用户名: 密码: 验证码:
固定化载体材料壳聚糖基水凝胶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳聚糖是自然界中惟一存在的阳离子聚合物,壳聚糖及其分解产物无毒,易于改性,具有良好生物相容性及生物降解性,因而倍受世人关注。壳聚糖经戊二醛交联可形成水凝胶,该水凝胶对环境pH/离子有良好的刺激响应性,但其溶胀性能、力学性能及热稳定性能等欠佳,限制了壳聚糖水凝胶的推广应用。
     本论文应用聚合物结构设计理论,以壳聚糖、聚醚、聚乙烯醇、丙烯酸、甲基丙烯酸羟乙酯为主要原料,采用溶液法以戊二醛为交联剂制备了壳聚糖水凝胶、壳聚糖-聚醚水凝胶、壳聚糖-聚乙烯醇水凝胶、壳聚糖-丙烯酸水凝胶、壳聚糖-丙烯酸-甲基丙烯酸羟乙酯水凝胶,优化了制备壳聚糖基水凝胶的工艺条件,研究了影响水凝胶溶胀性能、力学性能及敏感性能的各种因素和相关理论,探讨了壳聚糖基水凝胶结构与性能的关系、加工成型及作为固定化载体材料在啤酒酿造中的应用等。本文的主要内容如下:
     (1)对壳聚糖的质量进行分析,其水份为15.205%,脱乙酰度为92.671%,重均分子量为195900,黏均分子量为194100,分解温度为298℃,壳聚糖的红外光谱表明,壳聚糖—NH_2的特征吸收峰为1601cm~(-1),β-糖苷键的特征吸收峰为986cm~(-1),壳聚糖的X-衍射图表明壳聚糖原料的脱乙酰度和结晶度均较大。
     当壳聚糖浓度为2.0%(w/v),戊二醛浓度为0.213mol/L,凝胶温度为45℃,制备的壳聚糖水凝胶的溶胀度最好;当壳聚糖浓度为3.0%、戊二醛浓度为0.426mol/L、凝胶温度为55℃,其硬度最高。合成工艺条件对凝胶溶胀度和硬度有着显著影响,其中戊二醛、壳聚糖浓度是壳聚糖水凝胶溶胀度和硬度最重要的影响因素,干燥的壳聚糖水凝胶不能再吸水溶胀。壳聚糖水凝胶具有典型的pH/离子敏感性,其敏感性与壳聚糖分子链上氨基有着密切关系。
     (2)正交实验的结果表明,当凝胶温度为45℃、聚醚与壳聚糖质量比为0.4、戊二醛浓度为0.213mol/L,壳聚糖-聚醚水凝胶的溶胀度最好;当凝胶温度为45℃、聚醚与壳聚糖质量比为0.6、戊二醛浓度为0.426mol/L时,水凝胶的硬度最高。壳聚糖分子量、聚醚和交联剂的种类和浓度是溶胀度和硬度的重要影响因素,其中戊二醛的浓度不仅影响水凝胶的结构、性能,而且影响其溶胀动力学类型。壳聚糖-聚醚水凝胶具有pH和离子敏感性,其敏感性与壳聚糖分子链上氨基密切相关,而与聚醚无关。聚醚是亲水性的柔性高分子聚合物,与壳聚糖形成半互穿网络水凝胶,干燥后水凝胶溶胀性能良好。
     (3)制备高溶胀度壳聚糖-聚乙烯醇水凝胶的最佳条件为聚乙烯醇与壳聚糖质量比2、醋酸体积100mL、戊二醛浓度0.213mol/L、甲醛浓度1.086mol/L;而制备高硬度水凝胶的最佳条件为聚乙烯醇与壳聚糖质量比6、醋酸体积80mL、戊二醛浓度0.426mol/L、甲醛浓度1.086mol/L。
     聚乙烯醇具有优良的机械性能,与壳聚糖共混形成半互穿网络水凝胶,可增强凝胶强度;甲醛是预交联剂,可改善壳聚糖-聚乙烯醇水凝胶的交联效果;循环冷冻-解冻使聚乙烯醇分子产生物理交联,交联密度增大,因而均可显著改善凝胶硬度。因为壳聚糖的氨基,壳聚糖-聚乙烯醇水凝胶对环境pH/离子浓度具有很好的刺激响应性,该性能与聚乙烯醇无关。
     (4)硝酸铈铵是引发壳聚糖开环接枝的最常用的引发剂。当加入3mmol/L引发剂硝酸铈铵3mL、5.080mol/L丙烯酸浓度、60℃时接枝2.5h,其接枝率最高,接枝率对壳聚糖-丙烯酸水凝胶的结构和性能影响重大。
     当丙烯酸浓度为5.805mol/L、硝酸铈铵体积4.0mE、戊二醛浓度0.213mol/L、50℃凝胶,壳聚糖-丙烯酸水凝胶溶胀度最高,当丙烯酸浓度为3.628mol/L、硝酸铈铵2.0mL、戊二醛浓度为0.426mol/L、45℃凝胶,其硬度最好。合成条件是影响壳聚糖-丙烯酸水凝胶溶胀度和硬度的重要因素。壳聚糖的氨基,聚丙烯酸的羧基,使得壳聚糖-丙烯酸水凝胶具有pH和离子敏感性。
     (5)正交实验的结果表明,丙烯酸浓度为5.805mol/L、戊二醛浓度为0.213mol/L,加入硝酸铈铵3.0mL和甲基丙烯酸羟乙酯20.0mL,制得的水凝胶溶胀度最好;当丙烯酸浓度为2.903mol/L、戊二醛浓度为0.426mol/L,加入硝酸铈铵2.0mL和甲基丙烯酸羟乙酯40.0mL,其硬度最高,戊二醛与丙烯酸浓度、甲基丙烯酸羟乙酯添加量等对凝胶溶胀度和硬度影口向显著。凝胶结构在放置过程中发生变化,变得致密而有序,宏观上表现为凝胶透明而有光泽,其硬度大幅度增加。该水凝胶在高浓度氢氧化钠溶液中凝胶体积急剧膨胀,凝胶中的水可分为非冻结水(即束缚水)和可冻结水(即自由水和中间水),热分析结果证明水凝胶中存在不同状态的水,即可冻结水和非冻结水。
     (6)通过质构仪、傅里叶红外光谱(FTIR)、X-射线衍射(XRD)、扫描电子显微镜(SEM)、差示扫描量热(DSC)、热重分析(DSC-TGA)等对壳聚糖基水凝胶的结构和性能进行表征,结果表明壳聚糖基水凝胶的结构决定其性能。
     壳聚糖基水凝胶可作为啤酒酵母的固定化载体应用于啤酒酿造,其中壳聚糖-聚乙烯醇水凝胶是极具应用价值的固定化载体材料,而壳聚糖-丙烯酸-甲基丙烯酸羟乙酯水凝胶在结构和性能方面与其他壳聚糖基水凝胶相比,具有无可比拟的优势。
Chitosan is the only cation polymer existent in nature. It-and its decompositionproducts are non-poisonus. Besides, theproperties of chitosan are easy to be modified,and it possesses good biocompatibility and biodegradation, thus attracting scientists'much attention. Chitosan hydrogel can be synthesized in acetic acid solution withchitosan using glutaraldehyde as crosslinker. The hydrogel are well sensitive to pHand ion, but its swelling properties, mechanical properties and thermal stability are notgood, which restricts the wide application of chitosan hydrogel.
     This dissertation discusses ways to synthesize chitosan hydrogel,chitosan-polyether hydrogel, chitosan-polyvinyl alcohol hydrogel, chitosan-acrylicacid hydrogel and chitosan-acrylic acid-hydroxyethyl methacrylate hydrogel by usingchitosan, polyether, polyvinyl alcohol, acrylic acid and hydroxyethyl methacrylate asthe chief materials and glutaraldehyde as the crosslinker through the aqueous way,based on the design theory of polymer molecule. In this study, the process conditionsto produce chitosan-based hydrogels were optimized, and the optimized processvariables was determined by orthogonal experiments. The relevant theories andvarious factors affecting the swelling properties, mechanical properties and stability ofchitosan hydrogel were investigated. Moreover, the relationship between the structureand performances of chitosan-basecl hydrogels, its shaping and processing, itsapplication in beer brewing as the carrier materials for immobilization and so on. Themain contents of this dissertation are as follows:
     (1) The quality analytiedal results of chitosan are as follows: water for 15.205%;degree of deacetylation 92.671%; the weight average relative molecular weight ofchitosan 195900; the viscosity average relative molecular weight of chitosan 194100;and the decomposing temperature 298℃. The infrared ray IR spectra of chitosanshows that the feature-absorbing band of chitosan amido was 1601cm~(-1), that ofβ-indican bond was 986cm~(-1). The results of the X-ray diffraction of chitosan indicatesthat its degree of deacetylation and degree of crystal are both big.
     When the concentration of chitosan is 2.0%(g/mL), concentration of glutaraldehydeis 0.213mol/L, and gelatin temperature is 45℃, the swelling ratio of chitosan hydrogelis the biggest; When the concentration ofchitosan is 3.0%(g/mL), concentration ofglutaraldehyde is 0.426mol/L, and gelatin temperature is 55℃, its hardness is thehighest. The synthesis conditions have great impact on its swelling ratio and hardness.Among them, concentration of glutaraldehyde and chitosan is the main factoraffecting the swelling ratio and hardness of chitosan hydrogel. Dry chitosan hydrogel can no longer absorb water to swell. It is typically pH-sensitive and ion-sensitive, andits sensitivity is closely related to the amido on the molecular chain of chitosan.
     (2) The results of orthogonal experiments showed that when the gelatin temperaturewas 45℃, the mass ratio of polyether and chitosan was 0.4, the concentration ofglutaraldehyde was 0.213mol/L, the swelling ratio of chitosan-polyether hydrogel isthe biggest. When the gelatin temperature was 45℃, the mass ratio of polyether andchitosan was 0.6, the concentration of glutaraldehyde was 0.426mol/L, its hardness isthe highest. The relative molecular weight of chitosan, polyether, and the type andconcentration of crosslinker are the main factors affecting the swelling ratio andhardness of chitosan hydrogel. Among them concentration of glutaraldehyde not onlyaffects the structure and property of chitosan hydrogel, but also affects its kinds ofswelling kinetics. Chitosan hydrogel is pH-sensitive and ion-sensitive, and itssensitivity is closely related to the amido on the molecular chain of chitosan, but it isirrelevant to polyether, which is hydrophilic yielding macromolecule polymer.Polyether and chitosan form hydrogel of semi-interpenetrating polymernetworks(semi-IPN), and the swelling properties of dry hydrogel are excellent.
     (3) The best conditions for making high swelling ratio chitosan-polyvinyl alcoholhydrogel are as follows: the mass ratio of polyvinyl alcohol and chitosan 2; volume ofacetic acid 100.0mL; concentration of glutaraldehyde 0.213mol/L and concentrationof formaldehyde 1.086mol/L. However, the best conditions for making hard hydrogelare as follows: the mass ratio of polyvinyl alcohol and chitosan 6; the volume ofacetic acid 80.0mL; the concentration of glutaraldehyde 0.426mol/L andconcentration of formaldehyde 1.086mol/L.
     Polyvinyl alcohol possesses excellent mechanical properties. If it formssemi-interpenetrating polymer networks hydrogel with chitosan, the hydrogel will bestronger. As a fore-crosslinker, formaldehyde can improve the crosslinking effect ofchitosan-polyvinyl alcohol hydrogel. The freeze-thaw cycle made the molecule ofpolyvinyl alcohol to formed physical crosslink, resulting in increase in hardness of thehydrogel due to increase in crosslink density. Because of amido of chitosan chitosan-polyvinyl alcohol hydrogel is well sensitive to pH and the concentration ion. However,the above fact is irrelevant to polyvinyl alcohol.
     (4) Cerium ammouium nitrate is the initiator which makes chitosan ring openingand grafting. When 3.0mL 3.0mmol/L cerium ammouium nitrate was added, theconcentration of acrylic acid was 5.080mol/L, and grafting condition was 2.5h at60℃, its grafting yield was the highest. The grafting yield had great effect on thestructure and properties of chitosan-acrylic acid hydrogel.
     When the concentration of acrylic acid was 5.805mol/L, the volume of ceriumammouium nitrate was 4.0mL, the concentration of glutaraldehyde was 0.213mol/L,the temperature of gelation was 50℃, the swelling ratio of chitosan-acrylic acidhydrogel was the highest. When the concentration of acrylic acid was 3.628mol/L, thevolume of cerium ammouium nitrate was 2.0mL, the concentration of glutaraldehydewas 0.426mol/L, gelation at 45℃, the hardness of chitosan-acrylic acid hydrogelwas the highest. The synthesis conditions are the main factors affecting the swellingratio and hardness of Chitosan-acrylic acid hydrogel. The amido of Chitosan and thecarboxyl of acrylic acid made Chitosan-acrylic acid hydrogel pH-sensitive andion-sensitive.
     (5) The results of orthogonal experiments showed that when the concentration ofacrylic acid was 5.805mol/L, the concentration of glutaraldehyde was 0.213mol/L,3.0mL of cerium ammouium nitrate and 20.0mL of hydroxyethyl methacrylate wereadded, the swelling ratio of the hydrogel was the best. When the concentration ofacrylic acid was 2.903mol/L, the concentration of glutaraldehyde was 0.426mol/L,2.0mL of cerium ammouium nitrate and 40.0mL of hydroxyethyl methacrylate wereadded, the hardness of the hydrogel was the highest. The concentration of acrylic acidand glutaraldehyde and the amount of cerium ammouium nitrate and hydroxyethylmethacrylate added had great effect on the swelling ratio and hardness of the hydrogel.The structure of the hydrogel will change with time and it will become compact andordered. In other words, it will become transparent, lustrous and much harder. Thehydrogel will swell rapidly in the solution of sodium hydroxide, and the water in it isnon-freezing water (bond water) and freezing water (free water and intermediatewater). The results of thermal analysis showed that the water exists in different states-freezing and non-freezing.
     (6) Studies on the structures and properties of chitosan-based hydrogels performedwith the help of such devices as Texture Aualyser, FTIR, XRD, SEM, DSC,DSC-TGA showed that the properties of chitosan-based hydrogels were determinedby its structures.
     As the carrier for immobilization of beer yeast, chitosan-based hydrogels can beused in beer brewing. Among these chitosan-based hydrogels, chitosan-polyvinylalcohol hydrogel is regarded as valuable carrier material for immobilization, and thechitosan-acrylic acid-hydroxyethyl methacrylate hydrogel has some incomparableadvantages over other hydrogels in structure and properties.
引文
1 居乃琥.固定化酶和固定化细胞工业应用的现状与展望[J].食品与发酵工业,1981,(6):30-44
    2 居乃琥.固定化细胞技术研究和应用的现状与展望[J].工业微生物,1989,19(1):25-32
    3 王建龙.生物固定化技术与水污染控制[M].北京:科学出版社,2000:2
    4 王洪祚,刘世勇.酶和细胞的固定化[J].化学通报,1997,2:22-27
    5 Telefoncu A, Dinckaya E,Vorlop K D.Prepara tion and characterization of pancreatic lipase immobilized in Eudragitmatrix[J].Appl Biochem Biotechnol, 1990, 26: 311-317
    6 Pencreach G, Leullier M,Baratti JC.Properties of free and immobilized lipase from Pseudomonas cepacia[J].Biotechnol Bioeng, 1997;56:181-189
    7 宋向阳,余世袁.生物细胞的固定化技术及研究进展[J].化工时刊,2000,(11):37-39
    8 张立央.SA/CS-CaCl_2/PMCG微胶囊及其固定化微生物细胞的培养[D].杭州:浙江大学博士学位论文,2003:1-2
    9 R G Rupp,I J Fader, W Tolbert Eds.Large-scale mammalian cell culture[M], New York: Academic, 1985:81-84
    10 万海英,刘征辉,顾津明等.一种新型重组抗体导向溶栓剂的体外溶栓研究[J].中国免疫学杂志,2000,16(4):187-189
    11 袁洪卫,林汉,朱锡霞等.抗纤维蛋白-抗尿激酶双特异性单克隆抗体的体内外溶栓效果的研究[J].中国医学科学院学报,1998,20(5):357-360
    12 Sumi H,Hamada H,Tsushima H et al.A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto;a typical and popular soybean food in the Japanese diet[J].Experientia, 1987,43(10):1110-1111
    13 Seema S.Betigeri,Steven H.Neau.Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads[J].Biomaterials,2002,23:3627-3636
    14 王金英,刘宇峰,王占成等.豆豉抗栓作用的研究[J].生物技术,1997,7(5):18-20
    15 Fujita M,Hong K,Ito Y et al.Thromblytic effect of nattokinase on a chemically induced thrombosis model in rat[J].Biological & Pharmaceutical Bulletin,1995, 18(10): 1387-1391
    16 I K Park,T H Kim,Y H Park,et al.Galactosylated chitosan-graft poly(ethylene glycol) as hepatocyte-targeting DNA carrier[J].J. Controlled Release,2001,76: 349-362
    17 S Dumitriu, E Chomet,Immobilization of xylanase in chitosanxanthan hydrogels [J],Biotechnol. Prog, 1997,13:539-545
    18 Chui WK, Wan LSC. Prolonged retention of cross-linked trypsin in calcium alginate microspheres[J].J Microencapsulation 1987,14:51-61
    19 沈萍.微生物学[M].北京:高等教育出版社,2000:423-426
    20 Allal B, J acques F, J acques L, et al. Adsorption of succinylated lysozyme on hydroxyapatite[J]. Journal of Colloid Interface Science, 1997,189:37-42
    21 Melin E S,Jarvinen K T, Puhakka J A.Effects of temperature on chlorophenol biodegradation kinetics in fluidized bed reactors with different biomass carrier[J]. Water Res., 1998, 32: 82-90
    22 Henneken L,Nortemann B,Hempel D C. Biological degradation of EDTA: Reaction kinetics and technical approach[J].J Chem. Technol. Biotechnol,1998, 73: 144-152
    23 Quinn Z, Zhou K, Chen X D. Immobilization of β-galactosidase on graphite surface by glutaraldehyde[J].Journal of Food Engineering,2001,48(1):69-74
    24 John G, Schugerl K.Co2immobilized aerobic/anaerobic mixed cultures in stirred tank and gaslift loop reactors[J].J. Biotechnol., 1996,50:115-122
    25 Sajc L,Obradovic B,Vucovic D,et al.Hydrodynamics and mass transfer in a four2phase external loop airlift bioreactor[J].Biotechnol Progr, 1995,11:420-428
    26 Markvicheva, Elena A. Immobilized enzyme and cells in poly(Nvinyl caprolactam) based hydrogels[J]. Applied Biochemical Biotechnology,2000,88(123): 145-157
    27 Scott C D. Immobilized cells a review of recent literature[J]. Enzyme and Microbial Technology, 1987,9(2):66-73
    28 Yesim Y.Utilization of bentonite as a support material for immobilization of Candida rugosa lipase [J]. Process Biochemistry, 2005,40:2155-2159
    29 陈受政,万宁.ACA微胶囊固定化细胞发酵木糠醇.食品与发酵工业.2002,28(8):42-44
    30 褚良银,杨平,陈闻梅.微生物固定化多孔膜微囊载体[P].中国专利,ZL02222108.5,2002
    31 何延青,刘俊良,杨平.微生物固定化技术与载体结构的研究[J].环境科学,2004,25:101-104
    32 肖美燕,徐尔尼,陈志文.包埋法固定化细胞技术的研究进展[J].食品科学,2003,24(4):158-161
    33 J Felipe Diaz,Kenneth J Balkus Jr.Enzyme immobilized in MCM-41 molecular sieve[J]. Joural of molecular catalysis B: Enzymatic, 1996,(2): 115-126
    34 Ruyssen Rand Lauwers A.Pharmaceutical enzymes properties and assay methods: killikrein[M], 1978:147-152
    35 陈声,居乃琥,陈石根.固定化酶理论和应用[M].北京:中国轻工业出版社,1987:76-108
    36 周定,王建龙,候文华.固定化细胞在废水处理中的应用及前景[J].环境科学,1993,14(5):51-59
    37 Dyrset N,Selmer-Olsen E.Feed supplement recovered from dairy wastewater by biological and chemical pretreatment[J]. Journal of Chemical Technology & Biotechnology, 1998,73(3): 175-182
    38 Metosh-Dickey C A,Davis T M,McEntire C A.Improving bio-treatment for textile waster decolorization and COD reduction[J].American Dyestuff Reporter, 1999, 88(7): 28-37
    39 Hayes E,Upton J.On-line toxicity monitoring using amtox[J].Water & Environmental Management Journal, 1999,13(5):319-321
    40 Marwaha S S,Grover R,Prakash C. Continuous biobleaching of black iquor from the pulp and paper industry using an immobilized cell system[J]. Journal of Chemical Technology & Biotechnology, 1998,73 (3): 292-296
    41 Hu M Z-C, Reeves M. Biosorption of uranium by Pseudomonas aeruginosa strain CSU immobilized in a novel matrix [J]. Biotechnology Progress, 1997; 13 (1/2): 60-70
    42 Lozinsky VI, Plieva FM.Poly(vinyl alcohol) cryogels empolyed as matrices for cell immobilization.3.Overviewof recent research and developments[J].Enzyme and Microbial Technology, 1998,23:227-242
    43 Westrin BA,Axelsson A.Diffusion in gels containing immobilized cells: A critical review[J]. Biotechnology and Bioengineering, 1991,38:439-446
    44 黎刚.固定化技术进展[J].中国生物工程杂志,2002,(5):45-48
    45 龙中儿,黄运红,蔡昭铃等.细胞固定化载体比表面的测定[J].生物技术,2003,13(4):21-23
    46 周广麒.应用固定化酵母生产酒精新技术的若干问题[J].酒精工业,1996,11(3): 5-8
    47 Ibrahim A Alsarra,Steven H Neau,Matthew A Howard.Effects of preparative parameters on the properties of chitosan hydrogel beads containing Candida rugosa lipase[J].Biomaterials,2004,25:2645-2655
    48 A A Prabhune.Immobilization of permeabilized eschrichia coli cell with penicillin acylase activitity[J]. Enzyme and Microbial Technology, 1992, (14): 160-169
    49 M Becerra.Enzyme and Microbial Technology,2001,(29):506-515
    50 Monica Herrero.Enzyme and Microbial Technology,2001,(28):35-43
    51 Goncalves Luciana Rocha Barros,Giordano Roberto C,Giordano Raquel L. C. Mass transport effects on the continuous production of ethanol from starch using enzyme and yeast coimmobilized in pectin gel. Biomass Energy, Environ., Agric. Ind., Proc. Eur. Biomass Conf., 8th. 1994,(2): 1439-1446
    52 Converti A.Modeling of continuous corn starch hydrolyzate fermentations in immobilized-cell reactors [J]. Starch, 1994,46(7):260-265
    53 Yadav B S,Rani Usha,Dhamija S S,Dhamija S S.Process optimization for continuous ethanol fermentation by alginate-immobized cells of Saccharomyces cerevisiae HAU-1 [J]. J. Basic Microbiol., 1996,36(3):205-210
    54 White F H,et al.Journal International Brewing,1978,84:228-236
    55 Dominguez J M,Cruz J M,Roca E et al.Xylitol Production from Wood Hydrolyzaties by Entrapped Debaromyas Hansenii and Candlda Guilliermondi Cells[J]. Appl. Biochem. Biotechnol., 1999,81 (2): 119-130
    56 Jirku V. Whole Cell Immobilization as a Means of Enhancing Ethanol Production [J]. Ind. Microbiol. Biotechnol., 1999, 22(24): 147-151
    57 市村国宏.特许公报,昭61-49957
    58 Anselmo A M,et al.Degradation of phenol by immobilized mycelium of Fusarium flocciferum in continuous culture[J].Wat.Sci.Tech., 1992,25(1): 161-168
    59 Vekova J. Degradation of bromoxynil by resting and immobilized cells of Agraobacteium radiobacter 8/4 strain[J].Biotechnol. Lett., 1995,17(4):449-452
    60 焦中高,任平国,徐启宏等.固定化乳酸乳球菌DL-203发酵生产Nisin的研究[J].食品工业科技,2005,26(5):148-153
    61 陈敏.聚乙烯醇包埋活性炭与微生物的固定化技术及其对水胺硫磷降解的研究[J].环境科学,1994,15(3):11-14
    62 陈九武,赵学慧,吴思方.固定化细胞合成酯类载体的研究[J].工业微生物,1997, 27(3):27-31
    63 庞永新,魏秀萍,刁慧敏等.光固化聚乙二烯醇水凝胶及其固定化枯草杆菌的研究[J].功能高分子学报,1995,8(2):213-216
    64 张玉彬,王旻,吴梧桐等.聚乙烯醇固定化基因工程菌CTB_2的研究[J].1996,3(3):171-174
    65 郑长义,黄光琳,陈泽芳.固定化增殖细胞用聚乙烯醇水凝胶的研究[J].高分子材料科学与工程,1993,9(2):13-17
    66 朱柱,李和平,郑泽根.固定化细胞技术中的载体材料及其在环境治理中的应用[J].重庆建筑大学学报,2000,22(5):95-100
    67 蒋中华,张津辉.生物分子固定化技术及应用[M].北京:化学工业出版社,1998:7-8
    68 刘蕾,李杰,王亚娥.固定化微生物技术及其在废水处理中的应用[J].甘肃科技,2004,20(3):35-36
    69 Sechriest V F, Miao Y J,Niyibizi C,et al.Journal Biomedical Material Research, 2000,49:534-543
    70 Risbud M V, Hardikar A A,Bhat S V, et al.pH sensitive freeze dried chitosan polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery[J].J Controlled Release,2000,68:23-28
    71 Xin Qu,Anders Wirsen,Ann-Christine Albertsson.Structural change and swellirig mechanism of pH-sensitive hydrogels based on chitosan and D,L-lacticacid[J].J. Appl. Polym. Sci.,1999,74:3186-3192
    72 T Koyanoa,N Koshizakib, H Umehara.Surface states of PVA/chitosan blended hydrogels[J].Polymer,2000,41:4461-4465
    73 吴国杰,李金蔓,崔英德等.壳聚糖/聚乙烯醇水凝胶的硬度研究[J].材料导报,2006,20(5):139-141
    74 吴国杰,崔英德.聚乙烯醇-壳聚糖复合水凝胶的溶胀性能[J].精细化工,2006,23(6):532-535
    75 J Berger, M Reist,J M Mayer, et al.Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications[J].European Journal of Pharmaceutics and Biopharmaceutics,2004,57:35-52
    76 K Sugimoto,M. Yoshida,T Yata,et al.Evaluation of poly(vinyl alcohol)-gel spheres containing chitosan as dosage form to control gastrointestinal transit time of drug[J]. Biol. Pharm. Bull., 1998,21:1202-1206
    77 Makarand V.Risbud,Anandwardhan A Hardikar, Sujata V Bhat,et al.pH-sensitive freeze-dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery[J].Journal of Controlled Release,2000,68:23-30
    78 Loo-Teck Ng,Salesh Swami.IPNs based on chitosan with NVP and NVP/HEMA synthesized through photoinitiator-free photopolymerisation technique for biomedical applications[J].Carbohydrate Polymers,2005,60:523-528
    79 G R Mahdavinia,A Pourjavadi, H Hosseinzadeh,et al.Modified chitosan,4. Superabsorbent hydrogels from poly(acrylic acid-co-acrylamide) grafted Chitosan with salt-and pH-responsiveness properties[J].European Polymer Journal.2004,40: 1399-1407
    80 Lorna Noble,Alexander I Gray,Lubna Sadiq,et al. A non-covalently cross-linked chitosan based hydrogel[J]. International Journal of Pharmaceutics, 1999,192:173-182
    81 Gupta K C,Ravi Kumar M N V.Preparation,characterization and release profiles of pit-sensitive chitosan beads[J].Polymer International,2000,49(2): 141-146
    82 Guan Yun Lin, Shao Lei,Liu Jing.pH Effect on correlation between water state and swelling kinetics of the crosslinked chitosan/polyether semi-IPN hydrogel[J]. Journal of Applied Polymer Science, 1996,62(8): 1253-12581
    83 Chen Xin, Li Wenjun,Zhong Wei. pH Sensitivity and ion sensitivity of hydrogels based on complex-forming chitosan/silk fibroin interpenetrating polymer network[J]. Journal of Applied Polymer Science, 1997,65(11):2257-2262
    84 姚康德,彭涛,高伟.智能性水凝胶[J].高分子通报,1994,(2):103-111
    85 宋鹏飞,王荣民,王云普.pH敏感性壳聚糖/聚乙烯基吡咯烷酮水凝胶的制备及其性能[J].西北师范大学学报(自然科学版),2004,40(1):53-55
    86 何文,杜予民,罗顺德等.pH敏感甲硝唑壳聚糖-聚乙烯吡咯烷酮水凝胶的研究[J].中国药学杂志,2004,39(3):199-202
    87 李文俊,王汉夫,卢玉华等.壳聚糖·聚丙烯酸配合物半互穿聚合物网络膜及其对pH和离子的刺激响应[J].高分子学报,1997,1:106-110
    88 Andreas Bernkop-Schnurch, Margit Hornof, Davide Guggi.Thiolated chitosans[J]. European Journal of Pharmaceutics and Biopharmaceutics,2004,57:9-17
    89 O Felt,P Furrer, J M Mayer, et al.Topical use of chitosan in ophtalmology: tolerance assessment and evaluation of precorneal retention[J].Int. J. Pharm.,1999, 180:185-193
    90 吴李国,章悦庭,胡绍华.聚乙烯醇水凝胶的制备及应用进展[J].东华大学学报,2001,27(6):114-118
    91 森元宣.工业材料,1981,29(8):48
    92 邹新禧.超强吸水剂[M].第二版.北京:化学工业出版社.2002
    93 焦剑,雷渭媛.高聚物结构、性能与测试.北京:化学工业出版社,2003:166
    94 任静.N,N’-二甲基二烯丙基氯化铵及其聚合物的辐射化学[D].北京大学博士学位论文,2001:1-4
    95 X. Qu,A Wirsen,A-C Albertsson.Novel pH-sensitive chitosan hydrogels:swelling behavior and states of water[J].Polymer. 2000,41:4589-4598
    96 Park K, Shalaby WSW, Park H.Biodegradable hydrogels for drug delivery[M], New York: Technomic, 1993
    97 Hwang D C,Damodaran S.Chemical modification strategies for syntheses of protein-based hydrogel[J].J. Agric. Food Chem., 1996,44(3):751-758
    98 Akashi M,Yashima E, Sugita S et al.Novel nonionic and cationic-hydrogels prepared from N-vinylacetamide[J]. J. Polym. Sci.,Part A: Polym. Chem., 1993, 31: 1153-1160
    99 Ana Paula Batista,Carla AM Portugal,Isabel Sousa et al.Accessing gelling ability of vegetable proteins using rheological and fluorescence techniques[J]. International Journal of biological Macromolecules,2005,36:135-143
    100 Lee Martina,Clive G. Wilsona,Fariba Koosha,et al.Sustained buccal delivery of the hydrophobic drug denbufylline using physically cross-linked palmitoyl glycol chitosan hydrogels[J].European Journal of Pharmaceutics and Biopharmaceutics,2003,55:35-45
    101 刘锋,卓仁禧.水凝胶的制备及应用[J].高分子通报,1995,(4):245-252
    102 Woerly S.[J].Materials Science Forum,1997,250:53-68
    103 吴季怀,林建明,魏月琳.高吸水保水材料[M].北京:化学工业出版社,2005
    104 何天白,胡汉杰主编.功能高分子与新技术[M].北京:化学工业出版社.2001:107-127
    105 P.J.Flory, The principles of polymer Chemistry[M]. Ithaca,New York:Cornell University Press,1954
    106 张邦华,朱常英,郭天瑛.近代高分子科学[M].北京:化学工业出版社,2006:323-335,473
    107 Kinsella J E, Damodaran S,German B.Physicochemical and functional proper- ties of oilseed proteins with emphasis on soy proteins[J].In New Protein Foods,1985,5:108-180
    108 吴国杰,崔英德.Cs-AA-HEMA复合水凝胶的合成及溶胀性能[J].化工学报,2006,57(9):2223-2228
    109 Sergey A Dergunova,Irina K Namb,Grigoriy A Mun,et al. Radiation synthesis and characterization of stimuli-sensitive chitosan-polyvinyl pyrrolidone hydrogels[J].Radiation Physics and Chemistry,2005,72;619-623
    110 何天白,胡汉杰.海外高分子科学的新进展[M].北京:化学工业出版社,1997:174-185
    111 Franson N M,Peppas N A.Influence of copolymer composition on non-Fickian water transport through glassy copolyrners[J].J. Appl. Polym. Sci.,1983,28: 1299-1310
    112 Korsemeyer N M,Merrwall E M,Peppas N A.Solute and penetrant diffusion in swellable polymers:Ⅱ, Verification of theoretical models[J]. J. Polym. Sci.: Polym.Phys Ed., 1986,24: 409-434
    113 Holden B.A,Sweeney D.F, et al. Epithelial erosions caused by thin high water content lens[J].Clin. Exp. Optom.,1986, 69:103-107
    114 蒋挺大.壳聚糖[M].北京:化学工业出版社,2001:1-64
    115 Kazunori Masuokaa,Masayuki Ishiharab,Takashi Asazuma,et al.The interaction of chitosanwith fibroblast growth factor-2 and its protection from inactivation [J]. Biomaterials,2005,26: 3277-3284
    116 Giuseppe Molinaroa, Jean-Christophe Lerouxa, Jacques Damas,et al.Biocompatibility of thermosensitive chitosan-based hydrogels: an in vivo experimental approach to injectable biomaterials[J].Biomaterials,2002,23: 2717-2722
    117 Majeti N V, Ravi Kumar.A review of chitin and chitosan applications[J]. Reactive & Functional Polymers,2000,46:1-27
    118 Long Zhao,Hiroshi Mitomo,Maolin Zhai,et al.Synthesis of antibacterial PVA/CM-chitosan blend hydrogels with electron beam irradiation[J].Carbohydrate Polymers,2003,53:439-446
    119 Mingzhen Wang,Yu Fang,Daodao Hu. Preparation and properties of chitosanpoly(N-isopropylacrylamide) full-IPN hydrogels[J].Reactive & Functional Polymers, 2001, 48: 215-221
    120 Alexandra Montembault,Christophe Viton,Alain Domard.Rheometric studies of the gelation of chitosan in a hydroalcoholic medium[J].Biomaterials,2005,26: 1633-1643
    
    121 Liliana Verestiuc,Claudia Ivanov,Eugen Barbu. Dual-stimuli-responsive hydro-gels based on poly(N-isopropylacrylamide)/chitosan semi-interpenetrating networks J]. International Journal of Pharmaceutics,2004,269:185-194
    
    122 Mojca Kerec,Marija Bogataj, Peter Veranic,et al.Permeability of pig urinary bladder wall:the effect of chitosan and the role of calcium[J].European Journal of Pharmaceutical Sciences,2005,25:113-121
    
    123 Masayuki Ishiharaa,Katsuaki Onob,Yoshio Saito.Photocrosslinkable chitosan: an effective adhesive with surgical applications[J].International Congress Series,2001,1223:251-257
    
    124 Mojca Kerec,Marija Bogataj,Peter Veranic,et al.Permeability of pig urinary bladder walhthe effect of chitosan and the role of calcium[J].European Journal of Pharmace-utical sciences,2005,25:113- 121
    
    125 N Minoura,T Koyano,N Koshizaki,et al.Preparation, properties and cell attachment/growth behavior of PVA/chitosan-blended hydrogels[J],Mater. Sci. Eng.,1998,C6:275-280.
    
    126 G Paradossi,R Lisi,M Paci,et al.New chemical hydrogels based on poly(vinyl alcohol)[J].J. Polym. Sci. Part A:Polym. Chem. 1996,34:3417-3425
    
    127 Muzzarelli RAA.Biochemical significance at exogenous chitins and chitosans in animals and patients[J].Biomaterials,1993,20:7-16.
    
    128 Carmen Alvarez-Lorenzo,Angel Concheiro,Alexander S Dubovik,et al. Temperature-sensitive chitosan-poly(N-isopropylacrylamide) interpenetrated networks with enhanced loading capacity and controlled release properties [J]. Journal of Controlled Release,2005,102:629-641
    
    129 X Qu,A Wirsen,A-C Albertsson.Novel pH-sensitive chitosan hydrogels:swelling behavior and states of water[J].Polymer,2000,41:4589-4598
    
    130 Z Zong,Y Kimura,M Takahashi,et al.Characterization of chemical and solid state structures of acylated chitosans[J].Polymer,2000,41;899-906
    
    131 H Caner,H Hasipoglu,O Yilmaz,et al.Graft copolymerization of 4-vinylpyridine on to chitosan. 1. By ceric ion initiation[J].Eur. Polym. J., 1998,34:493-497
    
    132 J Desbrieres,C Martinez,M Rinaudo.Hydrophobic derivatives of chitosan: Characterization and rheological behaviour[J].Int. J. Biol. Macromol.,1996,19: 21-28
    133 K R Holme,L D Hall.Chitosan derivatives bearing C_(10)-alkyl glycoside branches: a temperature induced gelling polysaccharide[J].Macromolecules, 1991,24:3828-3833
    134 G Yu,F G Morin,G A R Nobes,et al.Degree of acetylation of chitin and extent of grafting PHB on chitosan determined by solid state ~(15)N NMR[J].Macromolecules, 1999,32:518-520
    135 Chun KH,Kwon IC, Kim YH,et al.Preparation of sodium alginate microspheres containing hydrophilic β-lactam antibiotics[J].Arch. Pharm. Res., 1996, 19: 106-116
    136 E Ruel-Gariepy, A Chenite,C Chaput,et al.Characterization of thermosensitive chitosan gels for the sustained delivery of drugs[J]. International Journal of Pharmaceutics, 2000, 203: 89-98
    137 吴国杰,姚汝华.壳聚糖溶液流变学性质的研究[J].华南理工大学学报,1997,25(10):62-66
    138 杨庆.高强度壳聚糖纤维的制备及结构性能研究[D].东华大学博士论文,2005:13-16
    139 W.S.Wan Ngah,S.Ab Ghani,A.Kamari.Adsorption behaviour of Fe(Ⅱ) and Fe(Ⅲ) ions in aqueous solution on chitosan and cross-linked chitosan beads[J]. Bioresource Technology,2005,96:443-450
    140 J Bergera,M Reista,J.M Mayer.Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications[J].European Journal of Pharmaceutics and Biopharmaceutics,2004, 57: 19-34
    141 吴国杰.新型的生物医学材料——壳聚糖医用纤维的研究[D].华南理工大学硕士学位论文,1996:23
    142 莫秀梅,周涵新.甲壳胺的结晶度和结晶形态[J].功能高分子学报,1993,6(2):117-122
    143 Buchholz F L.[J].Superabsorbent Polymers,1994,573:27-38.
    144 B D Johnson,D J Beebe,W C Crone. Effects of swelling on the mechanical properties of a pH-sensitive hydrogel for use in microfluidic devices[J]. Materials Science and Engineering, 2004,C24:575-581
    145 Cui Ying-de(崔英德),Guo Jian-wei(郭建维), Liao Lie-wen(廖列文).Prepara- tion of acrylic superabsorbents with core shell structure by modified inverse suspension polymerization[J]. Journal of Chemical Industry and Engineering (China)(化工学报), 2000,12:723-724
    146 Liu Z S, Rempel G L. Preparation of superabsorbent polymers by crosslinking acrylic acid and acrylamide copolymers[J].Journal of applied polymer science, 1997,64(7):1345-1353
    147 Nagorski H.Characterization of a new superabsorbent polymer generation[J]. Polymeric. materials science and engineering[J],proceedings of the ACS division of polymeric materials science and engineering, 1993,69:560-561
    148 柳明珠,江洪申.高强度超强吸水剂研究[J].兰州大学学报(自然科学版),2002,38(2):106-110
    149 Suda Kiatkamjornwong, Wararuk Chomsaksakul, Manit Sonsuk. Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide[J]. Radiation Physics and Chemistry.2000(59):413-427
    150 朱文渊,崔英德,廖列文.HEMA-AA水溶液聚合合成高吸水性树脂研究[J].化工生产与技术.2002,9(6):12-14
    151 刘艳三,邹新禧.聚丙烯酰胺吸水性树脂的改性[J].湘潭大学自然科学学报,1996,4:46-48
    152 张健,孙民伟,张乐等.高吸水性树脂的耐盐性与凝胶强度改善的研究[J].石油化工,2002,12:994-997
    153 龙飞,张兰,何顺爱.膨润土-高吸水性复合树脂的制备[J].桂林工学院学报,2004,24(2):210-214
    154 张小红,崔笔江,崔英德.聚丙烯酸钠/高岭土复合高吸水性树脂的制备及性能研究[J].化工进展,2003,6:206-209
    155 张兰,龙飞,何洪泉.粘土-高吸水复合树脂的制备和吸水性能研究[J].硅酸盐通报,2004,(4):51-54
    156 路建美,朱秀林,胡逢吉等.乌头酸与丙烯酸钠的微波辐射共聚制高吸水性树脂[J].石油化工,1999,1:36-39
    157 邹黎明,高德川,王依民.制备工艺对农林用高吸水材料凝胶强度的影响[J].东华大学学报(自然科学版),2001,27(1):10-12
    158 吴国杰,崔英德.壳聚糖/聚醚半互穿网络水凝胶的合成与力学性能研究[J].功能材料,2005,36(9):1386-1388
    159 QIU Y, Park K.Environment-sensitive hydrogels for drug delivery[J]. Advanced Drug Delivery Reviews,2002,54:13-36
    160 马晓梅,赵喜安,唐小真.智能型水凝胶[J].化学通报,2004,(2):117-123
    161 张侃,张黎明.环境敏感水凝胶的研究进展[J].广州化学,2001,26(4):46-54
    162 Galaev I Y, Mattiasson B. Smart polymers and what they can do in biotechnology and medicine[J].Tibtech, 1999,17:335-340
    163 Jeong B, Gutowska A. Lessons from nature: stimuli-responsive polymers and their biomedical applications [J]. Trends in Biotechnology, 2002,20(7):305-311
    164 Majeti N V, Ravi K.A review of chitin and chitosan applications[J].Trends in Biotechnolgy:Reactive & Functional Polymers,2000,46: 1-27
    165 刘晓华,王晓工,刘德山.智能型水凝胶结构及响应机理的研究进展[J].化学通报,2000,(10):1-6
    166 Koyano T, Koshizaki N, Umehara H, et al.Surface states of PVA/chitosan blended hydrogels[J]. Polymer, 2000, 41 (12): 4461-4465
    167 姚康德,尹玉姬,成国祥等.壳聚糖基聚合物的生物医学研究进展[J].高技术通讯,1998,(9):55-58
    168 王伟,薄淑琴,秦汶.不同脱乙酰度壳聚糖Mark-Houwink方程的订定[J].中国科学B辑,1990,(11):1126-1131
    169 K L Shantha,D R K Harding.Preparation and in-vitro evaluation of poly[N-vinyl-2-pyrrolidone-polyethylene glycol diacrylate]-chitosan interpolymeric pH-responsive hydrogels for oral drug delivery[J].International Journal of Pharmaceutics,2000,207:65-70
    170 M N Khalid, F Agnely, NYagoubi,et al.Water state characterization, swelling behavior, thermal and mechanical properties of chitosan based networkks[J]. European Journal of Pharmaceutical Sciences,2002,15:425-432
    171 J Bergera,M Reista,J.M Mayer.Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications[J].European Journal of Pharmaceutics and Biopharmaceutics, 2004,57:19-34
    172 J Berger, M Reist,J M Mayer, et al.Structure and interactions inchitosan hydrogels formed by complexation or aggregation forbiomedical applications[J]. European Journal of Pharmaceuticsand Biopharmaceutics, 2004,57:35-52
    173 王璋,许时婴,汤坚.食品化学[M].北京:中国轻工业出版社,1999:7-44
    174 Dusek K,Patterson D.Transition in swollen polymer networks induced by intramolecular condensation [J], J Polym Sci Part A-2,1968,6:1209-1216
    175 Tanaka T.Collapse of gels and the critical endpoint[J].Physical Review Letter, 1978,40(12): 820-823
    176 Tanaka T.Gels[J].Scientific American, 1981,244:110-123
    177 Tanaka T, Nishio Z, Sun S T, et al. Collapse of gels in an electric field[J].Science, 1982,218: 467-469
    178 Hirokawa Y, Tanaka T. [J].Journal Chemistry Physics, 1984,81, Part Ⅱ: 6379-6387
    179 Tanaka T, Fillmore D,Sun S, et al.Phase transitions in ionic gels[J].Physical Review Letters, 1980,45(20):1636-1639
    180 Beltran S, Baker J P.Swelling equilibria for weakly ionizable temperaturesensitive hydrogels. Macromolecules, 1991,24: 549-551
    181 E Marsano,E Bianchi,S Vicini,et al. Stimuli responsive gels based on interpenetrating network of chitosan and poly(vinylpyrrolidone)[J].Polymer, 2005,46:1595-1600
    182 赵育,陈国华,陆小兰等.温度及pH敏感性羟乙基甲壳素水凝胶的合成及其性能研究[J].中国海洋大学学报,2005,35(2):309-312
    183 Davis T P, Huglin M B.Effect of composition on properties of copolymeric N-vinyl-2-pyrrolidone/methyl methacrylate hydrogels and organogels[J]. Polymer 1990,31:513-519
    184 Quinn F X,Mc Brierty V J.Water in hydrogels:3 Poly(hydroxyethyl Methacrylate)/saline solution systems[J]. Macromolecules, 1990,23:4576-4581
    185 Lee W F, Yuan W Y.Thermoreversible hydrogels Ⅺ: Effect of salt on the swelling properties of the (N-isopropylamide-co-sodium 2-acrylamido-2-methylpropyl sulfonate)copolymeric hydrogels[J].J. Appl. Polym. Sci.,2001,79:1675-1684
    186 D Klmpner, Frisch.Advances in interpenetrating polymer networks[J],Vol.Ⅰ. Lancaster:Technomlc, 1989
    187 H L Frisch,D Klempner, K C Frisch.Topologically interpenetrating elastomeric network.J.Polym. Sic.,Part B, 1969(7):775-784
    188 沈家瑞,贾德民.聚合物共混物与合金[M].1999:193-256
    189 郭宝春,邱清华,贾德民.互穿聚合物网络(IPN)技术在功能高分子中的应用[J].功能材料,2000,31(1):29-32
    190 吴国杰,崔英德,廖列文等.壳聚糖/聚醚半互穿网络水凝胶的性能[J].精细化工,2005,22(8):565-568
    191 Enscore D J. Hopfraberg H B.Strannett V T. Effect of particle size on the mechanism cotrolling n-hexane sorption in glassy polystyrene micropheres[J]. Polymer, 1977,18: 793-801
    192 Korsecmeyer N M.Merrwall E M.Peppas N A.Solute and penetrant diffusion in swellable polymers[J].J Polym Sci,Polym Phys Ed, 1986,24:409-434
    193 W S Wan Ngah,S Ab Ghani,A Kamari.Adsorption behaviour of Fe(Ⅱ) and Fe(Ⅲ) ions in aqueous solution on chitosan and crosslinked chitosan beads[J].Bioresource Technology,2005,96:443-450
    194 W S Wan Ngah,A Kamari,Y J Koay.Equilibrium and kinetics studies of adsorption of copper(Ⅱ) on chitosan and chitosan/PVA beads[J]. International Journal of Biological Macromolecules, 2004,34:155-161
    195 Minghua Ho, Daming Wang, Hsyucjen Hsich, et al. Perparation and Characterization of RGD-immobilized chitosan scaffolds[J]. Biomaterials,2005,26:3197-3206
    196 Kim S J, Lee C K, Lee Y M, et al. Electrical/pH-sensitive swelling behavior of polyelectrolyte hydrogels prepared with hyaluronic acid poly(vinyl alcohol) interpenetrating polymer networks[J].Reactive & Functional Polymers,2003,55:291-298
    197 严瑞瑄.水溶性高分子[M].北京:化学工业出版社,1999
    198 Dai W S, Barbari T A. Hydrogelmembranes with mesh size asymmetry based on the gradient cro sslinking of po ly (vinylalcohol)[J].Membrane Science, 1999, 156: 67-79.
    199 杨荣杰,乔丽坤,李雪春等.物理交联聚乙烯醇凝胶中氢键作用研究[J].北京理工大学学报,2004,24(11):1005-1008
    200 Carlos Peniche,Waldo Arguelles-Monal,Natalia Davidenko,et al. Self-curing membranes of chitosan/PAA IPNs obtained by radical polymerization: preparation, characterization and interpolymer complexation[J]. Biomaterials, 1999, 20:1869-1878
    201 杨安乐,陈长春,孙康,等.甲壳素的接枝共聚合反应功能高分子学报,1999,12(2):192-196
    202 Keisuke Kurtia,Mitsuo Kawata,Yoshiyuki Koyama,et al.Graft copolymerization of vinyl monomers onto chitin with cerium(Ⅳ) ion[J].Journal of Applied Polymer Science, 1991,42:2885-2991
    203 陈煌,陆铭,罗运军,等.甲壳素和壳聚糖的接枝共聚改性.高分子通报,2004,2:54-62
    204 Ming Kaizerman S.A new method for preparation of graft copolymers[J].J Polym Sci,1968,31:241-243
    205 Pottenger C R,Johnson D C. Mechanism of cerium oxidation of glucose and cellulose[J]. J Polym Sci.Part A-Ⅰ, 1970,8(1):301-320
    206 Garajans Na, Sanksv Sriniva. Efficiency of ceric leone fo r oxidation and polymerization:A review [J].J Macromol Sci Revmacromol Chem Phys,1998, 38(1): 53-76
    207 Lagos A,Yazdani-Pedram M.Ceric ion-initiated grafting of poly(methyl acrylate) onto chitin.Pure Appl Chem, 1992,29A(11):1007-1015
    208 Liw, Lizy, Liaows, et al. Chemical modification of biopolymers mechanism of model graft-copolymerization of chitosan [J]. J Biomater Sci, Poly Ed,1993, 4(5): 557-566
    209 Carlos Peniche,Waldo Arguelles-Monal, Natalia Davidenko,et al. Self-curing membranes of chitosan/PAA IPNs obtained by radical polymerization: preparation, characterization and interpolymer complexation[J]. Biomaterials, 1999, 20:1869-1878
    210 卢玲,袁直,石可瑜等.聚甲基丙烯酸羟乙酯树脂对胆红素的吸附研究[J].离子交换与吸附,2002,18(2):105-110
    211 Gulay Bayramoglu, M Yakup Arica. Procion Green H-4G immobilized on a new IPN hydrogel membrane composed of poly(2-hydroxyethylmethacrylate)/Chitosan: preparation and its application to the adsorption of lysozyme[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2002,202:41-52
    212 Wichterle O, Lim D.Hydrophilic gels for biologicaluse[J].Nature, 1960, 185:177
    213 Thomas P, Malcolm B.Studies on copolymeric hydrogels of N-vinyl-2-pyrrolidone with 2-hydroxyethyl methacrylate [J].Macromole-Cules,1989(22): 2824-2829
    214 Karlgard C C S,Wong N S, Jones L W, et al. In vitro uptake and release studies of ocular pharmaceutical agents by silicon-containing and p-HEMA hydrogels contact lens materials[J]. International Journal of Pharmaceutics,2003, 257(1):141-151
    215 Rao J K, Ramesh D, Vijaya, et al. Implantable controlled delivery systems for proteins based on collagen-pHEMA hydrogels[J].Biomaterials,1994(5):383-389
    216 Mohana R K, Padmanabha R M,Murali M Y. Synthesis and Water Absorbency of Crosslined Superabsorbent Polymers[J].J Appl Poly Sci,2002,85:1795-1800
    217 谭国馨.N-乙烯基吡咯烷酮共聚物水凝胶结构与性能的研究[D].广东工业大学博士学位论文,2004:47
    218 liu Y, Huglin M.Observations by DSC on bound water structure in some physically crosslinked hydrogels[J].Polym. Int., 1995,37:63-67
    219 葛小鹏,张宝文.大孔聚丙烯醛-邻羧基苯腙螯合树脂的合成及其性能的初步研究[J].光谱学与光谱分析,2003,23(6):1122-1124
    220 赵鸿斌,宁静恒,蔡剑等.系列长链烷氧基苯甲醛的合成研究[J].化学研究,2001,12(1):19-22
    221 冯长根,白林山,任启生.胺基化合物修饰戊二醛交联壳聚糖树脂的合成及其红外光谱研究[J].光谱学与光谱分析,2004,24(11):1315-1318
    222 Shin M,Kim S,Park S,et al.Synthesis and characteristics of the interpenetrating polymer network hydrogel composed of chitosan and polyallylamine[J].J.Appl. Polym. Sci.,2002,86:498-503
    223 顾国贤.酿造酒工艺学[M].北京:中国轻工业出版社,1996
    224 周永国,杨越冬,郭学民等.磁性壳聚糖微球的制备、表征及其靶向给药研究[J].应用化学,2002,19(12):1178-1182
    225 周华,姜岷,欧阳平凯.固定化细胞成型机械的研究综述[J].工业微生物,1998,28(3):43-45
    226 郑晓冬,何国庆,尹源明等.食品微生物学[M].杭州:浙江大学出版社,2001
    227 周德庆.微生物学教程[M].北京:高等教育出版社,2005,第二版
    228 丁耐克.食品风味化学[M].北京:中国轻工业出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700