用户名: 密码: 验证码:
自吞噬途径在polyQ扩展突变型ataxin-3降解及SCA3/MJD发病机制中的作用Ataxin-3多克隆抗体的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     遗传性脊髓小脑型共济失调(spinocerebellar ataxia,SCAs)是一组以神经细胞变性为病理特征的神经系统遗传疾病,目前认为其发病机制与致病基因外显子中CAG拷贝数异常扩增产生带有多聚谷氨酰胺(polyQ)链的蛋白有关。脊髓小脑型共济失调三型/马查多-约瑟夫病(spinocerebellar ataxia 3/Machado-Joseph disease, SCA3/MJD)是SCAs中发病率较高的亚型,其发病是由于致病基因MJD1编码区内3'端的CAG重复序列异常扩增导致其编码产物ataxin-3蛋白的羧基端多聚谷氨酰胺(polyglutamine,polyQ)肽链异常扩展引起。Ataxin-3蛋白的生理功能目前还不明确,其羧基端polyQ肽链异常扩展导致疾病发生的具体机制还不清楚。研究发现,致病蛋白的降解在此类疾病的发病机制中具有重要的意义。
     细胞内蛋白主要通过泛素-蛋白酶体途径(ubiquitin-proteasome pathway, UPP)和自吞噬途径(Autophagy)进行降解。其中自吞噬途径在降解清除细胞自身大分子蛋白复合物和衰老细胞器,维持细胞内环境稳定的过程中起着非常重要的作用,同时也是细胞适应外界环境变化的一种重要机制。目前研究提示,自吞噬途径参与降解阿尔茨海默病、多聚谷氨酸疾病(SCA1、Huntingtin病)、帕金森病等多种神经系统变性疾病相关的致病蛋白并参与其生理及发病过程。
     参与调节自吞噬途径的信号分子种类繁多,其具体调节机制仍不清楚。现在已经证实的是mTOR (mammalian target of rapamycin)对于自吞噬信号转导途径的负性调节作用。近年来在对mTOR信号通路众多上游调节蛋白的研究中,LKB1-AMPK途径受到了广泛关注。目前认为LKB1是AMPK (AMP-activated protein kinase)重要的蛋白激酶,它能通过磷酸化AMPK第172位苏氨酸(Thr172)使之活化进而参与调节mTOR。亦有报道显示,LKB1-AMPK途径能通过介导细胞周期依赖性蛋白激酶抑制物p27kip1的磷酸化而直接参与调节自吞噬途径。
     在前期研究中,我们构建了野生型ataxin-3蛋白和polyQ异常扩展突变型ataxin-3蛋白的真核表达载体:pCDNA3.1-Myc-His(-)B-ataxin-3-20Q和pCDNA3.1-Myc-His(-)B-ataxin-3-68Q。
     目的:
     拟开展自吞噬途径对于polyQ扩展突变型ataxin-3蛋白的降解、胞内聚合物形成、细胞活性影响的研究,以期较全面的探讨其在SCA3/MJD发病机制中的作用;进一步研究自吞噬途径可能的上游激酶LKB1能否通过自吞噬途径参与调节polyQ扩展突变型ataxin-3蛋白的降解。
     方法:
     1、应用免疫荧光-激光共聚焦技术、Western印迹技术明确自吞噬途径是否参与polyQ扩展突变型ataxin-3蛋白的降解;
     2、应用Western印迹技术研究LKB1是否参与polyQ扩展突变型ataxin-3蛋白的降解;
     3、应用免疫荧光-激光共聚焦技术、MTT法探讨自吞噬途径对polyQ扩展突变型ataxin-3蛋白细胞毒性的调节作用;
     4、应用重组基因技术、Western-blot技术构建并检测野生型ataxin-3的pGEX-4T-2原核表达载体并诱导其表达;
     5、应用亲和层析技术纯化融合蛋白,免疫新西兰兔制备了高效价的ataxin-3多克隆抗体;
     结果:
     1、免疫荧光-激光共聚焦结果显示:共转pCDNA3.1-Myc-His (B)-ataxin-3-68Q和pEGFP-C1-LC3细胞组中可见过表达的LC3与突变ataxin-3形成的胞内蛋白聚合体明显重叠。Western-blot实验结果显示:分别经3-MA、NH4CL处理的细胞,ataxin-3-68Q条带明显增粗加深,而转染后9小时加入rapamycin处理细胞后则ataxin-3-68Q条带变浅,这说明polyQ扩展突变型ataxin-3能够被自吞噬小体识别并包被,自吞噬途径参与ataxin-3-68Q的降解,抑制或早期促进自吞噬途径能有效减少或增加突变蛋白的降解。
     2、Western-blot结果发现LKB1的表达能抑制转染细胞内polyQ异常扩展突变型ataxin-3的降解。
     3、免疫荧光结果显示:3-MA处理组表达ataxin-3-68Q的细胞内可见大量的胞内蛋白聚合物的形成,从形态学上分析,聚合物不仅数量增多而且形态更大,大部分聚集在胞核周围;转染后9小时加入rapamycin处理组细胞中,ataxin-3-68Q形成的胞内聚合物则明显减少。进一步说明抑制自吞噬途径能增加细胞内ataxin-3-68Q蛋白聚合体的形成,反之亦然。经rapamycin处理的两组细胞中,转染后早期(9小时)处理组较对照组中ataxin-3-68Q表达减少,但转染后晚期(16小时)处理组目标蛋白表达变化不大。这说明在突变蛋白表达早期激活胞内自噬水平能加快聚合物的降解清除。
     4、MTT分析结果显示,与ataxin-3-68Q对照组比较:3-MA组组聚合体阳性细胞数明显增加,细胞活性降低(P<0.05);转染后9小时加入rapamycin组聚合体阳性细胞数明显减少,细胞活性有所增加(P<0.005);转染后16小时加入rapamycin组,聚合体阳性细胞数差异无统计学意义(P>0.05),细胞活性反而降低(P<0.01)。
     5、DNA测序证实所构建的野生型ataxin-3氨基端的原核表达载体的目的基因位点均与ataxin-3在GenBank中的标准序列(S75313)完全匹配。核对各载体的阅读框在插入目的基因序列后均无移码,说明原核表达载体构建成功。
     6、Western-blot、免疫荧光结果均证实制备的多克隆抗体能够识别ataxin-3蛋白,具有较高特异性。
     结论:
     1证实自吞噬途径参与细胞内polyQ异常扩展突变型ataxin-3蛋白的降解;
     2发现抑制或早期刺激自吞噬途径能分别抑制或促进胞内polyQ扩展突变型ataxin-3蛋白的降解;
     3首次发现LKB1的表达抑制polyQ扩展突变型ataxin-3蛋白的降解;
     4证实自吞噬途径能促进polyQ扩展突变型ataxin-3蛋白的降解,减少胞内聚合体的形成,减轻细胞毒性;
     5制备了ataxin-3-N蛋白特异性抗体,可用于进一步研究其相关功能。
Background:
     The hereditary spinocerebellar ataxias (SCAs) are a group of inherited neurodegenerative disorders, which is characterized by accumulation of aberrant protein aggregates in affected neurons. Genetic and transgenic datas suggest that these diseases are caused by codon reiteration mutations, where protein misfolding is mediated by the abnormal expansion of a tract of repeated amino acids. Among them, spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is the most common subtype. The pathogenic gene for SCA3/MJD has been cloned and designated as MJD1. SCA3/MJD is one of the polyglutamine (polyQ) diseases caused by an expansion of a polyQ stretch near the C-terminus of the MJD1 gene product, ataxin-3. However, the physiological function of ataxin-3 is unknown, and the pathogenesis of the expansion of a polyQ stretch near the C-terminus is still not well illuminated. Studies have found that degeneration of the disease proteins plays a critical role in their physiological function and pathogenesis.
     Eukaryotic cells have two major protein degradation pathways, the ubiquitin-proteasome pathway and autophagy, which are responsible for cellular homeostasis. Autophagy is a cellular catabolic mechanism mediating the turnover of intracellular long-lived proteins even entire organelles. It is a highly regulated process that plays a role in cellular maintenance and development, and has been implicated in a number of genetic diseases. Several studies have observed that autophagy is a major route for the degradation of the disease proteins in Alzheimer's disease, Huntington's disease (HD), spinocerebellar ataxia type 1 and Parkinson's disease.
     Several signalling complexes and pathways are involved in the autophagic route in mammalian cells. And many of these genes remain to be poorly understood. It is widely agreed that the mTOR (mammalian target of rapamycin) signalling pathway negatively regulates autophagy, and LKB1-AMPK pathway plays a role in regulating mTOR. It has found that LKB1, which is the upstream kinase of autophagy, can efficiently phosphorylated AMPK (AMP-activated protein kinase) in vitro specifically at Thr 172 functioning as a upstream regulator of autophagy. The cyclin-dependent kinase inhibitor p27Kipl, is phosphorylated at Thr 198 downstream of the LKB1-AMPK pathway, directly linking sensing of LKB1 and autophagy.
     In previous work, we have constructed the eukaryotic expression plasmids of wild-type and polyQ-expanded ataxin-3:pCDNA3.1-Myc-His(-)B-ataxin-3-20Q and pCDNA3.1-Myc-His(-)B-ataxin-3-68Q by using recombinant DNA technology.
     Objective:
     To research the influence of autophagy on the protein degradation, formation of intracellular protein aggregates, and cell viability of polyQ-expanded ataxin-3; And discuss the role of autophagy on pathogenesis of spinocerebellar ataxia 3/Machado-Josephdisease (SCA3/MJD). Further more, to address the role of LKB1 in degradation of polyQ-expanded ataxin-3, and discuss the mechanism of it.
     Methods:
     1. Immunofluorescence-laser cofocalization and western-blot were undertaken to observe the degradation of ataxin-3 influenced by autophagy.
     2. By Western-blot, we investigated the effect of LKB1 on the protein degradation of polyQ-expanded ataxin-3.
     3. Immunofluorescence and MTT were used to detect the formation of ataxin-3 aggregates and cell viability modified by autophagy.
     4. Recombinant DNA technology and Western-blot were undertaken to construct and detect the expression of pGEX-4T-2 prokaryotic expression plasmids of wild-type ataxin-3.
     5. The expressed proteins were purified from total proteins with Glutathione sepharose 4B agarose column. The New Zealand rabbits were immunized with the purified fusion proteins to prepare polyclonal antiserum.
     Results:
     1. We found that ataxin-3-68Q in HEK293T cells expressed in cytoplasm and nucleus, and aggregated in cells which colocalized with GFP-LC3 by Immunofluorescence-laser cofocalization. By western-blot,3-MA or NH4CL treatment led to a significant increase in the levels of ataxin-3-68Q, whereas rapamycin had the opposite effect. These results suggested that the aggregates can be sequestered into autophagic vacuoles. The reduction of autophagy led to the increase of ataxin-3 with expanded polyQ.
     2. The result from western blot showed that expressing of LKB1 led to a significant increase in the levels of ataxin-3-68Q.
     3. We discovered by Immunofluorescence-laser that 3-MA treatment resulted in an obvious change in the appearance of the aggregates formed by ataxin-3-68Q constructs transiently transfected into HEK293T cells. In cells with aggregates,3-MA increased their apparent size and number. Treatment with rapamycin after 9 hours of transfection, resulted in a decrease in the proportions of aggregate-containing cells in HEK293T cells expressing ataxin-3-68Q. It indicated that inhibition of autophagy increased aggregate formation in HEK293T cells expressing ataxin-3-68Q, and vice versa. Treatment with rapamycin after 9 hours of transfection, resulted in a decrease in expressing of mutant ataxin-3 in HEK293T cells than that of control cells. But no significant change was observed in cells expressing ataxin-3-68Q treated with rapamycin after 16 hours of transfection. This observation counters the possibility that autophagy can degrade monomeric and oligomeric precursors of aggregates, rather than the large inclusions.
     4. The MTT assay showed that the cell viability of group of 3-MA obviously decreased in contrast to control group (P<0.05). The cell viability of group of early treatment with rapamycin was higher than that of control group (P<0.05). But the aggregate-containing cells (%) of late treatment with rapamycin group and control group had no significantly different (P>0.05) and the cell viability of which was lower (P<0.01).
     5. DNA sequencing confirmed that prokaryotic expression plasmids of wild-type ataxin-3-N matched with GenBank standard sequence (S75313). It suggested that prokaryotic expression plasmids constructed successfully when we checked the reading frame of the plasmids without any frameshift after purpose gene order insertion.
     6. Western-blot and immunoflurescence analysis suggest that the polyclonal antibody raised in the rabbit could recognized ataxin-3.
     Conclusion:
     1. We confirm that autophagy is involved in the degradation of mutant ataxin-3.
     2. We discover that inhibiting or inducing autophagy in early stage after transfection, results in a increase or a decrease in the level of polyglutamine-expanded ataxin-3, respectively.
     3. For the first time, we find that expressing of LKB1 inhibits the degradation of polyglutamine-expanded ataxin-3.
     4. We confirm that autophagy induces degradation of mutant ataxin-3, decreases the formation of aggregation and alleviates the protein toxity.
     5. We prepare anti-ataxin-3 polyclonal antibody which could widely useful in researches of ataxin-3.
引文
[1]Basri R, Yabe I, Soma H, et al. Spectrum and prevalence of autosomal dominant spinocerebellar ataxia in Hokkaido, the northern island of Japan:a study of 113 Japanese families. J Hum Genet.2007,52(10):848-55.
    [2]Duenas AM, Goold R, Giunti P. Molecular pathogenesis of spinocerebellar ataxias. Brain,2006,129(6):1357-1370.
    [3]Orr HT, Chung MY, Banfi S, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet,1993,4(3):221-226.
    [4]Pulst SM, Nechiporuk A, Nechiporuk T, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet,1996,14(3):269-276.
    [5]Kawaguchi Y, Okamoto T, Taniwaki M, et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet,1994,8(3): 221-228.
    [6]Flanigan K, Gardner K, Alderson K, et al. Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4):clinical description and genetic localization to chromosome 16q22.1. Am J Hum Genet,1996,59(2):392-399.
    [7]Ranum LP, Schut LJ, Lundgren JK, et al. Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nat Genet,1994,8(3):280-284.
    [8]Zhuchenko O, Bailey J, Bonnen P, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet,1997,15(1):62-69.
    [9]Lindblad K, Savontaus ML, Stevanin G, et al. An expanded CAG repeat sequence in spinocerebellar ataxia type 7. Genome Res,1996,6(10):965-971.
    [10]Koob MD, Moseley ML, Schut LJ, et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet,1999,21(4): 379-384.
    [11]Matsuura T, Yamagata T, Burgess DL, et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet,2000,26(2): 191-194.
    [12]Houlden H, Johnson J, Gardner-Thorpe C, et al. Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11. Nat Genet.2007,39(12):1434-1436.
    [13]Holmes SE, O'Hearn EE, McInnis MG, et al. Expansion of a novel CAG trinucleotide repeat in the 5'region of PPP2R2B is associated with SCA12. Nat Genet,1999,23(4):391-392.
    [14]Waters MF, Minassian NA, Stevanin G, et al. Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental nervous system phenotypes. Nature Genet,2006,38(4):447-451.
    [15]Yabe I, Sasaki H, Chen DH, et al. Spinocerebellar ataxia type 14 caused by a mutation in protein kinase C gamma. Arch Neurol,2003,60(12):1749-1751.
    [16]Knight MA, Kennerson ML, Anney RJ, et al. Spinocerebellar ataxia type 15 (sea15) maps to 3p24.2-3pter:exclusion of the ITPR1 gene, the human orthologue of an ataxic mouse mutant. Neurobiol Dis,2003,13(2):147-157.
    [17]Nakamura K, Jeong SY, Uchihara T, et al. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet,2001,10(14):1441-1448.
    [18]van Swieten JC, Brusse E, de Graaf BM, et al. A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebral ataxia. Am. J. Hum. Genet,2003,72(1):191-199.
    [19]Nagafuchi S, Yanagisawa H, Sato K, et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat Genet,1994,6:14-18.
    [20]Miyoshi Y, Yamada T, Tanimura M, et al. A novel autosomal dominant spinocerebellar ataxia (SCA16) linked to chromosome 8q22.1-24.1. Neurology, 2001,57(1):96-100.
    [21]Brkanac Z, Fernandez M, Matsushita M, et al. Autosomal dominant sensory/motor neuropathy with ataxia (SMNA):linkage to chromosome 7q22-q32. Am J Med Genet,2002,114:450-457.
    [22]Verbeek DS, Schelhaas JH, Ippel EF, et al. Identification of a novel SCA locus (SCA19) in a Dutch autosomal dominant cerebellar ataxia family on chromosome region 1p21-q21. Hum Genet,2002,111(4-5):388-393.
    [23]Knight MA, Gardner RJ, Bahlo M, et al. Dominantly inherited ataxia and dysphonia with dentate calcification:spinocerebellar ataxia type 20. Brain,2004, 127(5):1172-1181.
    [24]Vuillaume I, Devos D, Schraen-Maschke S, et al. A new locus for spinocerebellar ataxia (SCA21) maps to chromosome 7p21.3-p15.1. Ann Neurol, 2002,52(5):666-670.
    [25]Chung MY, Lu YC, Cheng NC, Soong BW. A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain,2003, 126(pt6):1293-1299.
    [26]Verbeek DS, van de Warrenburg BP, Wesseling P, et al. Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 20p13-12.3. Brain,2004,127(pt11):2551-2557.
    [27]Swartz BE, Burmeister M, Somers JT, et al. A form of inherited cerebellar ataxia with saccadic intrusions, increased saccadic speed, sensory neuropathy, and myoclonus. Ann NY Acad Sci,2002,956:441-444.
    [28]Stevanin G, Bouslam N, Thobois S, et al. Spinocerebellar ataxia with sensory neuropathy (SCA25) maps to chromosome 2p. Ann. Neurol,2004,55(1): 97-104.
    [29]Yu GY, Howell MJ, Roller MJ, et al. Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 adjacent to SCA6. Ann. Neurol,2005,57(3):349-354.
    [30]Cagnoli C, Mariotti C, Taroni F, et al. SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-q11.2. Brain,2006,129(ptl): 235-242.
    [31]Dudding TE, Friend K, Schofield PW, et al. Autosomal dominant congenital non-progressive ataxia overlaps with the SCA15 locus. Neurology,2004,63(12): 2288-2292.
    [32]Worth PF, Giunti P, Gardner-Thorpe C, Dixon PH, Davis MB, Wood NW. Autosomal dominant cerebellar ataxia type Ⅲ:linkage in a large British family to a 7.6-cM region on chromosome 15q14-21.3. Am J Hum Genet,1999, 65(2):420-426.
    [33]Schols L, Amoiridis G, Buttner T, et al. Autosomal dominant cerebellar ataxia: phenotypic differences in genetically defined subtypes? Ann Neurol,1997, 42(6):924-932.
    [34]Watanabe H, Tanaka F, Matsumoto M, et al. Frequency analysis of autosomal dominant cerebellar ataxias in Japanese patients and clinical characterization of spinocerebellar ataxia type 6. Clin Genet,1998,53(1):13-19.
    [35]Tang BS, Liu C, Shen L, et al. Frequency of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds. Arch Neurol,2000, 57(4):540-544.
    [36]Evidente VG, Gwinn-Hardy KA, Caviness JN, et al. Hereditary ataxias. Mayo Clin Proc,2000,75(5):475-490.
    [37]Orr HT, Zoghbi HY. Trinucleotide repeat disorders. Annu Rev Neurosci.2007, 30:575-621.
    [38]Schmidt D, Muller S. Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc Natl Acad Sci USA,2002,99(5): 2872-2877.
    [39]Sachdev S, Bruhn L, Sieber H, et al. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev,2001,15(23):3088-3103.
    [40]Williams A, Jahreiss L, Sarkar S, et al. Aggregate-prone proteins are cleared from the cytosol by autophagy:therapeutic implications. Curr Top Dev Biol, 2006,76:89-101.
    [41]Steffan JS, Thompson LM. Targeting aggregation in the development of therapeutics for the treatment of Huntington's disease and other polyglutamine repeat diseases. Expert Opin Ther Targets,2003,7(2):201-213.
    [42]Desterro JM, Thomson J, Hay RT. Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett,1997,417(3):297-300.
    [43]Riley BE, Orr HT. Polyglutamine neurodegenerative diseases and regulation of transcription:assembling the puzzle. Genes Dev,2006,20(16):2183-2192.
    [44]Helmlinger D, Tora L, Devys D. Transcriptional alterations and chromatin remodeling in polyglutamine diseases. Trends Genet,2006,22(10):562-570.
    [45]Tait D, Riccio M, Sittler A, et al. Ataxin-3 is transported into the nucleus and associates with the nuclear matrix. Hum Mol Genet,1998,7(6):991-997.
    [46]Li F, Macfarlan T, Pittman RN, et al. Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor activities. J Biol Chem,2002, 277(47):45004-45012.
    [47]Wang G, Sawai N, Kotliarova S, Ataxin-3, the MJD1 gene product, interacts with the two human homologs of yeast DNA repair protein RAD23, HHR23A and HHR23B. Hum Mol Genet,2000,9(12):1795-1803.
    [48]Klement IA, Skinner PJ, Kaytor MD, et al. Ataxin-1 nuclear localization and aggregation:role in polyglutamine-induced disease in SCA1 transgenic mice. Cell,1998,95(1):41-53.
    [49]Berke SJ, Schmied FA, Brunt ER, et al. Caspase-mediated proteolysis of the polyglutamine disease protein ataxin-3. J Neurochem,2004,89(4):908-918.
    [50]Goti D, Katzen SM, Mez J, et al. A mutant ataxin-3 putative-cleavage fragment in brains of Machado-Joseph disease patients and transgenic mice is cytotoxic above a critical concentration. J Neurosci,2004,24(45):10266-10279.
    [51]Haacke A, Broadley SA, Boteva R, et al. Proteolytic cleavage of polyglutamine-expanded ataxin-3 is critical for aggregation and sequestration of non-expanded ataxin-3. Hum Mol Genet,2006,15(4):555-568.
    [52]Tarlac V, Storey E. Role of proteolysis in polyglutamine disorders. J Neurosci Res,2003,74(3):406-416.
    [53]Burnett B, Li F, Pittman RN. The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum Mol Genet,2003,12(23):3195-3205.
    [54]Sobue G, Doyu M, Nakao N, et al. Homozygosity for Machado-Joseph disease gene enhances phenotypic severity. J Neurol Neurosurg Psychiatry,1996,60(3): 354-356.
    [55]Warrick JM, Morabito LM, Bilen J, et al. Ataxin-3 suppresses polyglutamine neurodegeneration in Drosophila by a ubiquitin-associated mechanism. Mol Cell,2005,18(1):37-48.
    [56]Zuccato C, Ciammola A, Rigamonti D, et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease. Science,2001,293(5529): 493-498.
    [57]Tsuda H, Jafar-Nejad H, Patel AJ, et al. The AXH domain of Ataxin-1 mediates neurodegeneration through its interaction with Gfi-1/Senseless proteins. Cell, 2005,122(4):633-644.
    [58]Hershko A, Leshinsky E, Ganoth D, et al. ATP-dependent degradation of ubiquitin-protein conjugates. Proc Natl Acad Sci USA,1984,81:1619-1623.
    [59]Hough R, Pratt G, Rechsteiner M. Ubiquitin-lysosome conjugates, identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates. J Biol Chem,1986,261:2400-2408.
    [60]Hough R, Pratt G, Rechsteiner M. Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J Biol Chem,1987,262:8303-8313.
    [61]Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem,2001, 70:503-533.
    [62]DiFiglia M, Sapp E, Chase KO, et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science,1997,277: 1990-1993.
    [63]Chai Y, Koppenhafer SL, Shoesmith SJ, et al. Evidence for proteasome involvement in polyglutamine disease:localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro. Hum Mol Genet,1999,8:673-682.
    [64]Lowe J, Stock D, Jap B, et al. Crystal structure of the 20S proteasome from the archeon T. acidophilum at 3.4 A° resolution. Science,1995,268:533-539.
    [65]Groll M, Ditzel L, Lowe J, et al. Structure of 20S proteasome from yeast at 2.4 A° resolution. Nature 1997,386:463-471.
    [66]Dubiel W, Rechsteiner M. The 19S regulatory complex of the 26S protreasome. Adv Mol Cell Biol,1998,27:129-163.
    [67]Benaroudj N, Goldberg AL. PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone. Nat Cell Biol,2000, 2:833-839.
    [68]OrlowskiM, Cardoza C, Michaud C. Evidence for the presence of five distinct proteolytic components in the pituitary multicatalytic proteinase complex. Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral amino acids. Biochemistry,1993,32:1563-1572.
    [69]Finley D, Bartel B, Varshavsky A. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature,1989,338:394-401.
    [70]Wilkinson KD. Ubiquitination and deubiquitination:targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol,2000,11:141-148.
    [71]Liu C-W, Corboy MJ, DeMartino GN, et al. Endoproteolytic activity of proteasome. Science,2003,299:408-411.
    [72]Stenoien DL, Cummings CJ, Adams HP, et al. Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. HumMol Genet,1999,8:731-741.
    [73]Waelter S, Boeddrich A, Lurz R, et al. Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a resultof insufficient protein degradation. Mol Biol Cell,2001,12:1393-1407.
    [74]Bence NF, Sampat RM, Kopito RR. Impairment of the ubiquitin-proteasome system by protein aggregation. Science,2001,292:1552-1555.
    [75]Cummings CJ, Reinstein E, Sun Y, et al. Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron,1999,24:879-892.
    [76]Jana NR, Zemskov EA, Wang GH, et al. Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release. Hum Mol Genet,2001,10:1049-1059.
    [77]Wyttenbach A, Carmichael J, Swartz J, et al. Effects of heat shock, heat shock protein 40 (HDJ-2), and proteasome inhibition on protein aggregation in cellular models of Huntington's disease. Proc Natl Acad Sci USA,2000,97: 2898-2903.
    [78]Martin-Aparicio E, Yamamoto A, Hernandez F, et al. Proteasomal-dependent aggregate reversal and absence of cell death in a conditional mouse model of Huntington's disease. J Neurosci,2001,21:8772-8781.
    [79]Gilon T, Chomsky O, Kulka RG. Degradation signals for ubiquitin system proteolysis in Saccharomyces cerevisiae. EMBO J,2003,17:2759-2766.
    [80]Nixon, RA, Cataldo, AM, Mathews, P.M. The endosomal-lysosomal system of neurons in Alzheimer's disease pathogenesis:a review. Neurochem Res,2000, 25:1161-1172.
    [81]Kegel KB, Kim M, Sapp E, et al. Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J Neurosci, 2000,20:7268-7278.
    [82]Petersen A, Larsen K E, Behr, GG, et al. Expanded CAG repeats in exon 1 of the Huntington's disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration. Hum Mol Genet,2001,10:1243-1254.
    [83]Fortun J, Dunn WA, Jr, et al. Emerging role for autophagy in the removal of aggresomes in Schwann cells. J Neurosci.,2003,23:10672-10680.
    [84]Taylor JP, Tanaka F, Robitschek J, et al. Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein. Hum Mol Genet, 2003,12:749-757.
    [85]Venkatraman P, Wetzel R, Tanaka M, et al. Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol Cell,2004,14:95-104.
    [86]Klionsky DJ, Ohsumi Y. Vacuolar imporr of proteins and organelles from the cytoplasm. Annu Rev Cell Dev Biol,1999,15:1-32.
    [87]Blommaart EF, Luiken JJ, Blommaart PJ, et al. Phosphorylation of ribosoma lprotein S6is Inhibitory for autophagy inisolated rathepatocytes. J Biol Chem, 1995,270:2320-2326.
    [88]Ravikumar B, Duden R, Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet,2002,11:1107-1117.
    [89]Berger Z, Ravikumar B, Menzies FM, et al. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet,2006,15:433-442.
    [90]Iwata A, Christianson JC, Bucci M, et al. Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Proc Natl Acad Sci USA,2005,102:13135-13140.
    [91]Shibata M, Lu T, Furuya T, et al. Regulation of intracellular accumulation of mutant huntingtin by beclin 1. J Biol Chem,2006,281:14474-14485.
    [92]Ravikumar B, Vacher C, Berger Z, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet,2004,36:585-595.
    [93]Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature,2006,441:885-889.
    [94]Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature,2006,441:880-884.
    [95]Jia K, Hart AC, Levine B. Autophagy genes protect against disease caused by polyglutamine expansion proteins in Caenorhabditis elegans. Autophagy,2007, 3(1):21-25.
    [96]Noda T, and Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem,1998,273:3963-3966.
    [97]Kamada Y, Funakoshi T, Shintani T, et al. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol,2000,150(6):1507-1513.
    [98]Kamada Y, Sekito T and Ohsumi Y. Autophagy in yeast:a TOR-mediated response tonutrient starvation. Curr Top Microbiol Immunol,2004,279:73-84.
    [99]Brinda Ravikumar, Coralie Vacher, Zdenek Berger, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature Gent,2004,36:585-595.
    [100]Alessi DR, Sakamoto K, Bayascas JR. LKB1-dependent signaling pathways. Annu Rev Biochem,2006,75:137-163.
    [101]Liang J, Shao SH, Xu ZX, et al. The energy sensing LKB1-AMPK pathway regulates p27kipl phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol,2007,9(2):218-224.
    [102]Nathan D, Ingvarsdottir K, Sterner DE, et al. Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev,2006,20(8):966-976.
    [103]Shiio Y, Eisenman RN. Histone sumoylation is associated with transcriptional repression. Proc.Natl Acad Sci USA,2003,100(23):13225-13230.
    [104]Nathan D, Sterner DE, Berger SL. Histone modifications:now summoning sumoylation. Proc Natl Acad Sci. USA,2003,100(23):13118-13120.
    [105]Wu H, Sun, L, Zhang Y, et al. Coordinated regulation of AIB1 transcriptional activity by sumoylation and phosphorylation. J Biol Chem,2006,281(31): 21848-21856.
    [106]Steffan JS, Thompson LM. Targeting aggregation in the development of therapeutics for the treatment of Huntington's disease and other polyglutamine repeat diseases. Expert Opin Ther Targets,2003,7(2):201-213.
    [107]Li Y, Yokota T, Matsumura R, et al. Sequence-dependent and independent inhibition specific for mutant ataxin-3 by small interfering RNA. Ann Neurol, 2004,56(1):124-129.
    [108]Mizushima N, Yamamoto A, Matsui M, et al. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell,2004,15:1101-1111.
    [109]Shintani T, and Klionsky DJ. Autophagy in health and disease:a double-edged sword. Science,2004,306:990-995.
    [110]Elmore SP, Qian T, Grissom SF, et al. The mitochondrial permeability transition initiates autophagy in rahepatocytes. FASEBJ,2001,15,2286-2287.
    [111]Eric OD, Patrice C. Autophagy:a barrier or an adaptive response to cancer. Biochimica et biophysica Acta,2003,1603:113-128.
    [112]Nara A, Mizushima N, Yamamoto A, et al. SKD1 AAA ATPase-dependent endosomal transport is involved in autolysosome formation. Cell Struct Funct, 2002,27:29-37.
    [113]G Marino and C Lopez-Otin. Autophagy:molecular mechanisms, physiolo-gical functions and relevance in human pathology. Cell Mol Life Sci,2004 Jun;61(12):1439-1454.
    [114]Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO Journal,2000,19,5720-5728.
    [115]Mizushima N. Methods for monitoring autophagy. Int J Biochem Cell Biol, 2004,36(12):2491-2502.
    [116]Mizushima N, Yamamoto A, Hatano M, et al. Dissection of autophago-some formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol,2001,152:657-668.
    [117]McCampbell A, Taylor JP, Taye AA, et al. CREB-binding protein sequestration by expanded polyglutamine.Hum Mol Genet,2000,9(14):2197-2202
    [118]Kahyo T, Nishida T, Yasuda H. Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol Cell,2001,8(3):713-718.
    [119]Seglen PO, Gordon PB.3-Methyladenine:Specific inhibitor of autophagic/ lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA,1982,79:1889-1892.
    [120]Fuertes G, Martin De Llano JJ, Villarroya A, et al. Changes in the proteolytic activities of proteasomes and lysosomes in human fibroblasts produced by serum withdrawal, amino-acid deprivation and confluent conditions. Biochem J, 2003,375:75-86.
    [121]Schwarze PE, Seglen PO. Reduced autophagic activity, improved protein balance and enhanced in vitro survival of hepatocytes isolated from carcinogen-treated rats. Exp Cell Res,1985,157:15-28.
    [122]Seglen PO. Inhibitors of lysosomal function. Methods Enzymol,1983; 96: 737-764.
    [123]Amenta JS, Hlivko TJ, McBee AG, et al. Specific inhibition by NH4Cl of autophagy-associated proteloysis in cultured fibroblasts. Exp Cell Res,1978,115:,357-366.
    [124]Goto J, Watanabe M, Ichikawa Y, et al. Machado-Joseph disease gene products carrying different carboxyl termini. Neurosci Res,1997,28(4):373-377.
    [125]Wang G, Ide K, Nukina N, et al. Machado-Joseph disease gene product identified in lymphocytes and brain. Biochem Biophys Res Commun,1997, 233(2):476-479.
    [126]Trottier Y, Cancel G, An-Gourfinkel I, et al. Heterogeneous intracellular localization and expression of ataxin-3. Neurobiol Dis,1998,5(5):335-347.
    [127]Wellington CL, Ellerby LM, Hackam AS, et al. Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J Biol Chem,1998,273(15): 9158-67.
    [128]Berke SJ, Schmied FA, Brunt ER, et al. Caspase-mediated proteolysis of the polyglutamine disease protein ataxin-3. J Neurochem,2004,89(4):908-18.
    [129]Casnellie JE, Lamberts RJ. Tumor promoters cause changes in the state of phosphorylation and apparent molecular weight of a tyrosine protein kinase in T lymphocytes. J Biol Chem,1986,261(11):4921-4925.
    [130]Choi HS, Han GS, Carman GM. Phosphorylation of yeast phosphatidylserine synthase by protein kinase A. Identification of Ser46 and Ser47 as major sites of phosphorylation. J Biol Chem,2010 Feb 9, [Epub ahead of print].
    [131]Erkang Fei, Nali Jia, Tao Zhang, et al. Phosphorylation of ataxin-3 by glycogen synthase kinase 3b at serine 256 regulates the aggregation of ataxin-3. Biochem Biophys Res Commun.2007,357(2):487-492.
    [132]Tanida I, Minematsu-Ikeguchi N, Ueno T, et al. Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy,2005, 1(2):84-91.
    [133]Klionsky DJ. The molecular machinery of autophagy:Unanswered questions. J Cell Sci,2005,118:7-18
    [134]Kuma A, Matsui M, Mizushima N. LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy:caution in the interpretation of LC3 localization. Autophagy,2007,3(4):323-328.
    [135]Yamamoto A, JJ Lucas, and R Hen. Reversal of neuropathology and motor dysfunction in a conditional model of Huntingtons disease. Cell,2000,101: 57-66.
    [136]Regulier E, Y Trottier, V Perrin, et al. Early and reversible neuropathology induced by tetracycline-regulated lentiviral overexpression of mutant huntingtin in rat striatum. Hum Mol Genet,2003,12:2827-2836.
    [137]Xia H, Q Mao, SL Eliason, et al. RNAi suppresses poly-glutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med,2004,10: 816-820.
    [138]Vembar SS, Brodsky JL. One step at a time:endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol.2008,9(12):944-957.
    [139]Zhong X, Pittman RN. Ataxin-3 binds VCP/p97 and regulates retrotrans-location of ERAD substrates. Hum Mol Genet,2006,15(16):2409-2420.
    [140]Tiainen M,Ylikorkala A,Makela TP. Growth suppression by Lkbl is mediated by a Glcell cycle arrest. Proc Natl Acad Sci USA,1999,96:9248-9251.
    [141]Ravikumar B, Berger Z, Vacher C, et al. Rapamycin pre-treatment protects against apoptosis. Hum Mol Genet,2006,15(7):1209-1216.
    [142]Inoki K, Zhu T and Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell,2003,115:577-590.
    [143]Wang Z, Wilson WA, Fujino MA, et al. Antagonistic controls of autophagy and glycogen accumulation by Snflp, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol Cell Biol,2001,21:5742-5752.
    [144]Marignani PA, Kanai F, Carpenter CL. LKB1 associates with Brg1 and is necessary for Brg1-induced growth arrest. J Biol Chem,2001,276(35):32415-32418.
    [145]Rossi DJ, Ylikorkala A, Korsisaari N, et al. Induction of cyclooxygenase-2 in a mouse model of Peutz-Jeghers polyposis. Proc Natl Acad Sci USA,2002,99: 12327-12332.
    [146]Qanungo S, Haldar S, Basu A. Restoration of silenced Peutz-Jeghers syndrome gene, LKB1, induces apoptosis in pancreatic carcinoma cells. Neo Plasia,2003, 5(4):367-374.
    [147]A.F. Baas, J. Kuipers, N.N. van der Wel, et al. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. (2004) Cell,116,457-466.
    [148]Watts JL, Morton DG, Bestman, et al. The C. elegans par-4 gene encodes a putative serine-threonine kinase required for establishing embryonic asymmetry. Development,2000,127:1467-1475.
    [149]Guo S and Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell,1995,81:611-620.
    [150]Shulman JM, Benton R and St Johnston D. The Drosophila homolog of C. elegans PAR-1 organizes the oocyte cytoskeleton and directs oskar mRNA localization to the posterior pole. Cell,2000,101:377-388.
    [151]Tomancak P, Piano F, Riechmann V, et al. A Drosophila melanogaster homologue of Caenorhabditis elegans par-1 acts at an early step in embryonic-axis formation. Nature Cell Biol,2000,2:458-460.
    [152]Martin SG and St Johnston D. A role for Drosophila LKB1 in anterior-posterior axis formation and epithelial polarity. Nature,2003,421(6921):379-384.
    [153]G Drewes. MARKing tau for tangles and toxicity. Trends Biochem Sci,2004, 29:548-555.
    [154]Hawley SA, Boudeau J, Reid JL, et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol,2003,2:28.
    [155]Drewes G, Ebneth A, Preuss U, et al. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell,1997,89:297-308.
    [156]Nishimura I, Yang Y, Lu B. PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila. Cell, 2004,116:671-682.
    [157]Mueller T, Breuer P, Schmitt I, et al. CK2-dependent phosphorylation determines cellular localization and stability of ataxin-3. Hum Mol Genet,2009, 18(17):3334-3343.
    [158]Lizcano JM, Goransson O, Toth R, et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J,2004, 23:833-843.
    [159]Jaleel M, McBride A, Lizcano JM, et al. Identification of the sucrose non-fermenting related kinase SNRK, as a novel LKB1 substrate. FEBS Lett, 2005,579:1417-1423.
    [160]Van Regenmortel MHV. Which structural features determine protein antigenicity? Trends Biochem Sci,1986,11:36-39.
    [161]Tang JG, Tang BS, Shen L, et al. Construction of the eukaryotic expression vector of MJD1 and its expression in SH-SY5Y cells._Zhong Nan Da Xue Xue Bao Yi Xue Ban,2005,30(6):640-644.汤建光,唐北沙,沈璐,等.MJD1基因真核表达载体的构建及其在SH-SY5Y细胞中的表达.中南大学学报(医学版),2005,30(6):640-644.
    [162]Parker MW, Lo Bello M, Federici G. Crystallization of glutathione S-transferase from human placenta. J Mol Biol,1990,213:221-222.
    [163]Ji X, Zhang P, Armstrong RN, et al. The three-dimensional structure of a glutathione S-transferase from the mu gene class. Structural analysis of the binary complex of isoenzyme 3-3 and glutathione at 2.2-A resolution. Biochemistry,1992,31:10169-10184.
    [164]Maru Y, Afar DE, Witte ON, et al. The dimerization property of glutathione S-transferase partially reactivates Bcr-Abl lacking the oligomerization domain. J Biol Chem,1996,271:15353-15357.
    [165]Toye B, Zhong GM, Peeling R, et al. Immunologic characterization of a cloned fragment containing the species-specific epitope from the major outer membrane protein of Chlamydia trachomatis.Infect. Immun,1990,58: 3909-3913.
    [166]Fikrig E, Barthold SW, Kantor FS, et al. Protection of mice against the Lyme disease agent by immunizing with recombinant OspA. Science,1990,250: 553-556.
    [167]Johnson KS, Harrison GB, Lightowlers MW, et al. Vaccination against ovine cysticercosis using a defined recombinant antigen. Nature,1989,338:585-587.
    [168]Kaelin WG Jr, Pallas DC, DeCaprio JA, et al. Identification of cellular proteins that can interact specifically with the T/E1A-binding region of the retinoblastoma gene product. Cell,1991,64,521-532.
    [169]Chittenden T, Livingston DM, Kaelin WG Jr. The T/E1A-binding domain of the retinoblastoma product can interact selectively with a sequence-specific DNA-binding protein.Cell,1991,65:1073-1082.
    [1]Orr HT. Beyond the Qs in the polyglutamine diseases. Genes Dev,2001,15: 925-932.
    [2]Evert BO, Wullner U, Klockgether T. Cell death in Polyglutamine disease. Cell Tissue Res,2000,301:189-204.
    [3]Ross CA, Poirier MA. Protein aggregation and neurodegenerative disease. Nat Med.2004,10:S10-S17.
    [4]Tang BS, Liu C, Shen L, et al. Frequency of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds. Arch Neurol,2000,57: 540-544.
    [5]Nishiyama K, Murayama S, Goto J, et al. Regional and cellular expression of the Machado-Joseph disease gene in brains of normal and affected individuals. Ann Neurol,1996,40:776-781.
    [6]Paulson HL, Das SS, Crino PB, et al. Machado-Joseph disease gene product is a cytoplasmic protein widely expressed in brain. Ann Neurol,1997a,41:453-462.
    [7]Kawaguchi Y, Okamoto T, Taniwaki M, et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nature Genet,1994,8: 221-228
    [8]Schols L,Vieira Saecker AM, Schols S, et al. Trinucleotide expansion within the MJD1 gene presents clinically as spinocerebellar ataxia and occurs most frequently in German SCA patients. Hum Mol Genet,1995,4:1001-1005.
    [9]Wang G, Ide K, Nukina N, et al. Machado-Joseph disease gene product identified in lymphocytes and brain. Biochem Biophys Res Commun,1997,233,476-479.
    [10]Warrick JM, Paulson HL, Gray-Board GL, et al. Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell, 1998,93:939-949.
    [11]Yoshizawa T, Yamagishi Y, Koseki N, et al. Cell cycle arrest enhances the in vitro cellular toxicity of the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch. Hum Mol Genet,2000,9:69-78.
    [12]Brais B, Bouchard JP, Xie YG, et al. Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nature Genet,1998,18:164-167.
    [13]Fan X, Dion P, Laganiere J, et al. Oligomerization of polyalanine expanded PABPN1 facilitates nuclear protein aggregation that is associated with cell death. Hum. Mol Genet,2001,10:2341-2351.
    [14]Evidente VG, Gwinn-Hardy KA, Caviness JN, et al. Hereditary ataxias. Mayo Clin Proc,2000,75(5):475-490.
    [15]Fowler HL. Machado-Joseph-Azorean disease. A ten-year study. Arch Neurol, 1984,41:921-925.
    [16]Sudarsky L, Coutinho P. Machado-Joseph disease. Clin Neurosci,1995,3:17-22.
    [17]Nishiyama K, Murayama S, Goto J, et al. Regional and cellular expression of the Machado-Joseph disease gene in brains of normal and affected individuals. Ann Neurol,1996,40:776-781.
    [18]Goti D, Katzen SM., Mez J, et al. A mutant ataxin-3 putative-cleavage fragment in brains of Machado-Joseph disease patients and transgenic mice is cytotoxic above a critical concentration. J Neurosci,2004; 24:10266-10279.
    [19]Warrick JM, Morabito LM, Bilen J, et al. Ataxin-3 suppresses polyglutamine neurodegeneration in Drosophila by a ubiquitin-associated mechanism. Mol Cell, 2005,18:37-48.
    [20]Hershko A. Ubiquitin:roles in protein modification and breakdown. Cell,1983, 34:11-12.
    [21]Klement IA, Skinner PJ, Kaytor MD, et al. Ataxin-1 nuclear localization and aggregation:role in polyglutamine-induced disease in SCA1 transgenic mice. Cell,1998,95:41-53.
    [23]Saudou F, Finkbeiner S, Devys D, et al. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell,1998,95:55-66.
    [24]Peters MF, Nucifora FC, Jr Kushi, et al. Nuclear targeting of mutant Huntingtin increases toxicity. Mol Cell Neurosci,1999,14:121-128.
    [25]Zoghbi HY and Orr HT. Polyglutamine diseases:protein cleavage and aggregation. Curr Opin Neurobiol,1999,9:566-570.
    [26]Reddy PH, Williams M and Tagle DA. Recent advances in understanding the pathogenesis of Huntington's disease. Trends Neurosci,1999,22:248-255.
    [27]Tobin AJ and Signer ER. Huntington's disease:the challenge for cell biologists. Trends Cell Biol,2000,10:531-536.
    [28]Scherzinger E, Sittler A, Schweiger K, et al. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils:implications for Huntington's disease pathology. Proc Natl Acad Sci USA,1999,96:4604-4609.
    [29]Heiser V, Scherzinger E, Boeddrich A, Inhibition of huntingtin fibrillogenesis by specific antibodies and small molecules:implications for Huntington's disease therapy. Proc Natl Acad Sci, USA,2000,97:6739-6744.
    [30]Nagai, Y. Nagai Y, Tucker T, Ren H, et al. Inhibition of polyglutamine protein aggregation and cell death by novel peptides identified by phage display screening. J Biol Chem,2000,275:10437-10442.
    [31]Cummings CJ, Reinstein E, Sun Y, et al. Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron,1999,24:879-892.
    [32]Martin-Aparicio E, Yamamoto A, Hernandez F, et al. Proteasomal dependent aggregate reversal and absence of cell death in a conditional mouse model of Huntington's disease. J Neuro Sci,2001,21:8772-8781.
    [33]Coux O, Tanaka K, Goldberg AL. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem,1996,65:801-847.
    [34]Paulson HL, Perez MK, Trottier Y, et al. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron,1997,19, 333-344.
    [35]Doss-Pepe EW, Stenroos ES, Johnson WG, et al. Ataxin-3 interactions with rad23 and valosin-containing protein and its associations with ubiquitin chains and the proteasome are consistent with a role in ubiquitin-mediated proteolysis. Mol Cell Biol,2003,23:6469-6483.
    [36]Hongfeng Wang, Nali Jia, Erkang Fei, et.al. p45, an ATPase subunit of the 19S proteasome, targets the polyglutamine disease protein ataxin-3 to the proteasome. Journal of Neurochemistry,2007,101(6):1651-1661.
    [37]Burnett B, Li F, Pittman RN. The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum Mol Genet,2003,12:3195-3205.
    [38]Chai Y, Berke SS, Cohen RE, et al. Poly-ubiquitin binding by the polyglutamine disease protein ataxin-3 links its normal function to protein surveillance pathways. J Bio Chem,2004,279:3605-3611.
    [39]Mao Y, Senic-Matuglia F, Di Fiore PP, et al. Deubiquitinating function of ataxin-3: insights from the solution structure of the Josephin domain. Proc Natl Acad Sci USA,2005,102:12700-12705.
    [40]Koegl M, Hoppe T, Schlenker S, et al.A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembl. Cell,1999,96:635-644.
    [41]Weissman AM. Themes and variations on ubiquitylation. Nature Rev,2001,2, 169-178.
    [42]Cook WJ, Jeffrey LC, Kasperek E, et al. Structure of tetraubiquitin shows how multiubiquitin chains can be formed. J Mol Biol,1994,236:601-609.
    [43]Wilkinson KD. Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J,1997,11:1245-1256
    [44]Chung CH and Baek SH. Deubiquitinating enzymes:their diversity and emerging roles. Biochem Biophys Res Comm,1999,266:633-640.
    [45]Wilkinson KD. Ubiquitination and deubiquitination:targeting of proteins for degradatin by the proteasome. Sem Cell Dev Biol,2000,11:141-148.
    [46]Hochstrasser M. Ubiquitin-dependent protein degradation. Annu Rev Genet,1996, 30:405-439.
    [47]Holzl H, Kapelari B, Kellermann J, et al. The regulatory complex of Drosophila melanogaster 26S proteasomes. Subunit composition and localization of a deubiquitylating enzyme. J Cell Biol,2000,150:119-130.
    [48]Leggett DS, Hanna J, Borodovsky A, et al. Multiple associated proteins regulate proteasome structure and function. Mol Cell,2002,10:495-507.
    [49]Pickart CM. Targeting of substrates to the 26S proteasome. FASEB J,1997,11: 1055-1066.
    [50]Hershko A. Lessons from the discovery of the ubiquitin system. Trends Biochem Sci,1996,21:445-449.
    [51]Schmidt T, Lindenberg KS, Krebs A, et al. Protein surveillance machinery in brains with spinocerebellar ataxia type 3:redistribution and differential recruitment of 26S proteasome subunits and chaperones to neuronal intranuclear inclusions. Ann Neurol,2002,51:302-310.
    [52]Stenoien DL, Cummings CJ, Adams HP, et al. Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. Hum Mol Genet,1999,8:731-741.
    [53]Chai Y, Koppenhafer SL, Shoesmith SJ, et al. Evidence for proteasome involvement in polyglutamine disease:localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro. Hum Mol Genet,1999,8:673-682.
    [54]Lowe J, Stock D,Jap B, et al. Crystal structure of the 20S proteasome from the archeon T. acidophilum at 3.4A resolution. Science,1995,268:533-539.
    [55]Groll M, Ditzel L, Lowe J, et al. Structure of 20S proteasome from yeast at 2.4A resolution. Nature,1997,386:463-471
    [56]Dubiel W, Rechsteiner M. The 19S regulatory complex of the 26S protreasome. Adv Mol Cell Biol,1998,27:129-163.
    [57]Benaroudj N, Goldberg AL. PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone. Nat Cell Biol,2000, 2:833-839.
    [58]Orlowski M, Cardoza C, Michaud C. Evidence for the presence of five distinct proteolytic components in the pituitary multicatalytic proteinase complex. Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral amino acids. Biochemistry,1993,32:1563-1572.
    [59]Finley D, Bartel B, Varshavsky A. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature,1989, 338:394-401.
    [60]Wilkinson KD. Ubiquitination and deubiquitination:targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol,2000,11:141-148.
    [61]LiuC W, Corboy MJ, DeMartino GN, et al. Endoproteolytic activity of proteasome. Science,2003,299:408-411.
    [62]DiFiglia M, Sapp E, Chase K O, et al. Aggregation of huntingtinin neuronal in tranuclear inclusions and dystrophic neurites in brain. Science,1997,277: 1990-1993.
    [63]Stenoien DL, Cummings CJ, Adams HP, et al. Polyglutamine-expanded and rogen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. Hum Mol Genet,1999,8:731-741.
    [64]Waelter S, Boeddrich A, Lurz R, et al. Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Mol Biol Cell,2001,12:1393-1407.
    [65]Ghee M, Fournier A, Mallet J. Ratalpha-synucle in interacts with Tat binding protein 1, acomponent of the 26S proteasomal complex. J Neurochem,2000,75: 2221-2224.
    [66]Berke SJ, Chai Y, Marrs G L, et al. Defining the role of ubiquitin-interacting motifs in the polyglutamine disease protein, ataxin-3. J Biol Chem,2005,280: 32026-32034.
    [67]Martin-Aparicio E, Yamamoto A, Hernandez F, et al. Proteasomal dependent aggregate reversal and absence of cell death in a conditional mouse model of Huntington's disease. J Neuro sci,2001,21:8772-8781.
    [68]Doss-Pepe EW, Stenroos ES, Johnson WG, et al. Ataxin-3 interactions with rad23 and valosin-containing protein and its associations with ubiquitin chains and the proteasome are consistent with a role in ubiquitin-mediated proteolysis. Mol Cell Biol,2003,23:6469-6483.
    [69]Hongfeng Wang, Nali Jia, Erkang Fei, et al. p45, an ATPase subunit of the 19S proteasome, targets the polyglutamine disease protein ataxin-3 to the proteasome. Journal of Neurochemistry,2007,101:1651-1661.
    [70]Hofmann K and Falquet L. A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. TIBS, 2001,26:347-350.
    [71]Polo S, Sigismund S, Faretta M, et al. A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature,2002,416: 451-455.
    [72]Shih SC, Katzmann DJ, Schnell JD, et al. Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nature Cell Biol, 2002,4:389-393.
    [73]Donaldson KM, Li W, Ching, KA, et al. Ubiquitin-mediated sequestration of normal cellular proteins into polyglutamine aggregates. Proc Natl Acad Sci USA, 2003,100:8892-8897.
    [74]Scheel H, Tomiuk S and Hofmann K. Elucidation of ataxin-3 and ataxin-7 function by integrative bioinformatics. Hum Mol Genet,2003,12:2845-2852.
    [75]Mao Y, Senic-Matuglia F, Di Fiore PP, P et al. Deubiquitinating function of ataxin-3:insights from the solution structure of the Josephin domain. Proc Natl Acad Sci USA,2005,102:12700-12705
    [76]Bevivino AE and Loll PJ. An expanded glutamine repeat destabilizes native ataxin-3 structure and mediates formation of parallel b-sheets. Proc Natl Acad Sci USA,2001,98:11955-11960.
    [77]Perutz MF, Johnson T, Suzuki M et al. Glutamine repeats as polar zippers:their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci USA, 1994,91:5355-5358.
    [78]Scherzinger E, Lurz R, Turmaine M, et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell,1997, 90:549-558.
    [79]Perez MK, Paulson HL, Pendse SJ, et al. Recruitment and the role of nuclear
    localization in polyglutamine-mediated aggregation. J Cell Biol,1998,143: 1457-1470.
    [80]Uchihara T, Fujigasaki H, Koyano S, et al.Non-expanded polyglutamine proteins in intranuclear inclusions of hereditary ataxias--triple-labeling immuno-fluorescence study. Acta Neuropathol,2001,102:149-152.
    [81]Takahashi J, Tanaka J, Arai K, et al. Recruitment of nonexpanded polyglutamine proteins to intranuclear aggregates in neuronal intranuclear hyaline inclusion disease. J Neuropathol Exp Neurol,2001,60:369-373.
    [82]Fujigasaki H, Uchihara T, Takahashi J, et al. Preferential recruitment of ataxin-3 independent of expanded polyglutamine:an immunohistochemical study on Marinesco bodies. J Neurol Neurosurg Psychiatry,2001,71:518-520.
    [83]Seilhean D, Takahashi J, El Hachimi KH, et al. Amyotrophic lateral sclerosis with neuronal intranuclear protein inclusions. Acta Neuropathol,2004,108: 81-87.
    [84]Fujigasaki H, Uchihara T, Koyano S, et al. Ataxin-3 is translocated into the nucleus for the formation of intranuclear inclusions in normal and Machado-Joseph disease brains. Exp Neurol,2000,165:248-256.
    [85]CJ Cummings, HT Orr and HY Zoghbi. Progress in pathogenesis studies of spinocerebellar ataxia type 1. Philos Trans R Soc Lond B Biol Sci B Biol Sci, 1999,354:1079-1081.
    [86]NF Bence, RM Sampat and RR Kopito. Impairment of the ubiquitin-proteasome system by protein aggregation. Science,2001,292:1552-1555.
    [87]LG Verhoef, K Lindsten, MG Masucci, et al. Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Hum Mol Genet,2002,11: 2689-2700.
    [88]de Pril R, Fischer DF, Maat-Schieman ML et al. Accumulation of aberrant ubiquitin induces aggregate formation and cell death in polyglutamine diseases. Hum Mol Genet,2004,13:1803-1813.
    [89]van Leeuwen FW, de Kleijn DP, van den Hurk HH, et al. Frameshift mutants of β amyloid precursor protein and ubiquitin-B are prominent in Alzheimer and Down patients. Science,1998,279:242-247.
    [90]Fischer DF, De Vos RA, Van Dijk R, et al. Disease-specific accumulation of mutant ubiquitin as a marker for proteasomal dysfunction in the brain. FASEB J, 2003,17:2014-2024.
    [91]Schmidt T, Lindenberg KS, Krebs A, et al. Protein surveillance machinery in brains with spinocerebellar ataxia type 3:Redistribution and differential recruitment of 26S proteasome subunits and chaperones to neuronal intranuclear inclusions. Annals of Neurology,2002,51(3):302-310.
    [92]Venkatraman P, Wetzel R, Tanaka M, et al. Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol Cell,2004,14(1):95-104.
    [93]Klionsky DJ and Emr SD. Autophagy as a regulated pathway of cellular degradation. Science,2000,290:1717-1721.
    [94]Levine B and Yuan J. Autophagy in cell death:an innocent convict? J Clin Invest, 2005,115 (10):2679-88
    [95]Mizushima N, Yamamoto A, Matsui M, et al. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Molecular Biology of Cell,2004,15:1101-1111.
    [96]Mortimore GE and Poso AR. Intracellular protein catabolism and its control during nutrient deprivation and supply. Annual Review of Nutrition,1987,7: 539-564.
    [97]Tsukada M and Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Letters,1993,333:169-174.
    [98]Ohsumi Y. Molecular dissection of autophagy:two ubiquitin-like systems. Nat Rev Mol Cell Biol,2001,2:211-216.
    [99]Cuervo AM and Dice JF. Age-related decline in chaperone-mediated autophagy. J Biol Chem,2000,275:31505-31513
    [100]Salvador N, Aguado C, Horst M, et al. Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. J Biol Chem,2000,275:27447-27456.
    [101]Arstila AU, Jauregui HO, Chang J, et al. Studies on cellular autophagocytosis. Relationship between heterophagy and autophagy in HeLa cells. Lab Invest, 1971,24(2):162-174.
    [102]Arstila AU, Nuuja IJ, Trump BF. Studies on cellular autophagocytosis. Vinblastine-induced autophagy in the rat liver. Exp Cell Res,1974,87(2): 249-252.
    [103]Pfeifer U, Bertling J. A morphometric study of the inhibition of autophagic degradation during restorative growth of liver cells in rats re-fed after starvation. Virchows Arch B Cell Pathol,1977,24(2):109-120.
    [104]Klionsky DJ and Ohsumi Y. Vacuolar import of proteins and organelles from the cytoplasm. Annu Rev Cell Dev Biol,1999,15:1-32.
    [105]Yoshimori T. Autophagy:a regulated bulk degradation process inside cells. Biochem Biophys Res Commun,2004,313:453-458.
    [106]Kamada Y, Funakoshi T, Shintani T, et al. Tor-mediated induction of autophagy via an Apgl protein kinase complex. J Cell Biol,2000,150:1507-1513.
    [107]Abeliovich H, Zhang C, Dunn WA Jr, et al. Chemical genetic analysis of Apgl reveals a non-kinase role in the induction of autophagy. Mol Biol Cell,2003,14: 477-490.
    [108]Scott SV, Nice DC 3rd, Nau JJ, et al. Apgl3p and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targeting. J Biol Chem,2000,275:25840-25849.
    [109]Raught B, Gingras AC and Sonenberg N. The target of rapamycin (TOR) proteins. Proc Natl Acad Sci USA,2001,98:7037-7044.
    [110]Beck T and Hall MN. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature,1999,402:689-692.
    [111]Holen I, Gordon PB and Seglen PO. Protein kinasedependent effects of okadaic acid on hepatocytic autophagy and cytoskeletal integrity. Biochem J,1992,284: 633-636.
    [112]Schmelzle T, Hall MN. TOR, a central controller of cell growth. Cell,2000, 103(2):253-262.
    [113]Uetz P, Giot L, Cagney G, et al. A comprehensive analysis of proteinprotein interactions in Saccharomyces cerevisiae. Nature,2000,403:623-627.
    [114]Yan J, Kuroyanagi H, Kuroiwa A, et al. Identification of mouse ULK1, a novel protein kinase structurally related to C. elegans UNC-51. Biochem Biophys Res Commun,1998,246:222-227.
    [115]Okazaki N, Yan J, Yuasa S, et al. Interaction of the Unc-51-like kinase and microtubule associated protein light chain 3 related proteins in the brain: possible role of vesicular transport in axonal elongation. Brain Res Mol Brain Res,2000,85:1-12.
    [116]Kim J, Kamada Y, Stromhaug PE, et al. Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J Cell Biol,2001,153: 381-396.
    [117]De Camilli P, Emr SD, McPherson PS and et al. Phosphoinositides as regulators in membrane traffic. Science,1996,271:1533-1539.
    [118]Seglen PO and Gordon PB.3-Methyladenine:specific inhibitor of autophagic/ lysosomal protein degradation inisolated rat hepatocytes. Proc Natl Acad Sci USA,1982,79:1889-1892.
    [119]Kihara A, Noda T, Ishihara N, et al. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol,2001,152:519-530.
    [120]Wurmser AE and Emr SD. Novel PtdIns(3)P-binding protein Etfl functions as an effector of the Vps34 PtdIns 3-kinase in autophagy. J Cell Biol,2002,158: 761-772.
    [121]Tassa A, Roux MP, Attaix D, et al. Class III phosphoinositide 3-kinase-Beclinl complex mediates the amino acid-dependent regulation of autophagy in C2C12 myotubes. Biochem J,2003,376:577-586.
    [122]Petiot A, Ogier-Denis E, Blommaart EF, et al. Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem,2000,275:992-998.
    [123]Wurmser AE, Gary JD and Emr SD. Phosphoinositide 3-kinases and their FYVE domain-containing effectors as regulators of vacuolar/lysosomal membrane trafficking pathways. J Biol Chem,1999,274:9129-9132.
    [124]Liang X H, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature,1999,402:672-676.
    [125]Sapp E, Schwarz C, Chase K, et al. Huntingtin localization in brains of normal and Huntington's disease patients. Ann Neurol,1997,42:604-612.
    [126]Nixon RA, Cataldo AM and Mathews PM. The endosomal-lysosomal system of neurons in Alzheimer's disease pathogenesis:a review. Neurochem Res,2000, 25:1161-1172.
    [127]Kegel KB, Kim M, Sapp E, et al. Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J Neurosci, 2000,20:7268-7278.
    [128]Stefanis L, Larsen KE, Rideout HJ, et al. Expression of A53T mutant but not wild-type alpha-synuclein in PC 12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J Neurosci,2001,21:9549-9560.
    [129]Petersen A, Larsen KE, Behr GG, et al. Expanded CAG repeats in exon 1 of the Huntington's disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration. Hum Mol Genet,2001,10:1243-1254.
    [130]Fortun J, Dunn WA Jr, Joy S, et al. Emerging role for autophagy in the removal of aggresomes in Schwann cells. J Neurosci,2003,23,10672-10680.
    [131]Taylor JP, Tanaka F, Robitschek J, et al. Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein. Hum Mol Genet, 2003,12:749-757.
    [132]Ravikumar B, Duden R and Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet,2002,11:1107-1117.
    [133]Ravikumar B, Stewart A, Kita H, et al. Raised intracellular glucose concentrations reduced aggregation and cell death caused by mutan thuntingtin exonl by decreasing mTOR phosphorylation and inducing autophagy. Hum Mol Genet,2003,12:985-994.
    [134]Mantle D, Falkous G, Ishiura S, et al. Comparison of cathepsin protease activities in brain tissue from normal cases and cases with Alzheimer's disease, Lewy body dementia, Parkinson's disease and Huntington's disease. J Neurol Sci,1995,131:65-70.
    [135]Berger Z, Ravikumar B, Menzies FM, et al. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet,2006,15(3):433-442.
    [136]Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature,2006,441:885-889.
    [137]Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature,2006,441(7095):880-884.
    [138]Jia K, Hart AC, Levine B. Autophagy genes protect against disease caused by polyglutamine expansion proteins in Caenorhabditis elegans. Autophagy,2007, 3(1):21-25.
    [139]Holmberg CI, Staniszewski KE, Mensah KN, et al. Inefficient degradation of truncated polyglutamine proteins by the proteasome. EMBO J,2004,23: 4307-4318.
    [140]Pozzi C, Valtorta M, Tedeschi G, et al. Study of subcellular localization and proteolysis of ataxin-3. Neurobiol Dis,2008,30(2):190-200.
    [141]Kwong JQ, Flint Beal M, Manfredi G. The role of mitochondria in inherited neurodegenerative diseases. J Neurochem,2006,97:1659-1675.
    [142]Puranam K, Wu G, Strittmatter WJ, et al. Polyglutamine expansion exhibits respiration by increasing reactive oxygen species in isolated mitochondria. Biochem Biophys Res Commun,2006,341:607-613.
    [143]Ravikumar B, Berger Z, Vacher C, et al. Rapamycin pre-treatment protects against apoptosis. Hum Mol Genet,2006,15(7):1209-1216. Epub 2006 Feb 23.
    [144]Bjornsti, M.A. and Houghton, P.J. The TOR pathway:a target for cancer therapy. Nat Rev Cancer,2004,4:335-348.
    [145]Galanis E, Buckner JC, Maurer MJ, et al. Phase Ⅱ trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme:a North Central Cancer Treatment Group Study. J Clin Oncol,2005,23:5294-5304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700