C.Li, X.Wang, J. Zhang, Z. Chang. Heat shock response inhibits IL-18 expression through the JNK pathway in murine peritoneal macrophages. Biochem Biophys Res Commun, 2002, 296(3): 742-748
    [39]X.Wang, Y. Zou, Y.Wang, C. Li, Z. Chang. Differential regulation of interleukin-12 and interleukin-10 by heat shock response in murine peritoneal macrophages. Biochem Biophys Res Commun, 2001, 287(5): 1041-1044
    [40]Y.Shi, Z.Tu, D.Tang, H. Zhang, M. Liu, K. Wang, S.K. Calderwood. The inhibition of LPS-induced production of inflammatory cytokines by HSP70 involves inactivation of the NF-kB pathway but not the MAPK pathways. Shock. 2006, 26(3): 277-284
    [41]YM.Snyder, L.Guthrie, GF.Evans, S.H. Zuckerman. Transcriptional inhibition of endotoxin-induced monokine synthesis following heat shock in murine peritoneal macrophages. J Leukoc Biol, 1992, 51(2): 181-187
    [42]W.Van Molle, B. Wielockx, T.Mahieu, T. Taniguchi, K. Sekikawa, C. Libert. HSP70 protects against TNF-induced lethal inflammatory shock. Immunity, 2002, 16(5): 685-695
    [43]Kuboki S, Schuster R, Blanchard J, Pritts TA, Wong HR, Lentsch AB. Role of heat shock protein 70 in hepatic ischemia-reperfusion injury in mice. Am J Physiol Gastrointest Liver Physiol. 2007, 292(4): G1141-1149
    [44]Crouser E, Exline M, Knoell D, Wewers MD. Sepsis: links between pathogen sensing and organ damage. Curr Pharm Des. 2008, 14(19): 1840-1852
    [45]A. Ayala, I.H. Chaudry. Immune dysfunction in murine polymicrobial sepsis: mediators, macrophages, lymphocytes and apoptosis. Shock, 1996, 6Supp 11: S27-38
    [46]N.C.Riedmann, R.F. Guo, P.A. Ward. Novel strategies for the treatment of sepsis. Nat Med, 2003, 9(5): 517-524
    [47]J. Sunden-Gullberg, A.Norrby-Teglund, A. Rouhiainen, H. Rauvala, G. Herman, K.J. Tracey, M.L. Lee, J. Andersson, L. Tokics, C.J. Treutiger. Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Crit Care Med, 2005, 33(3): 564-573
    [48]H.Schonbohn, M.Schuler, K. Kolbe, Peschel C, C.Huber, W. Bemb, W.E.Aulitzky. Plasma levels of IL-1, TNF alpha, IL-6, IL-8, G-CSF, and IL1-RA during febrile neutropenia: results of a prospective study in patients undergoing chemotherapy for acute myelogenous leukemia. Ann Hematol. 1995,71 (4): 161-168.
    [49]Matsuno H, Yudoh K, Katayama R, Nakazawa F, Uzuki M, Sawai T, Yonezawa T, Saeki Y, Panayi GS, Pitzalis C, Kimura T. The role of TNF-alpha in the pathogenesis of inflammation and joint destruction in rheumatoid arthritis (RA): a study using a human RA/SCID mouse chimera. Rheumatology (Oxford). 2002, 41(3):329-337.
    [50]Nakahara H, Nishimoto N. Anti-interleukin-6 receptor antibody therapy in rheumatic diseases. Endocr Metab Immune Disord Drug Targets. 2006, 6(4): 373 -381.
    [51]Wendling D, Racadot E, Wijdenes J. Treatment of severe rheumatoid arthritis by anti-interleukin 6 monoclonal antibody. J Rheumatol. 1993,20(2):259-262.
    [52]Cho ML, Kim WU, Min SY, Min DJ, Min JK, Lee SH, Park SH, Cho CS, Kim HY. Cyclosporine differentially regulates interleukin-10, interleukin-15, and tumor necrosis factor a production by rheumatoid synoviocytes. Arthritis Rheum. 2002,46(1):42-51.
    [53]Isomaki P, Luukkainen R, Saario R, Toivanen P, Punnonen J. Interleukin-10 functions as an antiinflammatory cytokine in rheumatoid synovium. Arthritis Rheum. 1996,39(3):386-395
    [54]Tanaka Y, Otsuka T, Hotokebuchi T, Miyahara H, Nakashima H, Kuga S, Nemoto Y, Niiro H, Niho Y. Effect of IL-10 on collagen-induced arthritis in mice. Inflamm Res. 1996,45(6):283-288.
    [55]Walmsley M, Katsikis PD, Abney E, Parry S, Williams RO, Maini RN, Feldmann M. Interleukin-10 inhibition of the progression of established collagen-induced arthritis. Arthritis Rheum. 1996, 39(3):495-503.
    [56]Johnson JD, Fleshner M. Releasing signals, secretory pathways, and immune function of endogenous extracellular heat shock protein 72. J Leukoc Biol. 2006,79(3):425-434.
    [57]Calderwood SK, Theriault JR, Gong J. How is the immune response affected by hyperthermia and heat shock proteins? Int J Hyperthermia. 2005,21(8):713-716.
    [58]Lawrence T. Modulation of inflammation in vivo through induction of the heat shock response, effects on NF-kappaB activation. Inflamm Res. 2002,51(2):108-109.
    [59]Yang RC, Wang CI, Chen HW, Chou FP, Lue SI, Hwang KP. Heat shock treatment decreases the mortality of sepsis in rats. Kaohsiung J Med Sci. 1998, 14(11):664-672
    [60]Tang D, Kang R, Xiao W, Wang H, Calderwood SK, Xiao X. The anti-inflammatory effects of heat shock protein 72 involve inhibition of high-mobility-group box 1 release and proinflammatory function in macrophages. J Immunol. 2007,179(2):1236-1244
    [61]Tang D, Kang R, Xiao W, Jiang L, Liu M, Shi Y, Wang K, Wang H, Xiao X. Nuclear heat shock protein 72 as a negative regulator of oxidative stress (hydrogen peroxide)-induced HMGB1 cytoplasmic translocation and release. J Immunol. 2007,178(11):7376-7384.
    [62]Tang D, Kang R, Cao L, Zhang G, Yu Y, Xiao W, Wang H, Xiao X. A pilot study to detect high mobility group box 1 and heat shock protein 72 in cerebrospinal fluid of pediatric patients with meningitis. Crit Care Med. 2008,36(1):291-295
    [63]Terry DF, Wyszynski DF, Nolan VG, Atzmon G, Schoenhofen EA, Pennington JY, Andersen SL, Wilcox MA, Fairer LA, Barzilai N, Baldwin CT, Asea A. Serum heat shock protein 70 level as a biomarker of exceptional longevity. Mech Ageing Dev. 2006,127(11):862-868.
    [64]Dybdahl B, Slordahl SA, Waage A, Kierulf P, Espevik T, Sundan A. Myocardial ischaemia and the inflammatory response: release of heat shock protein 70 after myocardial infarction. Heart. 2005,91(3):299-304
    [65]Dybdahl B, Wahba A, Lien E, Flo TH, Waage A, Qureshi N, Sellevold OF, Espevik T, Sundan A. Inflammatory response after open heart surgery: release of heat-shock protein 70 and signaling through toll-like receptor-4. Circulation. 2002,105(6):685-690
    [66]Shamaei-Tousi A, Stephens JW, Bin R, Cooper JA, Steptoe A, Coates AR, Henderson B, Humphries SE. Association between plasma levels of heat shock protein 60 and cardiovascular disease in patients with diabetes mellitus. Eur Heart J. 2006,27(13):1565-1570
    [67]Satoh M, Shimoda Y, Akatsu T, Ishikawa Y, Minami Y, Nakamura M. Elevated circulating levels of heat shock protein 70 are related to systemic inflammatory reaction through monocyte Toll signal in patients with heart failure after acute myocardial infarction.Eur J Heart Fail.2006,8(8):810-815
    [68]Wheeler DS,Fisher LE Jr,Catravas JD,Jacobs BR,Carcillo JA,Wong HR.Extracellular hsp70 levels in children with septic shock.Pediatr Crit Care Med.2005 May;6(3):308-11.
    [69]Pittet JF,Lee H,Morabito D,Howard MB,Welch WJ,Mackersie RC.Serum levels of Hsp 72 measured early after trauma correlate with survival.J Trauma.2002 Apr;52(4):611-7
    [70]Schroeder S,Reck M,Hoeft A,St(u|¨)ber F.Analysis of two human leukocyte antigen-linked polymorphic heat shock protein 70 genes in patients with severe sepsis.Crit Care Med.1999 Jul;27(7):1265-1270
    [71]蒋建新,朱佩芳.对细菌内毒素致病作用的新认识.解放军医学杂志,2003,112(4):191-193
    [72]姜勇,龚小卫.MAPK信号转导通路对炎症反应的调控.生理学报,2000,52(4):267-271
    [73]Wang H,Bloom O,Zhang M,Vishnubhakat JM,Ombrellino M,Che J,Frazier A,Yang H,Ivanova S,Borovikova L,Manogue KR,Faist E,Abraham E,Andersson J,Andersson U,Molina PE,Abumrad NN,Sama A,Tracey KJ.HMG-1 as a late mediator of endotoxin lethality in mice.Science.1999,285(5425):248-251
    [74]Moon,R.T.,Bowerman,B.,Boutros,M.,and Perrimon,N.The promise and perils of Wnt signaling through beta-catenin.Science,2002,296(5573):1644-1646
    [75]Willert,K.,Brown,J.D.,Danenberg,E.,Duncan,A.W.,Weissman,I.L.,Reya,T.,Yates,J.R.,and Nusse,R.Wnt proteins are lipid-modified and can act as stem cell growth factors.Nature.2003,423(6938):448-452
    [76]Nusse,R.Wnts and Hedgehogs:lipid-modified proteins and similarities in signaling mechanisms at the cell surface.Development,2003,130(22):5297-5305
    [77]Cadigan KM.Nusse R.Wnt signaling:a common theme in animal development.Genes Dev.1997;11:3286-3305
    [78]Wodarz A,Nusse R.Mechanisms of Wnt signaling in development.Annu Rev Cell Dev Biol.1998;14:59-88
    [79]Kampinga HH.Chaperones in preventing protein denaturation in living cells and protecting against cellular stress.Handb Exp Pharmacol.2006,(172):1-42
    [80]Walter S,Buchner J.Molecular chaperones--cellular machines for protein folding. Angew Chem Int Ed Engl. 2002,41(7): 1098-1113
    [81]Ritossa F. Discovery of the heat shock response. Cell Stress Chaperones. 1996, 1(2):97-98.
    [82]Quintana FJ, Cohen IR. Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. J Immunol. 2005,175(5):2777-2782
    [83]Asea A, Kraeft SK, Kurt-Jones EA, Chen LB, Finberg RW, Koo GC, Calderwood SK. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med. 2000, 6(4): 435 -442
    [84]Tsan MF, Gao B. Cytokine function of heat shock proteins. Am J Physiol Cell Physiol. 2004,286(4):C739-744
    [85]Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem. 2002,277(17): 15028-15034
    [86]Calderwood SK, Theriault J, Gray PJ, Gong J. Cell surface receptors for molecular chaperones. Methods. 2007, 43(3): 199-206
    [87]Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev 1997, 11(24): 3286-3305
    [88]van de Wetering M, Cavallo R, Dooijes D, van Beest M, van Es J, Loureiro J, Ypma A, Hursh D, Jones T, Bejsovec A, Peifer M, Mortin M, Clevers H. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 1997, 88(6): 789-799
    [89]Pennisi E. How a growth control path takes a wrong turn to cancer. Science 1998, 281(5382): 1438-1441
    [90]Welch WJ, Feramisco JR. Nuclear and nucleolar localization of the 72,000-dalton heat shock protein in heat-shocked mammalian cells. J Biol Chem. 1984, 259(7):4501-13
    [91]Velazquez JM, Lindquist S. hsp70: nuclear concentration during environmental stress and cytoplasmic storage during recovery. Cell. 1984, 36(3):655-62
    [92]Cowan KJ, Diamond MI, Welch WJ. Polyglutamine protein aggregation and toxicity are linked to the cellular stress response. Hum Mol Genet. 2003, 12(12):1377-91
    [93]Ellis S, Killender M, Anderson RL. Heat-induced alterations in the localization of HSP72 and HSP73 as measured by indirect immunohistochemistry and immunogold electron microscopy. J Histochem Cytochem. 2000, 48(3):321-32
    [94]Welch WJ, Mizzen LA. Characterization of the thermotolerant cell. II. Effects on the intracellular distribution of heat-shock protein 70, intermediate filaments, and small nuclear ribonucleoprotein complexes. J Cell Biol. 1988, 106(4): 1117-30
    [95]Kato K, Yamanaka K, Hasegawa A, Okada S. Dimethylarsinic acid exposure causes accumulation of Hsp72 in cell nuclei and suppresses apoptosis in human alveolar cultured (L-132) cells. Biol Pharm Bull. 1999, 22(11):1185-8
    [96]CorrigalI VM, Bodman-Smith MD, Brunst M, et al. Inhibition of antigen -presenting cell function and stimulation of human peripheral blood mononuclear cells to express an antiinflammatory cytokine profile by the stress protein BiP: relevance to the treatment of inflammatory arthritis. Arthritis Rheum. 2004, 50(4):1164-1171
    [97]Panayi G, Corrigall V. BiP: a new biologic immunomodulator for the treatment of rheumatoid arthritis. Autoimmun Rev. 2004, 3 Suppl 1:S16-17.
    [98]Zanin-Zhorov A, Tal G, Shivtiel S, et al. Heat shock protein 60 activates cytokine-associated negative regulator suppressor of cytokine signaling 3 in T cells: effects on signaling, chemotaxis, and inflammation. J Immunol. 2005, 175(1): 276-285.
    [99]Zanin-Zhorov A, Bruck R, Tal G, et al. Heat shock protein 60 inhibits Th1-mediated hepatitis model via innate regulation of Th1/Th2 transcription factors and cytokines. J Immunol. 2005, 174(6):3227-3236
    [100]Cohen-Sfady M, Nussbaum G, Pevsner-Fischer M, et al. Heat shock protein 60 activates B cells via the TLR4-MyD88 pathway. J Immunol. 2005, 175(6): 3594 -3602
    [101]De AK, Kodys KM, Yeh BS, et al. Exaggerated human monocyte IL-10 concomitant to minimal TNF-alpha induction by heat-shock protein 27 (Hsp27) suggests Hsp27 is primarily an antiinflammatory stimulus J Immunol. 2000, 165(7):3951-3958.
    [102]Sur R, Lyte PA, Southall MD. Hsp27 Regulates Pro-Inflammatory Mediator Release in Keratinocytes by Modulating NF-kappaB Signaling. J Invest Dermatol. 2008, 128(5):1116-22.
    [103]Johnson BJ, Le TT, Dobbin CA, et al. Heat shock protein 10 inhibits lipopolysaccharide-induced inflammatory mediator production. J Biol Chem. 2005, 280(6): 4037-4047.
    [104]Aneja R, Odoms K, Dunsmore K, et al. Extracellular heat shock protein-70 induces endotoxin tolerance in THP-1 cells. J Immunol. 2006, 177( 10):7184-7192.
    [105]Kustanova GA, Murashev AN, Karpov VL, Margulis BA, Guzhova IV. Prokhorenko IR, Grachev SV, Evgen'ev MB. Exogenous heat shock protein 70 mediates sepsis manifestations and decreases the mortality rate in rats. Cell Stress Chaperones. 2006,11(3):276-86
    [106]Bausinger H, Lipsker D, Ziylan U, et al. Endotoxin-free heat-shock protein 70 fails to induce APC activation. Eur J Immunol. 2002,32(12):3708-3713
    [107]Gao B, Tsan MR Induction of cytokines by heat shock proteins and endotoxin in murine macrophages. Biochem Biophys Res Commun. 2004,317(4): 1149-1154
    [108]Asea A. Initiation of the Immune Response by Extracellular Hsp72: Chaperokine Activity of Hsp72. Curr Immunol Rev. 2006,2(3):209-215
    [109]Fleshner M, Johnson JD. Endogenous extra-cellular heat shock protein 72: releasing signal(s) and function. Int J Hyperthermia. 2005,21(5):457-471
    [110]Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001,1(2):135-145
    [111]Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001,2(8):675-680
    [112]Andreakos E, Sacre S, Foxwell BM, et al. The toll-like receptor-nuclear factor kappaB pathway in rheumatoid arthritis. Front Biosci. 2005,10:2478-2488.
    [113]Muzio M, Natoli G, Saccani S, et al. The human toll signaling pathway: divergence of nuclear factor kappaB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). J Exp Med. 1998, 187(12): 2097-2101.
    [114]Seibl R, Birchler T, Loeliger S, et al. Expression and regulation of Toll-like receptor 2 in rheumatoid arthritis synovium. Am J Pathol. 2003,162(4): 1221 -1227
    [115]Iwahashi M, Yamamura M, Aita T, et al. Expression of Toll-like receptor 2 on CD 16+ blood monocytes and synovial tissue macrophages in rheumatoid arthritis. Arthritis Rheum. 2004,50(5):1457-1467
    [116]Gao B, Tsan MF. Recombinant Human Heat Shock Protein 60 Does Not Induce the Release of Tumor Necrosis Factor _ from Murine Macrophages. J Biol Chem. 2003, 278(25): 22523-22529
    [1]O'Neill L A, Bowie A G. The family of five: TIR-domain containing adaptors in Toll-like receptor signalling. Nat Rev Immunol, 2007, 7: 353-364.
    [2]Brunialti MK, Martins PS, Barbosa de Carvalho H,et al. TLR2, TLR4, CD14, CD11B, and CD11C expressions on monocytes surface and cytokine production in patients with sepsis, severe sepsis, and septic shock.Shock. 2006 Apr; 25(4): 351-7.
    [3]Tsujimoto. Hironori , Ono, Satoshi, Efron, Philip A., et al. role of toll-like receptors in the development of sepsis. shock. 2008,29(3):315-321.
    [4]Fan J, KapusA, Marsden PA, et al. Regulation of Toll-like receptor4 expression in the lung following hemorrhagic shock and lipopolysaccharide. J Immuno, 2002, 168(10):5252-5259.
    [5]Moens L, Verhaegen J, Pierik M, et al. Toll-like receptor 2 and Toll-like receptor 4 polymorphisms in invasive pneumococcal disease. Microbes Infect 2007, 9:15-20,.
    [6]PaikYH, Schwabe RF, BatalerR, et al. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology, 2003,37: 1043-1055.
    [7]Cunningham PN, Wang Y, He G, et al. Role of toll-like receptor-4 in endotoxin-induced acute renal failure. J Immunol, 2004, 172:2629-2635.
    [8]Sha T, Sunamoto M, Kitazaki T, et al. Therapeutic effects of TAK-242, a novel selective Toll-like receptor 4 signal transduction inhibitor, in mouse endotoxin shock model.. Eur J Pharmacol. 2007 Oct l;571(2-3):231-9.
    [9]Ginsburg I.Role of lipoteichoic acid in infection and inflammation. Lancet Infect Dis, 2002, 2(3): 171-179.
    [10]Brint EK, Xu D, Liu H, et al. ST2 is an inhibitor of interleukin 1 receptor and toll-like receptor 4 signaling and maintains endotoxin tolerance. Nat Immunol, 2004, 5: 373-379.
    [11]Krebs DL, Hilton DJ. SOCS: physiological suppressors of cytokine singaling. J Cell Sci. 2000, 113:2813.
    [12]POLTORAK A, HE X, SMIRNOVA I, et al. Defective LPS Signaling in C3H/ HeJ and C57BL/10ScCr mice: Mutations in TLR4 Gene. Science, 1998, 282:2085 -2088.
    [13]姚胜,姚咏明,李红云等,烫伤脓毒症大鼠肝、肺组织STAT3活化规律及意义,解放军医学杂志,2002,27(9):763-766.
    [141]王松柏,姚咏明,董宁等,JAK/STAT通路介导脓毒症大鼠肝组织高迁移族蛋白B1 mRNA表达的研究,中国危重病急救医学,2003,15(3):147.
    [15]Matsukawa A,Kaplan MH,Hogaboam CM,et al.Pivotal role of signal transducer and activator of transcription Stat4 and Stat6 in the innate immune response during sepsis.J Exp Med,2001,193:679-688.
    [16]Matsukawa A.STAT proteins in innate immunity during sepsis:lessons from gene knockout mice.Acta Med Okayama.2007 Oct;61(5):239-45.
    [17]Zhang Y,Takami K,Lo MS,et al.Modification of the Stat1 SH2 domain broadly improves interferon efficacy in proportion to p300/CREB-binding protein coactivator recruitment.J Biol Chem,2005,280:34306-34315.
    [18]Cooney,Robert N.Suppressors of Cytokine Signaling(SOCS):Inhibitors of the JAK/STAT Pathway.Shock.2002,17(2):83-90.
    [19]Qasimi P,Ming-Lum A,Ghanipour A,et al.Divergent mechanisms utilized by SOCS3 to mediate interleukin-10 inhibition of tumor necrosis factor alpha and nitric oxide production by macrophages.J Biol Chem,2006,281:6316-6324.
    [20]Fang M,Dai H,Yu G,Gong F.Gene delivery of SOCS3 protects mice from lethal endotoxic shock.Cell Mol Immunol.2005 Oct;2(5):373-7.
    [21]Schulz,Eberhard MD;Dopheide,Jorn MD;Schuhmacher,Swenja BS;et al.Suppression of the JNK Pathway by Induction of a Metabolic Stress Response Prevents Vascular Injury and Dysfunction.Circulation.2008,118(13):1347-1357.
    [22]Hambleton J,Weinstein SL,Lem L,et al.Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide stimulated macrophages.Proc Natl Acad Sci USA,1996,93(7):2774-2778.
    [23]Poulos J.Z,Weber JD,Bellezzo JM,et al.Fibronectin and cytokines increase JNK,ERK,AP-1 activity,and transin gene expression in rat hepatic stellate cells.Am J Physiol,1997.273(4):G804-G811.
    [24]Chen,Lee-Wei MD,PhD;Chang,Wei-Jung BA;Wang,Jyh-Seng MD;et al.Thermal injury-induced peroxynitrite production and pulmonary inducible nitric oxide synthase expression depend on JNK/AP-1 signaling.Critical Care Medicine.2006,34(1):142-150.
    [25]Bayat,Hossein;Xu,Shanqin;Pimentel,David;et al.Activation of Thromboxane Receptor Upregulates Interleukin(IL)-1[beta]-Induced VCAM-1 Expression Through JNK Signaling.Arteriosclerosis,Thrombosis & Vascular Biology.2008,28(1):127-134.
    [26]Srivastava S,Weitzmann MN,Cenci S,et al.Estrogen decreases TNF gene expression by blocking JNK activity and the resulting production of c-Jun and JunD.J Clin Invest,1999,104(4):503-513.
    [27]Zarubin T,Han J.Activation and signaling of the p38MAP kinas pathway.Cell Res,2005,15 1∶ 11
    [28]Kato K,Ito H,Kamei K,et al.Selective stimulation of Hsp27 and alphacrystallin but not Hsp70 expression by p38MAPkinase activation.Cell Stress Chaperones,1999,4(2):94-101.
    [29]Yang M,Wu J,Martin CM,et al.Important role of p38MAP kinase/NF-kappaB signaling pathway in the sepsis-induced conversion of cardiac myocytes to a proinflammatory phenotype.Am J Physiol Heart Circ Physiol.2008,294(2):994-1001.
    [30]马洪德,蒋明德,曾维政,Erk信号传导通路与细胞周期调控,西南国防医药。2003,13(5):556-558。
    [31]Dziarski R,Jin YP,Gupta D.Differential activation of extracellular signal regulated kinase(ERK)l,ERK2,p38,and c-Jun NH2-terminal kinase mitogen activated protein kinases by bacterial peptidoglycan.J Infect Dis,01996,174(4):777-785.
    [32]Lombardi,Adriana;Cantini,Giulia;Piscitelli,Elisabetta;et al.A New Mechanism Involving ERK Contributes to Rosiglitazone Inhibition of Tumor Necrosis Factor-[alpha]and Interferon-[gamma]Inflammatory Effects in Human Endothelial Cells.Arteriosclerosis,Thrombosis & Vascular Biology.2008,28(4):718-724.
    [33]Adderley SR,Fitzgerald DJ.Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2 mediated induction of cyclooxygenase-2.J Biol Chem,1999,274(8):5038-5046.
    [34]尹会男 柴家科 姚咏明,NF-κB在烧伤脓毒症大鼠肝损伤中的作用,解放军医学杂志,2004,29(1):36-38.
    [35]Bohrer H,Qiu F,Zimmermann T,et al.Role of NFkappaB in the mortality of sepsis.J Clin Invest.1997 Sep 1;100(5):972-85.
    [36]Perkins ND.Integrating cell-signalling pathways with NF-kappaB and IKK function.Nat Rev Mol Cell Biol.2007,8(1):49-62.
    [37]Saadane A,Didonato J,Li J,et al.Parthenolide Inhibits I{kappa} B Kinase,NF-{kappa}B Activation and Inflammatory Response in CF Cells and Mice.Am J Respir Cell Mol Biol.2007,111(21):116-128.
    [38]Ahmad R,Raina D,Meyer C,et al.Yriterpenoid CDDOMe blocks the NF-kappaB pathway by direct inhibition of IKK beta on Cys-179.J Biol Chem,2006,20(2):225-229.
    [39]Olajide OA,Heiss EH,Schachner D,et al.Synthetic eryptolepine inhibits DNA binding of NF-kappa B.Bio org Med Chem,2007,15(1):43-49.
    [40]Bonello S,Zahringer C.Reactive Oxygen Species Activate the HIF-1 {alpha}Promoter Via a Functional NF{kappa}B.Site Arterioscler Thromb Vase Biol.2007,12(2):24-27.
    [41]Sarkar A,Sreenivasan Y,Ramesh GT,et al.Beta-D-glucoside suppresses tumor necrosis factor-induced activation of nuclear transcription factor kappa B but potentiates apoptosis.J Biol Chem,2004,279:3378-3381.
    [42]Nishimura D,Ishikawa H,Matsumoto K,et al.DHMEQ,a novel NF-kappa B inhibitor,induces apoptosis and cell-cycle arrest in human hepatoma cells.Immunology,2006,115(3):348-357.
    [43]李利平、丁腊春、段非交,等。严重烧伤病人TNF-α和TNFRⅠ、Ⅱ水平测定的临床意义。中国烧伤创疡杂志2001;13(3):159.
    [44]A.Nese Citak Kurt,A.Denizmen Aygun,Ahmet Godekmerdan,et al.Serum IL-1β,IL-6,IL-8,and TNF-α Levels in Early Diagnosis and Management of Neonatal Sepsis.Mediators Intlamm.2007:31397.
    [45]申传安,柴家科,姚咏明等.肿瘤坏死因子在烧伤脓毒症大鼠骨骼肌蛋白高分解代谢中的作用及其机制.中国危重病急救医学,2002,14:340-343.
    [46]黄宏,刘友生,陈意生.PAF和TNF在烧伤复合内毒素血症早期肺损伤中的作用.中国急救医学,1998,18:16-19.
    [47]陈旭林,夏照帆,韦多等.p38丝裂原活化蛋白激酶信号转导通路在严重烧伤大鼠枯否细胞肿瘤坏死因子α和白细胞介素1β产生中的作用.中华外科杂志.2005,43(3):185-188.
    [48]赵雯,刘友生,王水明等,烧伤合并内毒素血症TNFαmRNA原位表达与早期心肌损害的实验研究,中华烧伤杂志,2001,17(2),114-117。
    [49]Toh M L,Aeberli D,Laeey D,et al.Regulation of IL-1 and TNF receptor expression and function by endogenous macrophage migration inhibitory factor.J Immunol,2006,177(7):4818-4825
    [50]Meldrum KK, Burnett AL, Meng XZ, et al. Liposomal delivery of heat shock protein 72 into renal tubular cells blocks nuclear factor-KB activation, tumor necrosis factor-a production, and subsequent ischemia- induced apoptosis. Circ Res, 2003; 92:293-299
    [51]Chen XL, Dodd G, Kunsch C. Sulforaphane inhibits TNF-alpha-induced activation of p38 MAP kinase and VCAM-1 and MCP-1 expression in endothelial cells. Inflamm Res. 2009 Mar 11.
    [52]Dinarello, C.A. Interleukin-1 beta, Crit Care Med, 2005,33 (12Suppl):S460-462.
    [53]Tamer Tadros, Daniel L., et al. Effects of Interleukin-1α Administration on Intestinal Ischemia and Reperfusion Injury, Mucosal Permeability, and Bacterial Translocation in Burn and Sepsis .Ann Surg. 2003 January; 237(1): 101-109.
    [54]Lee,C, Lim,H.K, Sakong,J, et al.Janus Kinase-signal transducer and activator of transcription mediates phosphatidic acid-induced interleukin (IL)-1beta and IL-6 production. Mol pharmacol, 2006,69(3): 1041-1047.
    [55]Horino T, Matsumoto T, Uramatsu M, et al.Interleukin-1-deficient mice exhibit high sensitivity to gut-derived sepsis caused by Pseudomonas aeruginosa. Cytokine. 2005, 30(6):339-46.
    [56]Kristiana Kandere-Grzybowska, Duraisamy Kempuraj, Jing Cao, et al. Regulation of IL-1-induced selective IL-6 release from human mast cells and inhibition by quercetin . Br J Pharmacol. 2006,148(2): 208-215.
    [57]Noor MK, Shahidullah M, Mutanabbi M, et al. Comparison Between CRP and IL-6 As Early Markers of Neonatal Sepsis.Mymensingh Med J. 2008;17(2 Suppl): S72-76.
    [58]Schluter B, Konig B .Interleukin 6-a potential mediator of lethal sepsis after major thermal trauma: evidence for increased IL-6 production by peripheral blood mononuclear cells. J Trauma, 1991,31:1663-1670.
    [59]Guo Y, Dickerson C, Chrest FJ, et al. Increased levels of circulating interleukin 6 in burn patients. Glin Immuno Immunopath. 1990,54:361-371.
    [60]Vindenes H, Ulvestacl E, Bierknes R. Increased levels of circulating interleukin 8 in patients with large burn: relation to burn size and sepsis. J Trauma. 1995, 39:635-640.
    [61]Garner WL, Rodriguez JL, Miller CG, et al. Acute skin injury releases neutrophil chamoattractants. Surgery. 1994,116:42-48.
    [62]Rodriguez JL, Miller CG, Garner WL, et al. Correlation of the local and systemic cytokine response with clinical outcome following thermal injury.J Trauma,1993,34:684-695.
    [63]Sheron,Nwiliiand R.IL-8 as a circulating cytokine:induction by recombinant tumor necrosis factor-alpha.Clin Exp Immunol,1992,89:100-103.
    [64]Velem(?)nsk(?)M Jr,Str(?)nsk(?)P,Velem(?)nsk(?)M Sr,et al.Relationship of IL-6,IL-8,TNF and slCAM-1 levels to PROM,pPROM,and the risk of early-onset neonatal sepsis.Neuro Endocrinol Lett.2008;29(3):303-11.
    [65]Yamada,S.,Maruyama,I.HMGBI,a novel inflammatory cytokine.Clin Chim Acta,2007,375(1-2):36-42.
    [66]Parrish,W.,Ulloa,L.High-mobility group box-1 isoforms as potential therapeutic targets in sepsis.Methds Mol Biol,2007 361,145-162.
    [67]Wang HO,Bloom M,Zhang JM,et al.HMGB-1 as a late mediator of endotoxin lethality in mice.Science,1999,285:248-251.
    [68]Sunde'n-Cullberg J,Norrby-Teglund A,Rouhiainen A,et al:Persistent elevation of high mobility group box-1 protein(HMGB1)in patients with severe sepsis and septic shock.Crit Care Med 2005;33:564-573
    [69]Gibot S,Massin F,Cravoisy A,et al:Highmobility group box 1 protein plasma oncentrations during septic shock.Intensive Care Med 2007;33:1347-1353
    [70]Karlsson S,Pettila¨V,Tenhunen J,et al:HMGB1 as a predictor of organ dysfunction and outcome in patients with severe sepsis.Intensive Care Med 2008;34:1046-1053
    [71]姚咏明,张立天,陆家齐等。脓毒症大鼠内毒素增敏系统改变与高迁移率族蛋白-1表达的关系。中华创伤杂志,2002,18(9):540.
    [72]Andersson U,Wang H,Palmblad K,et al.High mobility group 1 protein(HMG-1)stimulates proinflammatory cytokine synthesis in humanmonocytes.J Exp Med,2000,192(4):565-570.
    [73]Park JS,Arcaroli J,Yum HK,et al.Activation of gene expression in human neutrophils by highmobility group box 1 protein.Am J Physiol Cell Physiol.2003,284(4):C870-879.
    [74]MessmerD,YangH,TelusmaG,etal.Highmobility group box protein 1:an endogenous signal for dendritic cell maturation and Th1 polarization.J Immuno,12004,173(1):307-313.
    [75]Sha Y,Zmijewski J,Xu Z,et al.HMGB1 develops enhanced proinflammatory activity by binding to cytokines.J Immunol.2008,180:2531-2537.
    [76]Messmer D, Yang H, Telusma G, et al. Highmobility group box protein 1: an endogenous signal for dendritic cell maturation and Th1 polarization. J Immunol. 2004, 173(1): 307-313
    [77]Lutterloh EC, Opal SM, Pittman DD, et al: Inhibition of the RAGE products increases survival in experimental models of severe sepsis and systemic infection. Crit Care 2007; 11:R122
    [78]Park JS, Svetkauskaite D, He Q, et al. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem, 2004, 279(9): 7370-7377
    [79]Rendon-Mitchell B, Ochani M, Li J, et al. IFN-gamma induces high mobility group box 1 protein release partly through a TNF-dependent mechanism. J Immunol, 2003, 170(7): 3890-3897
    [80]Scumpia PO, Moldawer LL.: Biology of interleukin-10 and its regulatory roles in sepsis syndromes.Crit Care Med. 2005;33(12 Suppl):S468-71.
    [81]Scott MJ, Hoth JJ, Turina M, et al. Interleukin-10 suppresses natural killer cell but not natural killer T cell activation during bacterial infection. Cytokine. 2006, 21; 33(2):79-86.
    [82]Hofstetter C, Flondor M, Hoegl S, et al. Interleukin-10 aerosol reduces proinflammatory mediators in bronchoalveolar fluid of endotoxemic rat.Crit Care Med. 2005 Oct;33(10):2317-22.
    [83]Kumar A, Zanotti S, Bunnell G, et al. Interleukin-10 blunts the human inflammatory response to lipopolysaccharide without affecting the cardiovascular response. Crit Care Med. 2005 ;33(2):331-40.
    [84]Londono D, Marques A, Hornung RL, Cadavid D. IL-10 helps control pathogen load during high-level bacteremia.J Immunol. 2008 Aug 1; 181 (3):2076-83.
    [85]Tschoeke SK, Oberholzer C, LaFace D,et al. Endogenous IL-10 regulates sepsis-induced thymic apoptosis and improves survival in septic IL-10 null mice. Scand J Immunol. 2008 Dec;68(6):565-71.
    [86]Kono H, Fujii H, Hirai Y,et al. The Kupffer cell protects against acute lung injury in a rat peritonitis model: role of IL-10. J Leukoc Biol. 2006 ;79(4):809-17.
    [87]Rajan S, Vyas D, Clark AT,et al. Intestine-specific overexpression of IL-10 improves survival in polymicrobial sepsis.Shock. 2008 ;29(4):483-9.
    [88]Kabay B, Kocaefe C, Baykal A, et al. Interleukin-10 gene transfer: prevention of multiple organ injury in a murine cecal ligation and puncture model of sepsis. World J Surg. 2007 Jan;31(1):105-15.
    [89]Toltl LJ, Beaudin S, Liaw PC; et al. Activated protein C up-regulates IL-10 and inhibits tissue factor in blood monocytes.J Immunol. 2008 ;181(3):2165-73.
    [90]Allen ML, Hoschtitzky JA, Peters MJ, et al. Interleukin-10 and its role in clinical immunoparalysis following pediatric cardiac surgery.Crit Care Med. 2006 Oct;34(10):2658-65.
    [91]Murphey ED, Sherwood ER. Bacterial clearance and mortality are not improved by a combination of IL-10 neutralization and IFN-gamma administration in a murine model of post-CLP immunosuppression.Shock. 2006 Oct;26(4):417-24.
    [92]Jurgen,Grzegorz,Anthony, et al. Critical roles for Interleukin-4 and Interleukin-5 during respiratory syncytial virus infection in the development of airway hyper-responsiveness after airway sensitization. Am J Respir Crit Care Med, 2000,162(2):380-386.
    [93]Wu HP, Wu CL, Chen CK,et al. The interleukin-4 expression in patients with severe sepsis.J Crit Care. 2008 Dec;23(4):519-24.
    [94]Li Qi, Qian Guisheng, Zhang Qing, et al. The change in I1-13 mRNA expression in rat lungs with acute pulmonary injury induced by lipopolysaccharide. Chin J Burns,2002 18(3):145-148.
    [95]Blanco-Quir(?)s A, Casado-Flores J, Garrote Adrados JA, et al. Interleukin-13 is involved in the survival of children with sepsis , Acta Paediatr. 2005 ;94(12): 1828-31.
    [96]S.J. George. Wnt pathway: a new role in regulation of inflammation. Arterioscler Thromb Vasc Biol. 2008, 28(3):400-2
    [97]Blumenthal A, Ehlers S, Lauber J, et al. The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. Blood. 2006. 108(3):965-73.
    [98]Pereira C, Schaer DJ, Bachli EB, et al. Wnt5A/CaMKII signaling contributes to the inflammatory response of macrophages and is a target for the antiinflammatory action of activated protein C and interleukin-10. Arterioscler Thromb Vasc Biol. 2008, 28(3):504-10.
    [99]Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev 1997, 11(24): 3286-3305.
    [100]van de Wetering M, Cavallo R, Dooijes D, et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 1997, 88(6): 789-799.
    [101]Pennisi E. How a growth control path takes a wrong turn to cancer. Science 1998,281(5382): 1438-1441
    [102]Schulte G, Bryja V. The Frizzled family of unconventional G-protein-coupled receptors. Trends Pharmacol Sci. 2007, 28(10):518-25
    [103]Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem. 2006, 281(32):22429-33.
    [104]Viola JP, Carvalho LD, Fonseca BP, Teixeira LK. NFAT transcription factors: from cell cycle to tumor development. Braz J Med Biol Res. 2005, 38(3):335-44.
    [105]Mikels AJ, Nusse R. Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol. 2006, 4(4): e115.
    [106]Thiele A, Wasner M, Miiller C, et al. Regulation and possible function of beta-catenin in human monocytes. J Immunol, 2001, 167(12):6786-93.
    [107]Lobov IB, Rao S, Carroll TJ, et al. WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature. 2005, 437(7057): 417-21.
    [108]Masckauchan TN, Agalliu D, Vorontchikhina M, et al. Wnt5a signaling induces proliferation and survival of endothelial cells in vitro and expression of MMP-1 and Tie-2. Mol Biol Cell. 2006, 17(12):5163-72
    [109]Quasnichka H, Slater SC, Beeching CA, et al. Regulation of smooth muscle cell proliferation by beta-catenin/T-cell factor signaling involves modulation of cyclin Dl and p21 expression. Circ Res. 2006, 99(12):1329-37.
    [110]Wang X, Xiao Y, Mou Y, et al. A role for the P-catenin/T-cell factor signaling cascade in vascular remodeling. Circ Res. 2002, 90:340 -347.
    [111]Wang X, Adhikari N, Li Q, Hall JL. The LDL receptor related protein LRP6 regulates proliferation and survival through the Wnt cascade in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol. 2004, 287:H2376-H2383.
    [112]Cheng CW, Yeh JC, Fan TP, et al . Wnt5a-mediated non-canonical Wnt signalling regulates human endothelial cell proliferation and migration. Biochem Biophys Res Commun. 2008, 365(2):285-90.
    [113]Pukrop T, Klemm F, Hagemann T, et al. Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proc Natl Acad Sci U S A. 2006, 103(14):5454-9.
    [114]Kumar, S., M. D. Minnich, P. R. Young. ST2/T1 protein functionally binds to two secreted proteins from Balb/c 3T3 and human umbilical vein endothelial cells but does not bind interleukin 1. J. Biol. Chem. 1995. 270:27905.
    [115]Gayle, M. A., J. L. Slack, T. P. Bonnert, B. R. Renshaw, G. Sonoda, T. Taguchi, J. R. Testa, S. K. Dower, J. E. Sims. Cloning of a putative ligand for the T1/ST2 receptor. J. Biol. Chem. 1996. 271:5784.
    [116]Xu, D., W. L. Chan, B. P. Leung, F. et al. Selective expression of a stable cell surface molecule on type but not type 1 helper T cells. J. Exp. Med. 1998. 187:787.
    [117]Lohning, M., A. Stroehmann, A. J. Coyle, J. L. Grogan, S. Lin, J. C. Gutierrez-Ramos, D. Levinson, A. Radbruch, T. Kamradt. T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function. Proc. Natl. Acad. Sci. USA 1998. 95:6930.
    [118]Kumar, S., M. N. Tzimas, D. E. Griswold, P. R. Young. Expression of ST2, an interleukin-1 receptor homologue, is induced by proinflammatory stimuli. Biochem. Biophys. Res. Commun. 1997,235:474.
    [119]Lee JK, Kim SH, Lewis EC, et al. Differences in signaling pathways by IL-lbeta and IL-18. Proc Natl Acad Sci USA, 2004, 101(23):8815-8820.
    [120]Tschoeke SK, Oberholzer A, Moldawer LL. Interleukin-18: a novel prognostic cytokine in bacteria-induced sepsis.Crit Care Med. 2006 Apr;34(4):1225-33.
    [122]Zaki Mel-S, Elgendy MY, El-Mashad NB, Farahat ME. IL-18 level correlates with development of sepsis in surgical patients.Immunol Invest. 2007; 36(4): 403-11
    [121]Kuranaga N, Kinoshita M, Kawabata T, et al. Interleukin-18 protects splenectomized mice from lethal Streptococcus pneumoniae sepsis independent of interferon-gamma by inducing IgM production.J Infect Dis. 2006; 194(7):993- 1002.
    [122]Nakanishi K, Yoshimoto T, Tsutsui H, et al. Interleukin-18 is unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine emilieu. Cytokine Growth Factor Rev, 2001, 12(1):53-72.
    [123]Lotze MT, Tahara H, Okamura H. Interleukin-18 as a novel distinct, and distant ?member of the interleukin-1 family promoting development of the adaptive immune response: the interleuki-18 issue of the Journal of Immunotherapy. J Immuno ther, 2002, 25(Suppl 1):S1-3.
    [124]L. E. Hightower. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell. 1991, 66(2):191-7
    [125]Nylandsted J, Gyrd-Hansen M, Danielewicz A,et al. Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med. 2004, 200(4):425-35.
    [126]Brundel BJ, Shiroshita-Takeshita A, Qi X, et al. Induction of heat shock response protects the heart against atrial fibrillation. Circ Res. 2006, 99(12): 1394-1402.
    [127]H.P.Dong, H.W. Chen, C.Hsu, et al. Previous heat shock treatment attenuates lipopolysaccharide-induced hyporesponsiveness of platelets in rats. Shock, 2005, 24(3):239-244.
    [128]X.Wang, Y. Zou, Y.Wang, et al. Differential regulation of interleukin-12 and interleukin-10 by heat shock response in murine peritoneal macrophages. Biochem Biophys Res Commun, 2001, 287(5):1041-1044.
    [129]Y.Shi, Z.Tu, D.Tang,et al. Calderwood. The inhibition of LPS-induced production of inflammatory cytokines by HSP70 involves inactivation of the NF-kB pathway but not the MAPK pathways. Shock. 2006, 26(3):277-284.
    [130]W.Van Molle, B. Wielockx, T.Mahieu,et al. HSP70 protects against TNF-induced lethal inflammatory shock. Immunity, 2002, 16(5): 685-695.
    [131]Kuboki S, Schuster R, Blanchard J,et al. Role of heat shock protein 70 in hepatic ischemia-reperfusion injury in mice. Am J Physiol Gastrointest Liver Physiol. 2007, 292(4): G1141-1149.
    [132]Buechler C, Ritter M, Orso E, et al. Regulation of scavenger receptor CD163 expression in humanm onocytes and macrophages by proand antiinflammatory stimuli. J Leukoc Biol, 2000,67(l):97-103.
    [133]Vander Laan LJ, Kangas M, Dopp EA, et al. Macrophage scavenger receptor MARCO:invitro and invivo regulation and involvement in the antibacterial host defense. Immunol Lett, 1997,57(13):203-208.
    [134]Haworth R, Platt N, Keshav S, et al. The macrophage scavenger receptor type A is expressed by activated macrophages and protects the host against lethal endotoxic shock. J Exp Med, 1997,186(9):1431-1439.
    [135]Vander Laan LJ,Dopp EA,Haworth R,et al.Regulation and functional involvement of macrophage scavenger receptor MARCO in clearance of bacteria invivo.J Immunol,1999,162(2):939-947.
    [136]Fitzgerald L,Moore J,Freeman W,et al.Lipopolysaccharide induces scavenger receptor A expression in mouse macrophages:adivergent response relative to human THP1 monocyte/macrophages.J Immunol,2000,164(5):2692-2700.
    [137]Yang.C,Gao J,Dong H,et al.Expressions of scavenger receptor,CD 14 and protective mechanisms of carboxymethyl-beta-1,3-glucan in posttraumatic.endotoxemia in mice.J Trauma.2008 Dec;65(6):1471-7.
    [138]Ubenauf KM,Krueger M,Henneke P,Berner R.Lipopolysaccharide binding protein is a potential marker for invasive bacterial infections in children.Pediatr Infect Dis J.2007 Feb;26(2):159-62.
    [139]Wu X,Qian G,Zhao Y,Xu D.LBP inhibitory peptide reduces endotoxin-induced macrophage activation and mortality.Inflamm Res.2005 Nov;54(11):451-7.
    [140]Wright S.D,Ramos R.A,Tobias P.S,et al.CD14,a receptor for complexes of lipopolysaccharide(LPS)and LPS binding protein.Science.1990,2249:1431-33.
    [141]Arditi M,Zhou J,Dorio R,et al.Endotoxin-mediated endothelial cell injury and activation:role of souble CD 14.Infect Immun 1993;61:3149-56.
    [142]Plotz SG,Lentschat A,Behrendt H,et al.The interaction of human peripHeral blood eosinopHils with bacterial lipopolysaccharide is CD14 dependent.Blood 2001,97(1):235-241.
    [143]Ingalls R.R,Monts B.G,Golenbock,D.T.Membrane expression of sduble endotoxin-binding proteins permits lipopolysaccharide signaling in Chinese hamster ovary fibroblosts indepenlentlg of CD14.J Bio Chem.1999;274(20):13993-8.
    [144]Olseanechi R,Chlopicki S.Endotoxemia in rats:role of NO,PAF and TXA2in pulmonary neutrophil sequestration and hyperlactataemia.J Phsiol Pharmacol.1999,50(3):443-454.
    [145]丁自强,李少华,费侠,等.SR163-441对内毒素和血小板激活因子致肺损伤作用的影响[J].中国药理学通报,1990,6(3):168-171.
    [146]Chang S W.Endotoxin-induced pulmonary leuko stasis in the rat:Role of platelet-activating factor and tumor necrosis factor.J Lab Clin Med,1994,123(4):65-72.
    [147]张雅敏.急性肺损伤与血小板因子(PAF)的相关性[J].天津医科大学学报,1997,3(4):97-100.
    [148]黄宏,周萍,刘友生等PAF拮抗剂BN50739对大鼠急性肺损伤的作用研究。第三军医大学学报2002,24(8),919-920
    [149]van Griensven M,Probst C,M(u|¨)ller K,et al.Leukocyte-endothelial interactions via ICAM-1 are detrimental in polymicrobial sepsis.Shock.2006;25(3):254-9.
    [150]Lennon PF,Collard CD,MorrisseyMA,et al.Complement-induced endothelial dysfunction in rabbits:mechanisms,recovery,and gender differences.Am J Physiol,1996,270:H1924-1932.
    [151]王顺宾,吴伯瑜,黄逢元等.抗生素治疗烧伤绿脓杆菌血症时释放内毒素的实验研究.中华烧伤杂志,2000,16(2):93-95.
    [152]Hildebrand F,Pape HC,Harwood P,et al.Role of adhesion molecule ICAM in the pathogenesis of polymicrobial sepsis.Exp Toxicol Pathol.2005;56(4-5):281-90.
    [153]李志清,黄跃生,杨宗城等,核因子-κB对大鼠烧伤早期中性粒细胞在肺组织聚集中的作用,中国病理生理杂志2007,23(9):1764-1766.
    [154]陈旭林,夏照帆,韦多等.p38丝裂原活化蛋白激酶在烧伤急性肺损伤中的作用机制.中华烧伤杂志,2004,20(5):262-264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700