用户名: 密码: 验证码:
基于L-赖氨酸骨架的APN抑制剂的计算机辅助设计、合成及活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:氨肽酶N(Aminopeptidase N,APN),也被称为CD13,是一类锌离子依赖性金属蛋白酶,广泛存在于小肠、肾及中枢神经系统的多种细胞表面。与正常细胞相比,该酶在肿瘤细胞表面高水平表达。研究发现,APN在肿瘤生长、侵袭和转移过程中发挥着重要作用。例如,APN可降解细胞外基质,促进原发肿瘤的生长侵袭,有利于肿瘤的转移;同时APN还可以促进肿瘤新生血管的形成,是肿瘤新生血管的调节器;另外该酶还能够降解胸腺肽和白介素,从而降低机体免疫机能。
     正因为APN与肿瘤的密切关系,APN抑制剂的研究已经成为抗肿瘤研究领域的一个热点。Bestatin作为第一个上市的APN抑制剂,临床上主要用于治疗急性成人非淋巴性白血病。近年又发现许多天然APN抑制剂,如Probestatin,Amastatin,Curcumin等;另外,人们还合成了许多小分子化合物APN抑制剂,如α-氨基磷酸抑制剂,β-氨基硫醇类抑制剂等。本课题组以APN为靶点,经十几年的研究亦报道了许多小分子类肽化合物。
     本研究以APN为靶点,在充分调研文献的基础上,通过计算机辅助药物设计技术,设计、合成一系列以L-赖氨酸为基本骨架的小分子化合物,并对它们进行初步的活性筛选,以期发现具有较好的APN抑制活性的先导化合物。
     方法:由APN的晶体结构及抑制剂与酶的作用模式可以看出与APN活性位点相对应,对应的APN抑制剂应由三个部分组成:A疏水性芳环侧链;B锌离子螯合基团位于中间连接片段上;C疏水性芳环侧链。A和C两个疏水侧链经B部分相连。
     本研究利用已知的APN抑制剂建立合理的APN受体评价模型,通过常见的锌离子螯合基团,采用SYBYL/Unity模块从NCI2000化合物库中挑选出具有锌离子螯合基团的化合物。而后将这些化合物与所建立的APN受体评价模型进行对接,挑选出打分较高的化合物作为中靶化合物。在此过程中,库中原有的APN抑制剂Bestatin(ID:265489)、Phebestin(ID:702307)、para-hydroxybestatin(ID:327461)作为测试分子以验证方法的有效性。参考中靶化合物和一些已知的APN抑制剂,进而设计了一系列结构全新的以L-赖氨酸为骨架的目标化合物。
     本研究将目标化合物进行了体外抑酶实验、体外肿瘤细胞(HL-60,ES-2,K562,A549,H7402,PLC)生长抑制以及体内抗肿瘤转移实验,从中筛选出具有APN抑制活性的抗癌先导化合物。
     结果:本文共设计并合成了44个目标化合物,并对所有化合物通过红外光谱、核磁共振氢谱、电喷雾质谱等方法进行了结构确证。经查阅文献证实,所合成的目标化合物为新型化合物,未见文献报道。
     在C系列化合物中,化合物C7的抑酶活性优于两个阳性对照药B6和Bestatin,化合物C20的抑酶活性与它们相近。在D系列化合物中,化合物D9、D15的抑酶活性优于两个阳性对照药B6和Bestatin,化合物D24的抑酶活性与二者相近。
     MTT法体外细胞实验测定了目标化合物对HL-60人白血病细胞株、ES-2卵巢透明癌细胞株、K562人白血病细胞株、A549人肺腺癌细胞株、H7402人肝癌细胞株及PLC人肝癌细胞株的生长抑制作用,结果显示对APN酶抑制作用较强的化合物C7、D9、D14、D15、D23同样有很强的HL-60细胞抑制活性,超过了阳性对照药Bestatin;化合物D14、D21的ES-2细胞抑制活性优于阳性对照,D23与之相当;化合物D21的H7402细胞抑制活性优于阳性对照,C7、D24与之相当;化合物C7、C20、D9、D14、D15、D19、D21、D23、D24的PLC细胞抑制活性均优于阳性对照。
     本文在虚拟筛选的基础上,以所设计、合成的化合物为对象,利用计算机软件进行了初步的定量构效关系总结。采用比较分子场分析方法(CoMFA)建立了L-赖氨酸类APN抑制剂的定量构效关系(QSAR)模型。通过对CoMFA模型立体场等势线图和静电场等势线图的分析,建立的COMFA模型具有较高的交叉验证系数q~2和一定的预测能力。
     最后,我们还得到一个化合物D24与突变嗜酸热源菌三角交互作用因子F3的共结晶复合物。
     结论:本研究基于APN的晶体结构及抑制剂与酶的作用模式,利用计算机软件进行设计、合成的L-赖氨酸类化合物具有很好的APN抑制活性。所设计的合成路线科学合理,原料经济易得。通过初步的活性测试发现了具有进一步研究价值的抗癌先导化合物。其中,化合物C7、D9、D15的抑酶活性优于阳性对照药Bestatin,可作为先导化合物用于指导下一轮的结构优化。此外,我们基于化合物结构和活性数据建立了有一定预测能力的定量构效关系模型,为今后新型氨肽酶抑制剂的研究奠定了基础。
Objective: Aminopeptidase N (APN), as known as CD13, is a member of zinc dependent metalloproteinase. It is widely expressed on the surface of renal and intestinal brush border cells, synaptic membranes in central systems and APN is over-expressed on the surface of some tumor cells. APN is demonstrated to play a key role in the process of tumor growth, invasion and metastasis. The functional aspects are briefly summarized: (1). Degrading extracellular matrix, promoting the growth and invasion of tumor cells; (2). As a regulator of novel vessels, promoting the angiogenesis of tumor tissues; (3). Degrading immunoactive substance and bioactive peptides, such as interleukin, thymopentin, enkephalin and so on.
     More and more researches focus on the field of anti-aminopeptidase N drug as the enzyme has close relationship with the: some cancers. Most of the research on the anti-aminopeptidase N drug is to find aminopeptidase N inhibitor possessed inhibitory activity. Bestatin, the first marketed drug as aminopeptidase N inhibitor, now is clinically used to prolong the survival of patients with acute adult nonlymphcytic leukemia. In recent years, many natural aminopeptidase N inhibitors have been reported, such as Probestatin, Amastatin, Curcumin. Moreover, numerous synthetic APN inhibitors have also been reported, such asα-aminophosphonates APN inhibitors,β-amino- thiols APN inhibitors. In our group, we also had reported numerous synthetic small molecular peptidomimetic compounds targeted to aminopeptidase N to find novel scaffolds which possess potential aminopeptidase N inhibitory activities as anticancer lead compounds in the past ten years.
     We used computer-aided drug design software to design and synthesize a series of compounds. Then we hope to find lead compounds with novel scaffold which possess potential aminopeptidase N inhibitory activity.
     Methods: According to the active site of APN, the APN inhibitors can be divided into three parts. Part A: heterocyclic rings or hydrophobic groups; Part B: linker with Zinc-Binding-Group (ZBG); Part C: heterocyclic rings or hydrophobic groups. Part A and C was linked by Part B
     First, four rational protein models of APN were built and tested by known active compounds. Secondly, the compounds which has zinc binding groups were picked out from NCI2000 database by SYBYL/Unity. Followly, these compunds were docked into the active site of APN models and the top ranked compounds were picked out. During this program, Bestatin (ID: 265489)、Phebestin (ID: 702307)、para-hydroxybestatin (ID: 327461) were taken as test compounds. At last, L-lysine derivates as our target compounds were built from top ranked compounds in docking and some known active compounds.
     As a result, the target compounds are designed rationally and synthesized easily. In addition, enzyme assay, cancer cell (HL-60, ES-2, K562, A549, H7402, 2PLC) proliferation assay and in vivo experiment were processed in this research.
     Results: We obtained 44 target compounds and all of them are novel without any report by now with the structures identified by IR, ~1H-NMR and ESI-MS.
     Preliminary activity evaluation against APN showed that compound C7 was better than positive control Bestatin and C20 was equivalent. For D series, compounds D9 and D15 were better than positive control Bestatin and compound D24 was equivalent.
     The results of in vitro growth inhibition against six tumor cells indicated that most potent APN inhibitors displayed good inhibitory effect against the growth of these tumor cells. Compounds C7、D9、D14、D15、D23 exhibited good potency against the proliferation of HL-60 cell line. Compounds C7、D14、D21、D23 showed better than Bestatin against ES-2 cell line and D23 was equivalent. Compound D21 showed better than Bestatin against H7402 cell line; and C7、D24 were equivalent. Compounds C7、C20、D9、D14、D15、D19、D21、D23、D24 showed better than Bestatin against PLC cell line.
     The structure activity relationship (SAR) was summarized based on the structure and the activity data of the target compounds with the scaffold L-lysine. Comparative Molecular Field Analysis (CoFAR) was utilized to establish the quantitative structure activity relationship (QSAR) of the target compounds. The steric contour map and the electrostatic contour map of the CoMFA model showed the model had good cross-validated coefficient q~2 and predictive potency.
     Finally, we obtain a complex of compound D24 and the mutational tricorn interacting factor F3 from thermoplasma acidophilum.
     Conclusions: In conclusion, based on the virtual screening of APN, L-lysine derivates as APN inhibitors were designed and synthesized. We reported a convenient and economical method of the synthesis of APN inhibitors. Preliminary activity assays showed that most compounds displayed good APN inhibitory effect. Compounds C7、D9、D15 showed better than positive control Bestatin and could be used as lead compounds in the future. We also established a QASR model of target compounds which is beneficial for the design APN inhibitor in the future.
引文
[1] Jeffery, C.J. Moonlighting proteins: old proteins learning new tricks[J]. Trends Genet. 2003,19,415-417.
    
    [2] Hooper N.M. Families of zinc metalloproteases[J]. FEBS Lett., 1994, 354(1): 1-6.
    [3] Antczak C, De Meester I., Bauvois B. Ectopeptidases in pathophysiology[J].Bioessays. 2001, 23(3):251-260.
    [4] Bauvois B., Dauzonne D. Aminopeptidase-N/CD13 (EC 3.4.11.2) inhibitors: chemistry, biological evaluations, and therapeutic prospects[J]. Med. Res. Rev., 2006, 26(1): 88-130.
    [5] Firla B., Arndt M., Frank K.,et al. Extracellular cysteines define ectopeptidase (APN, CD13) expression and function[J]. Free Radical Biology Medicine, 2002, 32(7): 584-595.
    [6] Vlahovic P., Stefanovic V. Kidney ectopeptidases. Structure, functions and clinical significance[J]. Pathol Biol (Paris), 1998,46(10):779-786.
    [7] Noble F., Banisadr G, Jardinaud F.,et al. First discrete autoradiographic distribution of aminopeptidase N in various structure of rat brain and spinal cord using the selective iodinated inhibitor [1251] RB129[J]. Neuroscience, 2001, 105(2): 479-488.
    [8] Waksman G, Bouboutou R., Devin J.,et al. In vitro and in vivo effects of kelatorphan on- enkephalin metabolism in rodent brain[J]. Eur. J. Pharmacol. 1985, 117(2): 233-243.
    [9] Montiel J.L., Cornille F., Roques B.P.,et al. Nociceptin/orphanin FQ metabolism: role of aminopeptidase and endopeptidase 24.15[J]. J. Neurochem. 1997, 68(1): 354-361.
    [10] Lerche C, Vogel L.K., Shapiro L.H., et al. Human aminopeptidase N is encoded by 20 exons[J]. Mamm. Genome, 1996, 7(9):712-713.
    
    [11] Watt V.M.,Willard H.F. The human aminopeptidase N gene: Isolation, chromosome localization, and DNA polymorphism analysis[J]. Hum. Genet., 1990, 85(6): 651-654.
    
    [12] Thompson J.D., Gibson T.J., Plewniak F., et al. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Res., 1997, 24: 4876-4882.
    [13] Rost N.D., Barrett A.J., MEROPS: the peptidase database[J]. Nucl. Acida Res. 2000, 28(1):323-325.
    [14] Sjostrom H., Noren O., Olsen J. Structure and function of aminopeptidase N[B]. Adv. Exp.Med. Biol, 2000, 477:25-34.
    [15] Onohara Y., Nakajima Y., Ito K.,et al. Crystallization and preliminary X-ray characterization of aminopeptidase N from Escherichia coli[J]. Acta. Cryst., 2006, 62(7):699-701.
    [16] Ito K., Nakajima Y., Onohara Y., et al. Crystal structure of aminopeptidase N (proteobacteria alanyl aminopeptidase) from Escherichia coli and conformational change of methionine 260 involved in substrate recognition[J]. J. Biol. Chem., 2006,281(44):33664-33676.
    [17] Addlagatta A., Gay L., Matthews B.W. Structure of aminopeptidase N from Escherichia coli suggests a compartmentalized, gated active site[J]. Proc. Natl. Acad. Sci. U. S. A., 2006,103(36): 13339-13344.
    [18] Nocek B., Mulligan R., Bargassa M., et al. Crystal structure of aminopeptidase N from human pathogen Neisseria meningitides[J]. Proteins, 2007,70(1):273-279.
    [19] Sato Y. Role of aminopeptidase in angiogenesis[J]. Biol. Pharm. Bull., 2004, 27(6):772-776.
    [20] Saiki I., Fujii H., Yoneda J., et al. Pole of aminopeptidase N (CD13) in tumor-cell invasion and extracellular matrix degradation[J]. Int. J. Cancer, 1993, 54(1), 137-143.
    [21] Menrad A., Speicher D., Wacker J., et al. Biochemical and functional characterization of aminopeptidase N expressed by human melanoma cells[J]. Cancer Res., 1993, 53(6):1450-1455.
    [22] Mitsui T., Nomura S., Itakura A., et al. Role of aminopeptidases in the blood pressure regulation[J]. Biol. Pharm. Bull., 2004, 27(6): 768-771.
    [23] Hattori A., Tsujimoto M. Processing of antigenic peptides by aminopeptidases [J]. Biol.Pharm. Bull., 2004, 27(6):777-780.
    [24] Bedir A.,Ozener I.C., Emerk K.Urinary leucine aminopeptidase is a more sensitive indicator of early renal damage in non-insulin-dependent diabetics than microalbuminuria[J]. Nephron, 1996, 74(1 ):110-113.
    [25] Shimizu T., Tani K., Hase K., et al. CD13/aminopeptidase N-induced lymphocyte involvement in inflamed joints of patients with rheumatoid arthritis[J]. Arthritis. Rheum.,2002, 46(9), 2330-2338.
    [26] Sloane P.D., Zimmerman S., Suchindran C., et al.The public health impact of Alzheimer's disease, 2000-2050: potential implication of treatment advances[J]. Annu. Rev. Public Health, 2002,23:213-231.
    [27] Bauvois B., Dauzonne D. Aminopeptidase-N/CD13 (EC 3.4.11.2) inhibitors: chemistry,biological evaluations, and therapeutic prospects[J]. Med. Res. Rev., 2006, 26(1): 88-130.
    [28] Look A.T., Ashmun R.A., Shapiro L.H., et al. Human myeloid plasma membrane glycoprotein CD13 (gpl50) is identical to aminopeotidase N[J]. /. Clin. Invest., 1989,83(4): 1299-1307.
    [29] Soderberg C, Giugni T.D., Zaia J.A., et al. CD13 (human aminopeptidase N) mediates human cytomegalovirus infection[J].,/. Virol. 1993,67(11): 6576-6585.
    [30] Paola Mina-Osorio. The moonlighting enzyme CD13: old and new functions to target.Trends Mol Med. 2008, 14(8):361-71.
    [31] Luciani N., Marie-Claire C, Ruffet E., et al. Characterization of Glu350 as a critical residue involved in the N-terminal amine binding site of aminopeptidase N (EC3.4.11.2): Insights into its mechanism of action[J]. Biochemistry, 1998, 37(2): 686-692.
    [32] Rudberg P. C, Tholander F., Thunnissen M. M., et al. Leukotriene A4 hydrolase/aminopeptidase. Glutamate 271 is a catalytic residue with specific roles in two distinct enzyme mechanisms[J]. J. Biol. Chem., 2002, 277 (2): 1398-1404.
    
    [33] Jiang W., Bond J.S.,Families of metalloendopeptidases and their relationships[J]. FEBS Lett., 1992, 312(2-3): 110-114.
    [34] Hangauer D. G, Monzingo A. F., Matthews B. W. An interactive computer graphics study of thermolysin-catalyzed peptide cleavage and inhibition by N-carboxymethyl dipeptides[J].Biochemistry. 1984, 23(24): 5730-5741.
    [35] Holmes M. A., Matthews B. W. Binding of hydroxamic acid inhibitors to crystalline thermolysin suggests a pentacoordinate zinc intermediate in catalysis[J]. Biochemistry. 1981,20(24): 6912-6920.
    [36] Mitsui T., Nomura S., Itakura A., et al. Role of aminopeptidases in the blood pressure regulation[J]. Biol. Pharm. Bull., 2004, 27(6): 768-771.
    [37] Saiki I., Fujii H., Yoneda J., et al. Role of aminopeptidase N (CD13) in tumor-cell invasion and extracellular matrix degradation[J]. Int. J. Cancer, 1993, 54(1), 137-143.
    [38] Fujii H., Nakajima M, Saiki I., et al. Human melanoma invasion and metastasis enhancement by high expression of aminopeptidase N/CD13[J]. Clin. Exp. Metastasis, 1995,13(5): 337-344.
    [39] Dixon J., Kaklamanis L., Turley H., et al. Expression of aminopeptidase-n (CD 13) in normal tissues and malignant neoplasms of epithelial and lymphoid origin[J]. J. Clin.Pathol., 1994,47(1):43-47.
    [40] Sato Y. Role of aminopeptidase in angiogenesis[J]. Biol. Pharm. Bull, 2004, 27(6):772-776.
    [41] Ishii K., Usui S., Sugimura Y., et al. Aminopeptidase N regulated by zinc in human prostate participates in tumor cell invasion[J]. Int. J. Cancer, 2001, 92(1): 49-54.
    [42] Kido A., Krueger S., Haeckel C., et al. Inhibitory effect of antisense aminopeptidase N (APN/CD13) cDNA transfection on the invasive potential of osteosarcoma cells[J]. Clin.Exp. Metastasis, 2003, 20(7): 585-592.
    [43] Hanahan D., Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis[J]. Cell, 1996, 86(3):353-364.
    [44] Bhagwat S.V., Petrovic N., Okamoto Y, et al.The angiogenic regulator CD13/APN is a transcriptional target of Ras signaling pathways in endothelial morphogenesis[J]. Blood,2003, 101(5): 1818-1826.
    [45] Ikeda N., Nakajima Y, Tokuhara T. et al. Clinical Significance of Aminopeptidase N/CD13 Expression in Human Pancreatic Carcinoma[J]. Clin. Cancer Res., 2003, 9(4): 1503-1508.
    [46] Aozuka Y., Koizumi K., Saitoh Y, et al: Anti-tumor angiogenesis effect of aminopeptidase inhibitor bestatin against B16-BL6 melanoma cells orthotopically implanted into syngeneic mice[J]. Cancer Lett., 2004, 216(1): 35-42.
    [47] Bauvois B. Transmembrane proteases in cell growth and invasion: new contributors to angiogenesis[J]. Oncogene, 2004, 23(2):317-329.
    
    [48] Zetter B.R. Angiogenesis and tumor metastasis[J]. Annu. Rev. Med, 1998,49: 407-424.
    [49] Bussolino F., Mantovani A., Persico G. Molecular mechanisms of blood vessel formation[J]. Trends Biochem. Sci., 1997, 22(7): 251 -256.
    [50] Scornik O. A., Botbol V.. Bestatin as experimental tool in mammals[J]. Curr. Drug Metab.,2001, 2(1): 67-85.
    [51] Alexander N.S., Juergen Langner, Manfred Herrmann, et al. Aminopeptadase N/CD13 is directly linked to signal transduction pathways in monocytes[J]. Cell. Immunol., 2000,201(1): 22-32
    [52] Tani K., Ogushi F., Huang L., et al. CD13/aminopeptidase N, a Novel Chemoattractant for T Lymphocytes in Pulmonary Sarcoidosis[J]. Am. J. Respir. Crit. Care Med., 2000,161(5):1636-1642.
    [53] Lohn M., Mueller C, Langner J. Cell cycle retardation in monocytoid cells induced by aminopeptidase N (CD13) [J]. Leuk. Lymphomcu, 2002, 43(2): 407-413.
    [54] Cohen M. L., Geary L. E., Wiley K. S. Enkephalin degradation in the guinea-pig ileum: effect of aminopeptidase inhibitors, puromycin, and bestatin[J]. J. Pharmacol. Exp. Ther.1983, 224(2): 379-385.
    [55] Ahmad S., Wang L., Ward P. E. Dipeptidyl (amino) peptidase IV and aminopeptidase M metabolize circulating substance P in vivo[J]. J. Pharmacol. Exp. Ther., 1992, 260(3):1257-1261.
    [56] Furuhashi M., Mizutani S., Kurauchi, O., et al. In vitro degradation of opioid peptides by human placental aminopeptidase M[J]. Exp. Clin. Endocrinol., 1988,92(2): 235-237.
    [57] Hanahan D., Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis[J]. Cell, 1996,86(3):353-364.
    [58] Curnis F., Sacchi A., Borgna L., et al. Enhancement of tumor necrosis factor alpha antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13). Nat. Biotechnol, 2000,18(11): 1185-1190.
    [59] Ichinose Y., Genka K., Koike T., et al. Randomized double-blind placebo-controlled trial of bestatin in patients with resected stage I squamous-cell lung carcinoma[J]. J. Natl. Cancer Inst., 2003, 95(8): 605-610.
    [60] Curnis F., Gasparri A., Sacchi A.., et al. Targeted Delivery of IFN{gamma} to Tumor Vessels Uncouples Antitumor from Counterregulatory Mechanisms[J]. Cancer Res., 2005,65(7): 2906-2913.
    [61] Umezawa H., Aoyagi T., Suda H., et al. Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes[J]. J. Antibiot., 1976, 29(1): 97-99.
    [62] Mathe G Bestatin, an.aminopeptidase inhibitor with a multi-pharmacological function[J].Biomed. Pharmacother., 1991, 45(2-3): 49-54.
    [63] Van Hensbergen Y., Broxterman H.J., Peters E., et al. Aminopeptidase inhibitor bestatin stimulates microvascular endothelial cell invasion in a fibrin matrix[J]. Thromb. Haemost.,2003,90(5): 921-929.
    [64] Ino K., Bierman P.J., Varney M.L., et al. Monocyte activation by an oral immunomodulator (bestatin) in lymphoma patients following autologous bone marrow transplantation[J].Cancer Immunol. Immunother., 1996, 43(4): 206-212.
    [65] Ota K., Kurita S. Immunotherapy with bestatin for acute non-Lymphocytic Leukemia(ANLL)in adults[J]. Jpn. J. Cancer Chemother., 1984, 11(2): 2442-2750.
    [66] Ota K.,Kurita S. Results of investigation into prognosis immunotherapy with bestatin for acute nonlymphocytic Leukemia in adults[J]. Jpn.J. Cancer Chemother., 1986,13(1):1017-1025
    [67] Ota K., Ogawa N. Randomized controlled study of chemoimmunotherapy with bestatin of acute nonlymphocytic leukemia in aclults[J]. Biomed. Pharmacother, 1990, 44(2): 93-101.
    
    [82] Aoyagi T., Tobe H., Kojima F,, et al. Amastatin, an inhibitor of aminopeptidase A, produced by actinomycetes[J]. J. Antibiot., 1978, 31(6): 636-638.
    [68] Repic Lampret B., Kidric J., Kralj B., et al. Lapstatin, a new aminopeptidase inhibitor produced by Streptomyces rimosus, inhibits autogenous aminopeptidases[J]. Arch.Microbiol., 1999, 171 (6): 397-404.
    [69] Aoyagi T., Yoshida S., Nakamura Y. et al. Probestin, a new inhibitor of aminopeptidase M,produced by Streptomyces azureus MH663-2F6. I. Taxonomy, production, isolation,physico-chemical properties and biological activities[J]. J. Antibiot., 1990, 43(2): 143-148.
    [70] Nagai M., Kojima F., Naganawa H., et al. Phebestin, a new inhibitor of aminopeptidase N,produced by Streptomyces sp. MJ716-m3[J].J. Antibiot., 1997, 50(1): 82-84.
    [71] Shim J.S., Kim J.H., Cho H.Y., et al. Irreversible inhibition of APN/aminopeptidase N by the antiangiogenic agent curcumin[J].Chem.Biol.,2003,10(8):695-704.
    [72]Egan M.E.,Pearson M.,Weiner S.A.,et al.Curcumin,a major constituent of turmeric,corrects cystic fibrosis defects[J].Science,2004,304(5670):600-602.
    [73]Chung M.C.,Lee H.J.,Chun H.K.,et al.Bestatin analogue from Streptomyces neyagawaensis SL-387[J].Biosci.Biotechnol.Biochem.,1996,60(5):898-900.
    [74]Shin J.S.,Lee H.S.,Shin J.,et al.Psammaplin A,a marine natural product,inhibits aminopeptidase N and suppresses angiogenesis in vitro[J].Cancer.Lett.,2004,203(2):163-169.
    [75]Melzig M.F.,Bormann H.Betulinic acid inhibits aminopeptidase N activity[J].Planta Med.,1998,64(7):655-657.
    [76]Aoyagi T.,Yoshida S.,Matsuda N.,et al.Leuhistin,a new inhibitor of aminopeptidase M,produced by Bacillus laterosporus BMI156-14F1.I.Taxonomy,production,isolation,physico-chemical properties and biological activities[J].J.Antibiot.,1991,44(6):573-578.
    [77]Sedo A.,Vlasicova K.,Bartak P.,et al.Quaternary benzo[c]phenanthridine alkaloids as inhibitors of aminopeptidase N and dipeptidyl peptidase Ⅳ[J].Phytoter.Res.,2002,16(1):84-87.
    [78]Huang K.,Takahara S.,Kinouchi T.,et al.Alanyl aminopeptidase from human seminal plasma:purification,characterization,and immunohistochemical localization in the male genital tract[J].J.Biochem.,1997,122(4):779-787.
    [79]Yamamoto Y.,Li Y.H.,Ushiyama I.,et al.Puromycin-sensitive alanyl aminopeptidase from human liver cytosol:purification and characterization[J].Forensic.Sci.Int.,2000,113(1-3):143.
    [80]Giannousis P.P.,Bartlett P.A.Phosphorus amino acid analogues as inhibitors of leucine aminopeptidase[J].J.Med.Chem.,1987,30(9):1603-1609.
    [81]Chent H.,Noble F.,Coric P.,et al.Aminophosphinic inhibitors as transition state analogues of enkephalin-degrading enzymes:a class of central analgesics[J].Proc.Natl.Acad.Sci.U.S.A.,1998,95(20):12028-12033.
    [82]Fournie-Zaluski M.,Coric P.,Turcaud S.,et al.Potent and systemically active aminopeptidase N inhibitors designed from active-site investigation[J].J.Med.Chem.,1992,35(7):1259-1266.
    [83]Bergin J.D.,Clapp C.H.Inhibition of aminopeptidase M by alkyl D-cysteinates[J].J.Enzym.Inhib.,1989,3(2):127-131.
    [84]马涛,徐文方,王俊丽等.AHPA衍生物的设计、合成及搞癌活性研究[J].中国药物化学杂志,2003,13(2):70-75.
    [85]Andersson L.,Isley T.C.,Wolfenden R.Alpha-aminoaldehydes:transition state analogue inhibitors of leucine aminopeptidase[J].Biochemistry,1982,21(17):4177-4180.
    [86]Wang,J.,Xu,W.The preparation of novel L-iso-glutamine derivativesas potential antitumor agents.J.Chem.Res.Synop.,2003,12,789-791.
    [87]Li,Q.B.,Xu,W.F.Novel 3-galloylamido-N'-substituted-2,6- piperidinedione-N- acetamide peptidomimetics as metalloproteinase inhibitors.Bioorganic & Medicinal Chemistry Letters,2007,17,2935-2938.
    [88]Miyachi H.,Kato M.,Kato F.,et al.Novel potent nonpeptide aminopeptidase N inhibitors with a cyclic imide skeleton[J].J.Med.Chem.,1998,41(3):263-265.
    [89]Takahashi H.,Komoda M.,Kakuta H.,et al.Preparation of novel specific aminopeptidase inhibitors with a cyclic imide skeleton[J].Yakugaku Zasshi,2000,120(10):909-921.
    [90]Lee J.,Shim J.S.,Jung S.A.,et al.N-Hydroxy-2-(naphthalene-2-ylsulfanyl)-acetamide,a novel hydroxamic acid-based inhibitor of aminopeptidase N and its anti-angiogenic activity [J].Bioorg.Med.Chem.Lett.,2005,15(1):181-183.
    [91]Lindsay C.K.,Gomez D.E.,Thorgeirsson U.P.Effect of flavone acetic acid on endothelial cell proliferation:evidence for antiangiogenic properties[J].Anticancer Res.,1996,16(1):425-431.
    [92]Bibby M.C.,Double J.A.Flavone,acetic acid-from laboratory to clinic and back[J].AntiCancer Drugs,1993,4(1),3-17.
    [93]Ocain T.D.,Rich D.H.Alpha-Keto amide inhibitors of aminopeptidases[J].J.Med.Chem.,1992,35(3):451-456.
    [94]Ocain T.D.,Rich D.H.Synthesis of sulfur-containing analogues of bestatin.Inhibition of aminopeptidases by alpha-thiolbestatin analogues[J].J.Med.Chem.,1988,31(11):2193-2199.
    [95]Schalk C.,d'Orchymont H.,Jauch M.F.,et al.3-Amino-2-tetralone derivatives:novel potent and selective inhibitors of aminopeptidase-M(EC 3.4.11.2)[J].Arch Biochem Biophys,1994,311(1):42-46.
    [96]徐筱杰主编.计算机辅助药物分子设计,化学工业出版社,2004.
    [97]陈凯先主编.计算机辅助药物设计:原理、方法及应用,上海科学技术出版社,2000.
    [98]叶德泳主编.计算机辅助药物设计导论,化学工业出版社,2004.
    [99]徐文方主编.药物设计学,人民卫生出版社,2007.
    [100]Reddy ChS,Vijayasarathy K,Srinivas E.et al.Homology modeling of membrane proteins:a critical assessment[J].Comput Biol Chem,2006,30(2):120-6.
    [101]http://www.rcsb.org/pdb/home/home.do
    [102]http://www.ebi.ac.uk/msd/
    [103]http://www.pdbj.org/
    [104]http://www.bmrb.wisc.edu/
    [105]DesJarlais,R.L.;Dixon,J.S.A Shape-and Chemistry-Based Docking Method and Its Use in the Design of HIV-1 Protease Inhibitors.J.Comput.Aided Mol.Des.1994,8,231-242.
    [106]Iwata,Y.;Arisawa,M.;Hamada,R;Kita,Y.;Mizutani,M.Y.;Tomioka,N.;Itai,A.;Miyamoto,S.Discovery of Novel Aldose Reductase Inhibitors Using a Protein Structure-Based Approach:3D-Database Search Followed by Design and Synthesis.J.Med.Chem.2001,44,1718-1728.
    [107]Enyedy,I.J.;Ling,Y.;Nacro,K.;Tomita,Y.;Wu,X.;Cao,Y.;Guo,R.;Li,B.;Zhu,X.;Huang,Y.;Long,Y.;Roller,P.P.;Yang,D.;Wang,S.Discovery of Small-Molecule Inhibitors of Bcl-2 through Structure-Based Computer Screening.J.Med.Chem.2001,44,4313-4378.
    [108]Fischer,E.Einfiuss der Configuration auf die Wirkung der Enzyme.Ber.Dtsch.Chem.Ges.1894,27,2985-2993.
    [109]Dessalew N,Bharatam PV.Investigation of potential glycogen synthase kinase 3 inhibitors using pharmacophore mapping and virtual screening[J].Chem Biol Drug Des.2006,68(3):154-65.
    [110]Radestock S,Weil T,Renner S.Homology model-based virtual screening for GPCR ligands using docking and target-biased scoring[J].J Chem Inf Model,2008,48(5):1104-17.
    [111]Dessalew N,Bharatam PV.Identification of potential glycogen kinase-3 inhibitors by structure based virtual screening[J].Biophys Chem,2007,128(2-3):165-75.
    [112]Cho Y,Ioerger TR,Sacchettini JC.Discovery of novel nitrobenzothiazole inhibitors for Mycobacterium tuberculosis ATP phosphoribosyl transferase(HisG) through virtual screening[J]. J Med Chem, 2008, 51(19):5984-92.
    [113] Ewing, T. J. A.; Makino, S.; Skillman, A. G.; Kuntz, I. D. Dock 4.0: Search Strategies for Automated Molecular Docking of Flexible Molecule Databases. J. Comput. Aided Mol. Des.2001,75,411-428.
    [114] Cramer R.D., Patterson D.E., Bunce J.D. Comparative molecular field analysis (CoMFA). 1.Effect of shape on binding of steroids to carrier proteins[J]. J Am Chem Soc 1988,110:5959-67.
    [115] Klebe G, Abraham U, Mietzner T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity[J]. J Med Chem, 1994, 37(24):4130-46.
    [116] Du Q.S., Huang R.B., Chou KC. Recent advances in QSAR and their applications in predicting the activities of chemical molecules, peptides and proteins for drug design[J].Curr Protein Pept Sci, 2008, 9(3):248-60.
    [117] Yang GF, Huang X. Development of quantitative structure-activity relationships and its application in rational drug design[J]. Curr Pharm Des, 2006, 12(35):4601-ll.
    [118] Debnath A.K., Application of 3D-QSAR techniques in anti-HIV-1 drug design--an overview[J]. Curr Pharm Des, 2005, 11(24):3091-110.
    [1] Jeffrey W. G., Florence S., et al. Journal of Molecular Graphics and Modelling[J], 1998, 16,139-143.
    [2] Kim, H., Lipscomb, W.N. X-ray crystallographic determination of the structure of bovine lens leucine aminopeptidase complexed with amastatin: formulation of a catalytic mechanism featuring a gem-diolate transition state. Biochemistry[J], 1993, 32, 8465-8478.
    [3] Thunnissen, M.M., Nordlund, P., Haeggstrom, J.Z. Crystal structure of human leukotriene A(4) hydrolase, a bifunctional enzyme in inflammation. Nat.Struct.Biol[J]. 2001, 8, 131-135.
    [4] Thunnissen, M.M.G.M., Andersson, B., Wong, C. H., Samuelsson, B., Haeggstrom, J.Z.Crystal Structures of Leukotriene A4 Hydrolase in Complex with Captopril and Two Competitive Tight-Binding Inhibitors. Faseb J[J]. 2002, 16, 1648-1650,,
    [5] Rudberg, P.C., Tholander, F., Thunnissen, M.M.G.M., Samuelsson, B., Haeggstrom, J.Z.Leukotriene A4 Hydrolase: Selective Abrogation of Leukotriene B4 Formation by Mutation of Aspartic Acid 375. Proc.Natl.Acad.Sci.USA[J]. 2002, 99, 4215-4220.
    [6] Stamper, C.C., Bienvenue, D.L., Bennett, B., Ringe, D., Petsko, G.A., Holz, R.C.Spectroscopic and X-ray Crystallographic Characterization of Bestatin Bound to the Aminopeptidase from Aeromonas (Vibrio) proteolytica. Biochemistry[J]. 2004,43,9620-9628.
    [7] Ito, K., Nakajima, Y., Onohara, Y., Takeo, M., Nakashima, K., Matsubara, F., Ito, T.,Yoshimoto, T. Aminopeptidase N (proteobacteria alanyl aminopeptidase) from Escherichia coli: Crystal structure and conformational change of the methionine 260 residue involved in substrate recognition. J.Biol.Chem[J]. 2006, 281, 33664-33676.
    [8] Addlagatta, A., Gay, L., Matthews, B.W. Structure of aminopeptidase N from Escherichia coli suggests a compartmentalized, gated active site. Proc.Natl.Acad.Sci.USA[J]. 2006, 103,13339-13344
    [9] Tholander, F., Muroya, A., Roques, B.P., Fournie-Zaluski, M.C., Thunnissen, M.M.,Haeggstrom, J.Z. Structure-based dissection of the active site chemistry of leukotriene a4 hydrolase: implications for ml aminopeptidases and inhibitor design. Chem.Biol[J]. 2008, 15,920-929.
    
    [10] Addlagatta, A., Gay, L., Matthews, B.W. Structural basis for the unusual specificity of escherichia coli aminopeptidase N. Biochemistry[J]. 2008, 47, 5303-5311.
    
    [11] Kirkland, T.A., Adler, M., Bauman, J.G., et al. Synthesis of glutamic acid analogs as potent inhibitors of leukotriene A4 hydrolase. Bioorg.Med.Chem[J]. 2008, 16, 4963-4983.
    [12] Fournie-Zaluski, M.C., Poras, H., Roques, B.P., Nakajima, Y., Ito, K., Yoshimoto, T.Structure of aminopeptidase N from Escherichia coli complexed with the transition-state analogue aminophosphinic inhibitor PL250. Acta Crystallogr.,Sect.D[J]. 2009,65, 814-822.
    [13] McGowan, S., Porter, C.J., Lowther, J., et al. Structural basis for the inhibition of the essential Plasmodium falciparum M2 neutral aminopeptidase. Proc.Natl.Acad.Sci.USA[J].2009, 106,2537-2542.
    [14] Gilboa, R., Rondeau, J.-M., Blumberg, S., Tarnus, C., Shoham, G. Interactions of Streptomyces griseus Aminopeptidase and Aeromonas proteolytica Aminopeptidase with Bestatin.Structural analysis of homologous enzymes with different binding modes.To be Published
    [15]Unno,H.,Yamashita,T.,Ujita,S.,Okumura,N.,Otani,H.,Okumura,A.,Nagai,K.,Kusunoki,M.Crystal structure of mouse carnosinase CN2 complexed with ZN and bestatin.To be Published
    [16]Sj(o|¨)str(o|¨)m H.,Noren O.,Olsen J.Structure and function of aminopeptidase N[B].Adv.Exp.Med.Biol.,2000,477:25-34.
    [17]Luciani N.,Marie-Claire C.,Ruffet E.,et al.Characterization of Glu350 as a critical residue involved in the N-terminal amine binding site of aminopeptidase N(EC3.4.11.2):Insights into its mechanism of action[J].Biochemistry,1998,37(2):686-692.
    [18]Shang,L.Q.;Fang H.;Zhu,H.W.;Wang,X.J.;Wang,Q.;Mou,J.J.;Wang,B.H.;Kishioka,S.;Xu,W.F.Bioorg.Med.Chem.,2009,17(7),2775-2784.
    [19]Yang,K.H.;Wang,Q.;Su,L.;Fang,H.;Wang,X.J.;Gong,J.Z.;Wang,B.H.;Xu,W.F.Bioorg.Med.Chem.,2009,17(11),3810-3817.
    [1]许家喜.杨俊海.正交保护赖氨酸的合成.化学通报[J].2000,(1):26-29
    [2]Chellemi F.Synthesis by conventional methods of human growth hormone peptide fragments [J].Int J Pept Protein Res,1975,7(2):43-48.
    [3]Zhang A.,Schl(u|¨)ter A.D.,Multigram solution-phase synthesis of three diastereomeric tripeptidic second-generation dendrons based on(2S,4S)-,(2S,4R)-,and (2R,4S)-4-aminoprolines.Chem Asian[J].2007,2(12):1540-1548.
    [4]Jordis.(1S,4S)-2-thia-5-azabicyclo[2.2.1]heptane[J].Indian J Chem.Sec B.April 1989;294-296.
    [5]Grassl M,McKinley S,Jones ME.Synthesis and hydroxylaminolysis of N-carboxymethyl -N-acetyl-L-glutamic acid dimethylester[J].Arch Biochem Biophys.1969,129(1):98-105.
    [6]David Bartholomew,Michael J.Stocks.Intramolecular cyclisation-N-dealkylation of azetidine-3-acetic acids.Tetrahedron Lett.1991,32(36),4799-4800.
    [7]Chellemi F.Synthesis by conventional methods of human growth hormone peptide fragments [J].Int J Pept Protein Res,1975,7(2):43-48.
    [1]Drag M.,Grembecka J.,Pawelczak M.,et al.α-Aminoalkylphosphonates as a tool in experimental optimisation of P1 side chain shape of potential inhibitors in S1 pocket of leucineand neutral aminopeptidases[J].Eur.J.Med.Chem.,2005,40(8):764-771.
    [2]Raniera Beti,Arlette Cattaneo,Jean-Mare Gaberil,et al.A novel N°-acetyl alanine aminopeptidase N from allomyces arbuscala[J].Biochemistry,2002;84:309-319.
    [3]Teruki Shimizu,Kenji Tani,Kayoko Hase,et al.Aminopeptidase inhibitors bestatin and actinoin inhibit cell proliferation of myeloma cells predominantly by intracellular interactivity[J].Cancer Letter.2002;182:113-119.
    [4]Baragi VM,Shaw BJ,Renkiewicz RR,et al.A versatile assay for gelatinase using succinylated gelatin[J].Anal Biochem,2000,286(1):267-273.
    [5]Baragi V.M.,Shaw B.I.,Renkiewicz R.R.,et al:A versatile assay for gelatinases using succinylated gelatin[J].Matrix Biol,2000,19:267-273.
    [6]何静松,林茂芳,麦文渊,等.乌苯美司对人白血病细胞生长抑制及其机制探讨[J].浙江大学学报(医学版),2002,31(4):259-264.
    [7]李海燕,方肇勤,梁尚华.小鼠移植性肝癌(H22)模型的研究及在中医药抗肿瘤中的应用[J].中国中医基础医学杂志,2000,6(1):27-30.
    [1] Berman H.M., Westbrook J., Feng Z., et al. The Protein Data Bank[J]. Nucleic Acids Res.,2000,28(1): 235-242.
    [2] Vajragupta O, Boonchoong P, Wongkrajang Y. Comparative quantitative structure-activity study of radical scavengers [J]. Bioorg Med Chem, 2000, 8(11): 2617-2628.
    [3] Cramer RD 3rd, Patterson DE, Bunce JD. Recent advances in comparative molecular field analysis (CoMFA) [J]. Prog Clin Biol Res. 1989, 291(1):161-165.
    [4] SYBYL 7.0, Tripos Inc.: 1699 South Hanley Rd., St. Louis, Missouri, 63144.
    [5] FlexXTM is distributed by Tripos Inc., 1699 South Hanley Rd., St. Louis, Missouri, USA (http://www.tripos.com)
    [6] Rarey M., Kramer B., Lengauer T. et al. A Fast Flexible Docking Method using an Incremental Construction AIgorithm[J]. J. Mol.Biol., 1996, 261: 470-489.
    [7] BiopolymerTM is distributed by Tripos Inc., 1699 South Hanley Rd., St. Louis, Missouri, USA(http://www.tripos.com)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700