用户名: 密码: 验证码:
Ubiquitin-like家族蛋白溶液结构与分子作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质翻译后修饰是蛋白质功能调节的重要手段之一,涉及到蛋白质降解、信号转导、染色体装配、DNA损伤修复等重要的生物学功能。目前已知的翻译后修饰包括磷酸化、乙酰化、糖基化、泛素化、甲基化等。在这些翻译后修饰中,泛素蛋白家族包含大约十几种相关的蛋白质,目前研究比较透彻的是泛素(ubiquitin)蛋白和SUMO (small ubiquitin-like proteins)蛋白。我们的研究工作主要集中在两个方面:一个是锥体虫Trypanosoma brucei中SUMO蛋白(Tb-SUMO)的溶液结构和人Ubc9的相互作用;另一个是原核生物中ubiquitin蛋白(Pup)的溶液结构及与Mpa相互作用的研究。
     锥体虫Trypanosoma brucei是一种古老的单细胞的原生生物,主要寄生在人和牛的体内,造成人的嗜睡病和牛的那加那病。我们实验室的廖善晖同学通过RNAi的方法证明了SUMO蛋白在锥体虫中细胞有丝分裂中起重要作用。我们利用核磁共振方法研究Trypanosoma brucei中SUMO蛋白的三维溶液结构,这是第一个被解析出来的原生生物中SUMO蛋白的溶液结构。通过核磁的溶液结构研究发现,Tb-SUMO的溶液结构具有典型的ubiquitin折叠构像,由5个β折叠和两个α螺旋组成。与其他已知的SUMO蛋白结构相比,Tb-SUMO蛋白在氨基端含有一段较长的无规卷曲序列,长度达到32个氨基酸残基。为了研究Tb-SUMO和E2酶的相互作用,我们用化学微扰的方法研究了Tb-SUMO与人E2 (Trypanosoma brucei中的E2酶尚未找到)酶Ubc9的相互作用界面,发现Tb-SUMO与Ubc9的主要相互作用界面集中在β片层上,相互作用方式主要以疏水相互作用和静电相互作用为主。通过研究我们发现锥体虫中的SUMO蛋白在结构和Ubc9的结合方式在进化上是保守的。
     Ubiquitin蛋白在真核生物中可以作为信号分子介导蛋白质到蛋白酶体中进行水解。已知在结核杆菌中有蛋白酶体复合物,但是一直以来在原核生物中都没有发现类似ubiquitin介导蛋白水解的方式,直到2008年人们首次在结核杆菌中发现了原核生物的ubiquitin蛋白(Pup)。并确定了Pup蛋白在结核杆菌中介导底物蛋白的水解。Pup是一个由64个氨基酸编码的小蛋白质,与真核生物中ubiquitin蛋白一样,在Pup的羧基端含有两个连续的甘氨酸残基。我们通过Pup与真核生物中ubiquitin的序列比对发现它与真核中ubiquitin蛋白的序列同源性非常低,二级结构预测也显示其具有不同于真核ubiquitin蛋白的二级结构。在实验方面我们利用CD和NMR方法显示Pup是一个天然无规蛋白(IDP),1H-15N NOE和CSI方法显示在Pup的羧基端有一些残留的二级结构。之后我们利用NMR方法确定了Pup蛋白中各氨基酸的化学位移,同时我们用SPR方法和化学微扰的方法研究了Pup蛋白与Mpa (mycobacterium proteasomal ATPase)蛋白的相互作用。Mpa是原核生物中蛋白酶体的具有ATPase功能的一个调节亚基,它能够与Pup相互作用把底物带到蛋白酶体中进行水解。研究结果表明Pup和Mpa是一种强疏水相互作用,作用区段主要集中在羧基端的30-59的氨基酸区域。同时我们还在进化角度上用进化树对Pup蛋白的进化进行分析,发现Pup蛋白是一个在进化树上独立的分支,这也可以解释为什么Pup蛋白的结构与真核的ubiquitin结构有很大的差别。这是在国际上首次发现的原核生物中ubiquitin的蛋白是一个天然无规蛋白质,这个研究为后续的原核中ubiquitin的功能研究和作用机制提供实验上的依据。
Post-translational modification is an important mechanism that regulates a wide variety of cellular events such as protein degradation, singal transduction, gene expression, cell cycle, and DNA repair. Post-translational modifications include phosphorylation, acetylation, methylation, glycosylation, ubiquitylation and so on. Ubiquitin proteins family includes more than ten proteins. So far, many studies have been focused on ubiquitin and SUMO (small ubiquitin-like proteins). Our studies can be devided into two parts:one is about the study of solution structure of SUMO of Trypanosoma brucei and its interaction with hUbc9; the other is about the structural study of Pup and its interaction with Mpa (mycobacterium proteasomal ATPase).
     Trypanosoma brucei is the most ancient unicellular eukaryotic organism that causes sleeping sickness in human and nagana diseases in animals. In this study, we use NMR method to solve the solution structure of SUMO of Trypanosoma brucei (Tb-SUMO). This is the first structure of SUMO determined in protist. Tb-SUMO has the typical ubiquitin-fold containing five 13 stands and two a halix. Compared with other SUMO structures, Tb-SUMO has an extended region with a length of 32 amino acids at the N-terminus. We also study the interaction between Tb-SUMO and human Ubc9 (the E2 enzyme has not been identified in Trypanosoma brucei so far). On SUMO, the surface is composed byβsheet and some loops, which is highly complementary in its electrostatic potentials and hydrophobicity to the positively charged surface of Ubc9. The result shows that the structure and binding surface of Tb-SUMO is conserved.
     In eukaryotic cells, ubiquitin is attached to substracts as a tag to bring proteins into proteasome for degradation. Proteasome in mycobacterial has been found for many years. Ubiquitin protein is not known in prokaryotae, until Pup is reported to be coupled to proteins, rendering them as substrates for proteasome-mediated degradation in mycobacterium in 2008. Pup is a small protein encoded by 64 amino acids. Like eukaryotic ubiquitin proteins, there are two glycines in the C-terminus of Pup. Sequence alignment shows that Pup and ubiquitin proteins share very low similarity. Diverse structure predictions combined with CD and NMR spectroscopic studies all demonstrate that Pup is an intrinsically disordered protein. Moreover, 1H-15N NOE (nuclear Overhauser effect) data and CSI (chemical shift index) analyses indicate that there is a residual secondary structure at the C-terminus of Pup. In M. tuberculosis, Mpa is the regulatory cap ATPase of the proteasome that interacts with Pup and brings the substrates to the proteasome for degradation. SPR (surface plasmon resonance) and NMR perturbation studies imply that the C-terminus of Pup, ranging from residue 30 to 59, binds to Mpa probably through a hydrophobic interface. In addition, phylogenetic analysis clearly shows that the Pup family belongs to a unique and divergent evolutionary branch, suggesting that it is the most ancient and deeply branched family among ubiquitinlike proteins. This might explain the structural distinction between Pup and other ubiquitin-like superfamily proteins.
引文
Abdel-Hafiz H., Takimoto G.S. et al. (2002). The inhibitory function in human progesterone
    receptor N termini binds SUMO-1 protein to regulate autoinhibition and transrepression. J. Biol.
    Chem.277:33950-33956.
    Alkuraya, F. S., Saadi I. et al. (2006) SUMO1 haploinsufficiency leads to cleft lip and palate. Science 313:1751.
    Andrew, E.A., Palecek, J., et al. (2005) Nse2, a component of the Smc5-6 complex, is a SUMO ligase required for the response to DNA damage. Mol. Cell. Biol.25:185-196
    Baba, D. et al. (2005) Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature 435:979-982.
    Barry JD. et al. (1998) VSG gene control and infectivity strategy of metacyclic stage Trypanosoma brucei. Mol Biochem Parasitol.91(1):93-105.
    Bayer P. et al. (1998) Structure determination of the small ubiquitin-related modifier SUMO-1. J. Mol. Biol.280:275-286.
    Best J.L. et al. (2002) SUMO-1 protease-1 regulates gene transcription through PML. Mol. Cell 10:843-855.
    Bies J., Markus, J., and Wolff, L. (2002) Covalent attachment of SUMO-1 protein to the negative regulatory domain of the c-Myb transcription factor modifies its stability and transactivation capacity. J. Biol. Chem.277; 8999-9009.
    Boggio R., Colombo R., et al. (2004) A mechanism for inhibiting the SUMO pathway. Mol. Cell 16:549-561
    Boggio, R.& Chiocca, S. (2006) Viruses and sumoylation:recent highlights. Curr. Opin. Microbiol.9:430-436.
    Boggio, R., Passafaro, A.& Chiocca, S. (2007) Targeting SUMO El to ubiquitin ligases:a viral strategy to counteract sumoylation. J. Biol. Chem.282:15376-15382
    Cheng, J., Bawa, T. et al. (2006) Role of desumoylation in the development of prostate cancer. Neoplasia 8:667-676.
    Dadke, S., Cotteret, S. et al. (2007) Regulation of protein tyrosine phosphatase 1B by sumoylation. Nat. Cell Biol.9:80-85.
    Desterro, J. M., Rodriguez, M. S.& Hay, R. T. (1998) SUMO-1 modification of IκBα inhibits NF-κB activation. Mol. Cell 2:233-239.
    Desterro J.M., Rodriguez M.S. et al (1999) Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J.Biol. Chem.274:10618-10624.
    Desterro J.M., Thomson J. and Hay R.T. (1997) Ubch9 conjugates SUMO but not ubiquitin, FEBS Lett.417:297-300.
    Deyrieux, A. F., Rosas-Acosta,G., et al. (2007) Sumoylation dynamics during keratinocyte differentiation. J. Cell. Sci.120:125-136.
    Di Bacco A. et al. (2006) The SUMO-specific protease SENP5 is required for cell division, Mol. Cell. Biol.26:4489-4498.
    Ding H, Xu Y et al. (2005) Solution structure of human SUMO-3 C47S and its binding surface for Ubc9. Biochemistry 44(8):2790-9.
    Fraser A.G., Kamath R.S. et al. (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference, Nature 408:325-330.
    Geiss-Friedlander R, Melchior F. (2007) Concepts in sumoylation:a decade on. Nat Rev Mol Cell Biol.8(12):947-56
    Gill G. (2004) SUMO and ubiquitin in the nucleus:different functions, similar mechanisms?, Genes Dev.18:2046-2059.
    Gong, L., Millas, S. et al. (2000) Differential regulation of sentrinized proteins by a novel sentrin-specific protease. J. Biol. Chem.275:3355-3359.
    Goodson M.L., Hong Y. et al. (2001) Sumo-1 modification regulates the DNA binding activity of heat shock transcription factor 2, a promyelocytic leukemia nuclear body associated transcription factor. J. Biol. Chem.276:18513-18518.
    Gong L. et al. (2000) Differential regulation of sentrinized proteins by a novel sentrin-specific protease. J. Biol. Chem.275:3355-3359.
    Gong L., Li B. et al. (1999) Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex. FEBS Lett.448:185-189.
    Gong, L.& Yeh, E. T. (2006) Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. J. Biol. Chem.281:15869-15877.
    Guntert P, Mumenthaler C, Wu'thrich K. (1997) Torsion angle dynamics for NMR structure calculation with new program DYANA. J Mol Biol 273:283-298.
    Guo, D. et al. (2004) A functional variant of SUMO4, a new IκBα modifier, is associated with type 1 diabetes. Nature Genet.36:837-841.
    Guo, D., Han, J. et al (2005) Proteomic analysis of SUMO4 substrates in HEK293 cells under serum starvation-induced stress. Biochem. Biophys. Res. Commun.337:1308-1318.
    Hardeland U., Steinacher R. et al. (2002) Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover._EMBO J.21:1456-1464.
    Hay RT. (2005) SUMO:a history of modification. Mol Cell.18(1):1-12
    Hay RT. (2007) SUMO-specific proteases:a twist in the tail.Trends Cell Biol.17(8):370-6.
    Hayashi T. M. Seki, Maeda D. et al. (2002) Ubc9 is essential for viability of higher eukaryotic cells, Exp. Cell Res.280:212-221.
    Haracska L., Torres-Ramos, C.A. et al. (2004) Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. Mol. Cell Biol.24:4267-4274.
    Hietakangas, V. et al. (2006) PDSM, a motif for phosphorylation-dependent SUMO modification. Proc. Natl Acad. Sci.103:45-50.
    Hietakangas, V. et al. (2003) Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Mol. Cell. Biol.23:2953-2968.
    Hoege, C., Pfander, B., et al. (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135-141.
    Hochstrasser, M. (2001) SP-RING for SUMO:new functions bloom for a ubiquitin-like protein. Cell 107:5-8.
    Holmstrom S., Van Antwerp M.E. and Iniguez-Lluhi J.A (2003). Direct and distinguishable inhibitory roles for SUMO isoforms in the control of transcriptional synergy. Proc. Natl. Acad. Sci. 100:15758-15763.
    Johnson E.S., Schwienhorst I., et al. (1997) The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aoslp/Uba2p heterodimer, EMBO J.16:5509-5519.
    Johnson E.S. and Blobel G. (1997) Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J. Biol. Chem.272:26799-26802.
    Johnson E.S. and Gupta A.A. (2001) An E3-like Factor that Promotes SUMO Conjugation to the Yeast Septins, Cell 106:735-744.
    Joseph J., Tan S.H. et al. (2002) SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles. J. Cell Biol.156:595-602.
    Jones, D., Crowe, E. et al. (2002) Functional and phynogenetic analysis of ubiquitylation system in Caenorhabditis elegans:ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. Genome Biol.3(1):Research 0002.
    Johnson, E. S.& Gupta, A. A.. (2001) An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106:735-744.
    Kagey M.H., Melhuish, T.A., and Wotton, D. (2003). The polycomb protein Pc2 is a SUMO E3. Cell 113:127-137.
    Kagey, M. H., Melhuish, T. A. et al. (2005) Multiple activities contribute to Pc2 E3 function. EMBO J.24:108-119.
    Kim K.I. et al. (2000) A new SUMO-1-specific protease, SUSP1, that is highly expressed in reproductive organs. J. Biol. Chem.275:14102-14106.
    Kahyo T., Nishida T., and Yasuda, H. (2001). Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol. Cell 8:713-718.
    Kamitani, T. et al. (1998) Identification of three major sentrinization sites in PML. J. Biol. Chem.273:26675-26682.
    Kim K.I., Baek, S.H. and Chung, C.H. (2002) Versatile protein tag, SUMO:Its enzymology and biological function._J. Cell Physiol._191:257-268.
    Kotaja N., Karvonen, U. et al. (2002). PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol. Cell Biol.22:5222-5234.
    Koradi R, Billeter M, Wu'thrich K. (1996)MOLMOL:a program for display and analysis of macromolecular structures. J Mol Graphics 14:51-55.
    Kurepa J., Walker J.M. et al. (2003) The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and-2 conjugates is increased by stress. J. Biol. Chem.278:6862-6872.
    Lee M.H. et al. (2006) SUMO-specific protease SUSP4 positively regulates p53 by promoting Mdm2 self-ubiquitination. Nat. Cell Biol.8:1424-1431
    Lee, J. S. and Thorgeirsson, S. S. (2004) Genome-scale profilin of gene expression in hepatocellular carcinoma:classification, survival prediction, and identification of therapeutic targets. Gastroenterology 127:S51-S55.
    Lin, X. et al. (2003) Opposed regulation of corepressor CtBP by SUMOylation and PDZ binding. Mol. Cell 11:1389-1396.
    Lin X., Liang M., et al. (2003) Activation of transforming growth factor-beta signaling by SUMO-1 modification of tumor suppressor Smad4/DPC4. J. Biol. Chem.278:18714-18719.
    Liang M., Melchior F., Feng X.H. and Lin X. (2004) Regulation of Smad4 SUMOylation and transforming growth factor-beta signaling by protein inhibitor of activated STAT1. J. Biol. Chem. 279:22857-22865.
    Li, M., Guo, D., Isales C. M. et al. (2005) SUMO wrestling with type 1 diabetes. J. Mol. Med. 83:504-513.
    Liao S, Wang T, Fan K, Tu X. (2010) The small ubiquitin-like modifier (SUMO) is essential in cell cycle regulation in Trypanosoma brucei. Exp Cell Res.316(5):704-15.
    Lin, H.-Y., Wang, C.-L et al. (2007) SUMO4 M55V variant iIs aAssociated with diabetic nephropathy in type 2 diabetes. Diabetes 56:1177-1180.
    Li S.J. and Hochstrasser M. (1999). A new protease required for cell-cycle progression in yeast. Nature 398:246-251.
    Long J., Wang G., He D. and Liu F. (2004) Repression of Smad4 transcriptional activity by SUMO modification. Biochem. J.379:23-29.
    Matunis, M. J., Coutavas, E.& Blobel, G. (1996) A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAPl between the cytosol and the nuclear pore complex. J. Cell Biol.135:1457-1470.
    Mahajan, R., Delphin, C., et al. (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88:97-107.
    MacLeod A, et al. (2005) The genetic map and comparative analysis with the physical map of Trypanosoma brucei. Nucleic Acids Res.33(21):6688-93.
    Matunis, M. J., Wu, J.& Blobel, G. (1998) SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J. Cell Biol.140: 499-509.
    Melchior, F. (2000) SUMO - nonclassical ubiquitin. Annu. Rev. Cell Dev. Biol.16: 591-626.
    Mendoza H.M. et al. (2003) NEDP1, a highly conserved cysteine protease that deNEDDylates Cullins. J. Biol. Chem.278:25637-25643.
    Meluh, P. B.& Koshland, D. (1995) Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol. Biol. Cell 6:793-807.
    Melchior F, Schergaut M, Pichler A. (2003) SUMO:ligases, isopeptidases and nuclear pores. Trends Biochem Sci.28(11):612-8.
    Mossessova, E.& Lima, C. D. (2000) Ulpl-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell 5:865-876.
    Mo, Y. Y., Yu, Y. et al. (2005) A role for Ubc9 in tumorigenesis. Oncogene 24:2677-2683.
    Muller, S. et al. (2000) c-Jun and p53 activity is modulated by SUMO-1 modification. J. Biol. Chem.275:13321-13329.
    Mukhopadhyay D. et al. (2006) SUSP1 antagonizes formation of highly SUMO2/3-conjugated species, J. Cell Biol.174:939-949.
    McDoniels-Silvers, A. L., Nimri, C. F. et al. (2002) Differential gene expression in human lung adenocarcinomas and squamous cell carcinomas. Clin. Cancer Res.8:1127-1138.
    Muller S., Ledl, A., and Schmidt, D. (2004). SUMO:A regulator of gene expression and genome integrity. Oncogene 23:1998-2008.
    Muller S., Berger M. et al.. (2000) c-Jun and p53 activity is modulated by SUMO-1 modification. J. Biol. Chem.275:13321-13329.
    Nacerddine K, Lehembre F. et al. (2005) The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell.9(6):769-79.
    Nishida T. et al. (2000) A novel mammalian Smt3-specific isopeptidase 1 (SMT3IP1). localized in the nucleolus at interphase. Eur. J. Biochem.267:6423-6427.
    Okura, T. et al. (1996) Protection against Fas/APO-1-and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J. Immunol.157:4277-4281.
    Okuma T., Honda R. et al. (1999) In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2. Biochem. Biophys. Res. Commun.254:693-698.
    Ohshima T. and Shimotohno K. (2003) TGF-b mediated signaling via the p38 MAP kinase pathway activates Smad-dependent transcription through SUMO-1 modification of Smad4. J. Biol. Chem.278:50833-50842.
    Pichler, A. et al. (2005). SUMO modification of the ubiquitin-conjugating enzyme E2-25K. Nature Struct. Mol. Biol.12:264-269
    Poukka H., Karvonen U. et al (2000) Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc. Natl. Acad. Sci.97:14145-14150.
    Potts, P.R. and Yu, H. (2005) Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol. Cell. Biol.25:7021-7032.
    Pichler A., Gast, A. et al. (2002). The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108:109-120.
    Potts, P. R.& Yu, H. (2007) The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nature Struct. Mol. Biol.14:581-590.
    Pountney, D. L., Chegini, F et al. (2005) SUMO-1 marks subdomains within glial cytoplasmic inclusions of multiple system atrophy. Neurosci. Lett.381:74-79.
    Pountney, D. L. Huang Y et al. (2003) SUMO-1 marks the nuclear inclusions in familial neuronal intranuclear inclusion disease. Exp. Neurol.184:436-446.
    Qu H, Bharaj B, Liu XQ et al. (2005) Assessing the validity of the association between the SUMO4 M55V variant and risk of type 1 diabetes. Nat Genet.37(2):111-2;
    Ruth Geiss-Friedlander& Frauke Melchior. (2007) Concepts in sumoylation:a decade on. Nature Reviews Molecular Cell Biology 8:947-956
    Hay R. T. (2005) SUMO:A History of Modification. Molecular Cell,18:1-12.
    Ross, S., Best, J. L. et al. (2002) SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol. Cell 10:831-842.
    Sachdev, S. et al. (2001) PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev.15:3088-3103.
    Sharrocks, A. D. (2006) PIAS proteins and transcriptional regulation - more than just SUMO E3 ligases? Genes Dev.20:754-758
    Saitoh H. and Hinchey J. (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem.275:6252-6258.
    Seufert W., Futcher B. and Jentsch S. (1995) Role of a ubiquitin-conjugating enzyme in degradation of S-and M-phase cyclins. Nature 373:78-81.
    Shayeghi M., Doe C.L. et al. (1997) Characterisation of Schizosaccharomyces pombe rad 31, a UBA-related gene required for DNA damage tolarance. Nucleic Acids Res.25:1162-1169.
    Shen Z. et al. (1996) UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics 36:271-279.
    Sheng W, Liao X. (2002) Solution structure of a yeast ubiquitin-like protein Smt3:the role of structurally less defined sequence in proteinprotein recognitions. Protein Sci 11:1482-1491.
    Shang Q, Xu C et al. (2009) Solution structure of SUMO from Trypanosoma brucei and its interaction with Ubc9. Proteins 76(1):266-9.
    Smyth DJ et al. (2005) Assessing the validity of the association between the SUMO4 M55V variant and risk of type 1 diabetes. Nat Genet.37(2):110-111
    Sternsdorf, T., Jensen, K. et al. (1999) The nuclear dot protein Sp100, characterization of domains necessary for dimerization, subcellular localization, and modification by small ubiquitin-like modifiers. J. Biol. Chem.274:12555-12566.
    Stelter P.& Ulrich H. D. (2003) Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425:188-191.
    Taylor D.L., Ho, J.C. et al. (2002) Cell cycle-dependent localization of Ulpl, a saccharomyces pombe Pmt3 (SUMO)-specific protease. J. Cell Sci._115:1113-1122.
    Tansy C., et al. (2003) Stage-specific differences in cell cycle control in Trypanosoma brucei revealed by RNA interference of a mitotic cyclin. J Biol Chem.278(25):22877-86.
    Takahashi, Y., Kahyo T. et al. (2001) Yeast Ulll/Sizl is a novel SUMO1/Smt3 ligase for septin components and functions as an adaptor between conjugating enzyme and substrates. J. Biol. Chem.276:48973-48977.
    Verger A.. et al. (2003) Modification with SUMO, A role in transcriptional regulation. EMBO Rep.4:137-142.
    Wang L. and Banerjee, S. (2004) Differential PIAS3 expression in human malignancy. Oncol. Rep.11:1319-1324.
    Wang CY, She JX. (2008) SUMO4 and its role in type 1 diabetes pathogenesis. Diabetes Metab Res Rev.24(2):93-102.
    Wang, C. Y., Podolsky, R. and She, J. X. (2006) Genetic and functional evidence supporting SUMO4 as a type 1 diabetes susceptibility gene. Ann. NYAcad. Sci.1079:257-267.
    Yang S.-H., Jaffray E. et al. (2003) Dynamic interplay of the SUMO and ERK pathways in regulating Elk-1 transcriptional activity. Mol. Cell 16, pp.611-617.
    Yang, S. H., Galanis A. et al. (2006) An extended consensus motif enhances the specificity of substrate modification by SUMO. EMBO J.25:5083-5093.
    Zhang H. et al. (2002) Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Mol. Cell. Biol.22:6498-6508.
    Zhong S., Salomoni, P. et al. (2000) The transcriptional role of PML and the nuclear body. Nat. Cell Biol.2:E85-E90
    Zhao, X. and Blobel, G. (2005) A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl. Acad. Sci.102:4777-4782
    Zhao, X.& Blobel, G. (2005) A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl Acad. Sci.102:4777-4782.
    Arrigo A.P. et al. (1988) Identity of the 19S "prosome" particle with the large multifunctional protease complex of mammalian cells (the proteasome). Nature 331:192-194.
    Baumeister W., et al. (1997) The proteasome:a macromolecular assembly designed to confine proteolysis to a nanocompartment. Biol. Chem.378:121-130.
    Benaroudj N. and Goldberg A.L. (2000) PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone. Nat. Cell Biol.2:833-839.
    Burns KE., et al. (2010) Prokaryotic Ubiquitin-Like Protein Provides a Two-Part Degron to Mycobacterium Proteasome Substrates. J Bacteriol.
    Burns KE., and Darwin KH. (2010) Pupylation versus ubiquitylation:tagging for proteasome-dependent degradation. Cell Microbiol 12(4):424-31
    Burns KE., et al. (2009) Proteasomal protein degradation in Mycobacteria is dependent upon a prokaryotic ubiquitin-like protein. J Biol Chem.284(5):3069-75.
    Catic A. et al. (2007) Sequence and structure evolved separately in a ribosomal ubiquitin variant. EMBO J.26:3474-3483.
    Dahlmann B., et al. (1988) The multicatalytic proteinase:a high-Mr endopeptidase. Biochem. J.255:750-751.
    Dahlmann B. et al. (1989) The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria. FEBS Lett.251:125-131.
    Darwin KH. (2009) Prokaryotic ubiquitin-like protein (Pup), proteasomes and pathogenesis. Nat Rev Microbiol.7(7):485-91.
    DeMartino GN. (2009) PUPylation:something old, something new, something borrowed, something Glu. Trends Biochem Sci.34(4):155-8.
    Engel A., et al. (1995) Functional significance of symmetrical versus asymmetrical GroEL-GroES chaperonin complexes. Science 269:832.
    Festa RA, et al. (2010) Prokayrotic ubiquitin-like protein (Pup) proteome of Mycobacterium tuberculosis. PLoS One.5(1):e8589.
    Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature.426:895-899
    Gregory R. C. et al. (2003) Regulation of the Fanconi anemia pathway by monoubiquitination. Semin. Cancer Biol.13:77-82.
    Groll M., et al. (1997) Structure of 20S proteasome from yeast at 2.4 (?) resolution. Nature 386:463-471.
    Groll M., et al. (2000) A gated channel into the proteasome core particle. Nat. Struct. Biol.7: 1062-1067.
    Haglund K. at al. (2003) Distinct monoubiquitin signals in receptor endocytosis.Trends Biochem. Sci.28:598-603.
    Hershko A., and Ciechanover, A. (1998) The ubiquitin system. Annu. Rev. Biochem.67: 425-479.
    Hicke, L., and Dunn, R. (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu. Rev. Cell Dev. Biol.19:141-172.
    Hoege C. et al. (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature.419:135-141.
    Hofmann R. M., and Pickart, C. M. (2001) In vitro assembly and recognition of Lys-63 polyubiquitin chains. J. Biol. Chem.276:27936-27943.
    Holzl H., et al. (2000) The regulatory complex of Drosophila melanogaster 26S proteasomes: subunit composition and localization of a deubiquitylating enzyme. J. Cell Biol.150:119-129.
    Imkamp F, et al. (2009) Deletion of dop in Mycobacterium smegmatis abolishes pupylation of protein substrates in vivo. Mol Microbiol. [Epub ahead of print]
    Iyer LM, et al. (2008) Unraveling the biochemistry and provenance of pupylation:a prokaryotic analog of ubiquitination. Biol Direct.3:45.
    Kim I., and Rao, H. (2006) What's Ub chain linkage got to do with it? Sci. STKE.2006: pel8.
    Kraut DA, Matouschek A 2010 Pup grows up:in vitro characterization of the degradation of pupylated proteins. EMBO J.29(7):1163-4.
    Lupas A., Zwickl P. and Baumeister W. (1994) Proteasome sequences in eubacteria. Trends Biochem. Sci.19:533-534.
    Maupin-Furlow J.A. and Ferry J.G. (1995) A proteasome from the methanogenic archaeon Methanosarcina thermophila. J. Biol. Chem.270:28617-28622.
    Muratani, M., and Tansey, W. P. (2003) How the ubiquitin-proteasome system controls transcription. Nat. Rev. Mol. Cell. Biol.4:192-201.
    Pearce MJ, et al. (2008) Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science.322(5904):1104-7.
    Peng J. et al. (2003) A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol.21:921-926.
    Peters J.M., et al. (1993) Structural features of the 26S proteasome complex. J. Mol. Biol. 234:932-937.
    Pickart C. M., and Fushman D. (2004) Polyubiquitin chains:polymeric protein signals. Curr. Opin. Chem. Biol.8:610-616.
    Rubin D.M., et al. (1998) Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J.17:4909-4919.
    Sauer RT et al. (2004) Sculpting the proteome with AAA(+) proteases and disassembly machines. Cell.119:9-18
    Schmidt M., et al. (1994) Symmetric complexes of GroE chaperonins as part of the functional cycle. Science 265:656-659.
    Seemuller E., et al. (1995) Proteasome from Thermoplasma acidophilum:a threonine protease. Science 268:579-582.
    Stelter P., and Ulrich H. D. (2003) Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature.425:188-191.
    Striebel F, et al. (2009) Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes. Nat Struct Mol Biol.16(6):647-51.
    Striebel F., et al. (2010) The mycobacterial Mpa-proteasome unfolds and degrades pupylated substrates by engaging Pup's N-terminus. EMBO J.29(7):1262-71.
    Sutter M, et al. (2010) Prokaryotic ubiquitin-like protein (Pup) is coupled to substrates via the side chain of its C-terminal glutamate. J Am Chem Soc.132(16):5610-2.
    Sutter M, et al. (2009) A distinct structural region of the prokaryotic ubiquitin-like protein (Pup) is recognized by the N-terminal domain of the proteasomal ATPase Mpa. FEBS Lett. 583(19):3151-7.
    Varadan R. et al. (2002) Structural properties of polyubiquitin chains in solution. J. Mol. Biol. 324:637-647.
    Varadan R. et al. (2004) Solution conformation of Lys63-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling. J. Biol. Chem.279:7055-7063.
    Walz J., et al. (1998) Baumeister,26S proteasome structure revealed by three-dimensional electron microscopy. J. Struct. Biol. in press.
    Wu C. J. et al. (2006) Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation. Nat. Cell Biol.8:398-406.
    Watrous J., et al. (2010) Expansion of the mycobacterial "PUPylome". Mol Biosyst. 6(2):376-85.
    Zwickl P. et al. (1999) An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26S proteasome, activates protein breakdown by 20 S proteasomes. J. Biol. Chem.274:26008-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700