用户名: 密码: 验证码:
基于柔性配体对苯二乙酸的过渡金属配合物的合成、晶体结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来,由柔性配体制得的金属配合物由于其结构的多样性和潜在的功能性而受到人们越来越多的关注,其中对苯二乙酸(H_2PDA)就是一个比较典型的柔性二羧酸类配体,它的两个柔性的乙酸基能够形成顺式和反式构型,再加上羧基配位方式的多样性,因此形成的结构更加灵活和多样。为了研究对苯二乙酸的配位特点及它所形成的过渡金属配合物的结构特征和性能,本文以对苯二乙酸为主配体用溶剂法合成了10个未见报道的对苯二乙酸的过渡金属配合物,并通过X-射线单晶衍射、红外光谱、元素分析等手段系统地研究了它们的结构,并对其中一些配合物做了热重分析和一些其他方面的研究。
     本论文分为以下五章:
     绪论部分首先着重介绍了配位聚合物的研究现状,及它们在气体吸附、催化反应和光学、磁学方面的潜在应用。然后详细介绍了对苯二乙酸在国内外的研究概况。
     第二章描述了以对苯二乙酸为主配体,2,2’-联吡啶为第二配体分别与铜盐、锌盐、镉盐反应得到的五个配合物[Cu(PDA)(2,2’-bpy)]·5H_2O(1)、[Cu_2(PDA)_(1.5)(2,2’-bpy)_2](ClO_4)·5H_2O(2)、[Zn_2(PDA)(2,2’-bpy)_2Cl_2](3)、[Cd(PDA)_(0.5)(2,2’-bpy)Cl](H_2PDA)(4)和[Cd_2(PDA)_2(2,2’-bpy)_2]·2H_2O(5)。配合物1~4都属于Triclinic晶系,P-1空间群。配合物1的中心铜离子的配位环境为六配位的八面体构型;配合物2中存在两种配位环境的铜离子,一种为五配位的金字塔构型,另一种为六配位的八面体构型;配合物3中的锌离子的配位环境是五配位的金字塔构型;配合物4中镉离子的配位环境是六配位的八面体构型。配合物5属于Monoclinic晶系,P2/c空间群,中心镉离子的配位环境为六配位的八面体构型。
     配合物1通过配位键形成一维链状结构,通过π-π堆积作用和氢键作用而形成三维超分子结构。配合物2中对苯二乙酸用不同的配位模式通过配位键连接铜离子形成一维的阶梯状链状结构,而后又通过丰富的氢键和π-π堆积作用形成三维超分子结构。配合物3是个双核的配合物,π-π堆积作用在其形成三维超分子结构的过程中发挥了很大的作用。配合物4和5都是镉的一维链状配合物,不同的是配合物4中是对苯二乙酸和氯离子作为桥联配体交替连接镉离子而形成一维链,而配合物5中只有对苯二乙酸作为桥联配体把相邻的镉离子连接起来。配合物4中有游离的对苯二乙酸分子,配合物5中含有结晶水分子,氢键作用和π-π堆积作用使它们形成了三维的超分子结构。
     第三章描述了以对苯二乙酸为主配体,邻菲啰啉为第二配体分别与铜盐、镍盐反应得到的四个配合物[Cu(PDA)(phen)]·2H_2O(6)、[Cu(HPDA)_2(phen)(H_2O)](7)、[Cu(PDA)(phen)_2]·(H_2PDA)(8)、[Ni(PDA)(phen)(H_2O)]_2(9)。配合物6和7都属于Monoclinic晶系,P21/c空间群,中心铜离子的配位环境也都为五配位的变形的金字塔构型。配合物8属于Triclinic晶系,P-1空间群,中心铜离子的配位环境为六配位的八面体构型。配合物9属于Monoclinic晶系P2(1)/n空间群,其中心镍离子的配位环境为六配位的八面体构型。
     配合物6为一维的链状结构,通过氢键作用和超分子作用力而形成三维的超分子结构。配合物7和8都是单核结构,通过氢键作用和π-π堆积作用而形成三维的超分子结构。配合物9是个双核结构,对苯二乙酸采用顺式构型把两个镍离子连接起来形成一个环状结构,氢键作用把一个个环状结构连接成一维链,π-π堆积作用和分子间的范德华力又使它们形成了三维的超分子结构。
     第四章描述了对苯二乙酸,DMF和铜盐反应形成的配位聚合物[Cu(PDA)(DMF)](10),它属于Triclinic晶系,P-1空间群,中心铜离子的配位环境为五配位的金字塔构型。配合物10是一个二维层状结构,具有大小为11.608×12.134 (A|°)的孔洞。配合物10的热重分析表明,该化合物具有较好的热稳定性。
     第五章总结了本论文的研究成果,也指出了研究的不足之处,并对以后的研究工作提出了要求和期望。
In recent years, much attention has been paid to the complexes based on flexible ligands due to their versatile and novel structures and potential applications. 1, 4-Phenylenediacetic acid (H_2PDA) is one of the typical flexible ligands. It has two flexible acetates, resulting in trans- and cis-configuration. And the coordination modes of carboxylates are also complicated. So the complex structures based on H_2PDA are more versatile and novel. In order to research the relationship between their structures and properties, in this dissertation, we synthesized ten unreported transition metal complexes by liquid method. These complexes have been characterized by single-crystal X-ray diffraction, elemental analysis, IR. We also studied the thermal decomposition behaviors and other facet of some complexes among them.
     There are five chapters in this dissertation:
     In the introduction, I firstly introduce the research status of coordination polymers, and their potential applications in gas storage, selective catalysis, nonlinear optical and magnetism. Secondly, the study condition of H_2PDA is introduced concisely at home and abroad.
     In the second chapter, the synthesis, crystal structures and other properties of complexes [Cu(PDA)(2,2’-bpy)]·5H_2O(1)、[Cu_2(PDA)_(1.5)(2,2’-bpy)_2](ClO_4)·5H_2O(2)、[Zn_2(PDA)(2,2’-bpy)_2Cl_2](3)、[Cd(PDA)_(0.5)(2,2’-bpy)Cl](H_2PDA)(4) and [Cd_2(PDA)_2(2,2’-bpy)_2]·2H_2O(5) which were synthesized by H_2PDA, 2,2’-bipyridine and transition metal salts are described. The complexes 1~4 belong to Triclinic crystal system, P-1 space group. The central copper ions in complex 1 are six-coordinated with a distorted octahedral geometry; there are two kinds of copper ions in complex 2, one is five-coordinated with a nearly pyramid geometry, the other is six-coordinated with a distorted octahedral geometry; The central zinc ions in complex 3 is five-coordinated with a nearly pyramid geometry; The central cadmium ions in complex 4 are six-coordinated with a distorted octahedral geometry. The complex 5 belongs to Monoclinic crystal system, P2/c space group, the central cadmium ions are six-coordinated with a distorted octahedral geometry just like in complex 4.
     Complex 1 forms a 1D chain structure by coordination bonds and complicated hydrogen bonds andπ-πstacking interactions make this complex a 3D supramolecular structure. In complex 2, H_2PDA with different coordination modes connect copper ions via coordination bonds to form a one-dimensional ladder-like chain. Abundant hydrogen bonds andπ-πstacking interactions result in the formation of a 3D supramolecular structure. Complex 3 is a dimer andπ-πstacking interactions play an important role in the formation of 3D supramolecular structure. Complex 4 and 5 both are 1D chain-like structures of cadmium, the difference is that in complex 4, Cd (II) ions are alternately bridged by PDA ligands and chloride ions into 1D chains but in complex 5 only PDA ligands act as bridge-ligand to connect Cd (II) ions together. In complex 4, there are free H_2PDA molecules and in complex 5 there are crystallographically independent water molecules. The hydrogen bonds andπ-πstacking interactions make them form 3D supramolecular structures.
     In the third chapter, I describe the synthesis, crystal structures and other properties of complexes [Cu(PDA)(phen)]·2H_2O(6)、[Cu(HPDA)_2(phen)(H_2O)](7)、[Cu(PDA)(phen)_2]·(H_2PDA)(8)、[Ni(PDA)(phen)(H_2O)]_2(9) which were synthesized by H_2PDA, 1,10-phenanthroline and corresponding metallic salts. The complexes 6 and 7 belong to Monoclinic crystal system, P21/c space group, and the central copper ions are both five-coordinated with a distorted pyramid geometry. Complex 8 belongs to Triclinic crystal system, P-1 space group and the central copper ions are six-coordinated with a distorted octahedral geometry. Complex 9 belongs to Monoclinic crystal system, P2(1)/n space group, the central nickel ions are six-coordinated with a nearly octahedral geometry.
     Complex 6 forms a 1D chain structure by coordination bonds and complicated hydrogen bonds andπ-πstacking interactions result in the formation of a 3D supramolecular structure. Complex 7 and 8 both are mononuclear complexes, forming 3D supramolecules structures via hydrogen bonds andπ-πstacking interactions. Complex 9 is a dimer and two Ni(Ⅱ) ions are linked by two PDA ligands with cis-configuration, resulting in a cyclic structure. The cyclic structures are linked one by one through hydrogen bonds into 1D chains andπ-πstacking interactions between 1,10-phenanthroline molecules of adjacent dimer bring the formation of a 3D supramolecular network.
     In the fourth chapter, I describe the synthesis, crystal structure and thermal property of a coordination polymer [Cu(PDA)(DMF)](10). It belongs to Triclinic crystal system, P-1 space group and the central copper ions are five-coordinated with a nearly pyramid geometry. It is a two-dimensional square network with the caves’size being 11.608×12.134 (A|°). Thermogravimetric analysis indicates this complex have good thermal stability.
     In the fifth chapter, I summarize the achievements and defects systematically in the dissertation, and put forward proposals and expectations in the future.
引文
[1] K. R. Seddon, M. Zaworotko. Crystal Engineering: The Design and Application of Functional Solids [M]. Dordrecht: Kluwer Academic Publishers, 1996.
    [2] G. R. Desiraju. Crystal Engineering: The Design of Organic Solids [M]. Amsterdam: Elsevier, 1989.
    [3] S. R. Batten, R. Robson. Interpenetrating Nets: Ordered, Periodic Entanglement [J]. Angew. Chem. Int. Ed., 1998, 37: 1460-1494.
    [4] S. Leininger, B. Olenyuk, P. J. Stang. Self-Assembly of Discrete Cyclic Nanostructures Mediated by Transition Metals [J]. Chem. Rev., 2000, 100: 853-908.
    [5] G. F. Swiegers, T. J. Malefetse. New Self-Assembled Structural Motifs in Coordination Chemistry [J]. Chem. Rev., 2000, 100: 3483-3538.
    [6] B. Moulton, M. J. Zaworotko. From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids [J]. Chem. Rev., 2001, 101: 1629-1658.
    [7] B. J. Holliday, C. A. Mirkin. Strategies for the Construction of Supramolecular Compounds through Coordination Chemistry [J]. Angew. Chem. Int. Ed., 2001, 40: 2022-2043.
    [8] M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O’Keeffe, O. M. Yaghi. Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks [J]. Acc. Chem. Res., 2001, 34: 319-330.
    [9] D. L. Caulder, K. N. Raymond. Supermolecules by Design [J]. Acc. Chem. Res., 1999, 32: 975-982.
    [10] L. F. Song, C. H. Jiang, C. L. Jiao, J. Zhang, L. X. Sun, F. Xu, W. S. You, Z. G. Wang, J. J. Zhao. Two New Metal-Organic Frameworks with Mixed Ligands of Carboxylate and Bipyridine: Synthesis, Crystal Structure, and Sensing for Methanol [J]. Cryst. Growth Des., 2010, 10: 5020-5023.
    [11] D. Sun, D. F. Wang, N. Zhang, R. B. Huang, L. S. Zheng. Nonamer Water Cluster Encapsulated in a Heterometallic Supramolecular Complex [J]. Cryst. Growth Des., 2010, 10: 5031-5033.
    [12] H. Y. An, Z. B. Han, T. Q. Xu. Three-Dimensional Architectures Based on Lanthanide-Substituted Double-Keggin-Type Polyoxometalates and Lanthanide Cations or Lanthanide-Organic Complexes [J]. Inorg. Chem., 2010, 49: 11403-11414.
    [13] J. R. Long, O. M. Yaghi. The pervasive chemistry of metal-organic frameworks [J]. Chem.Soc. Rev., 2009, 38: 1213-1214.
    [14] D. J. Tranchemontagne, J. L. Mendoza-Cortés, M. O’Keeffe, O. M. Yaghi. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks [J]. Chem. Soc. Rev., 2009, 38: 1257-1283.
    [15] J. J. Perry IV, J. A. Perman, M. J. Zaworotko. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks [J]. Chem. Soc. Rev., 2009, 38: 1400-1417.
    [16] N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O’Keeffe, O. M. Yaghi. Hydrogen Storage in Microporous Metal-Organic Frameworks [J]. Science, 2003, 300: 1127-1129.
    [17] B. Kesanli, Y. Cui, M. R. Smith, E. W. Bittner, B. C. Bockrath, W. Lin. Highly Interpenetrated Metal-Organic Frameworks for Hydrogen Storage [J]. Angew. Chem. Int. Ed., 2004, 44: 72-75.
    [18] B. Chen, X. Zhao, A. Putkham, K. Hong, E. B. Lobkovsky, E. J. Hurtado, A. J. Fletcher, K. M. Thomas. Surface Interactions and Quantum Kinetic Molecular Sieving for H_2 and D2 Adsorption on a Mixed Metal-Organic Framework Material [J]. J. Am. Chem. Soc., 2008, 130: 6411-6423.
    [19] L. Pan, B. Parker, X. Huang, D. H. Olson, J. Y. Lee, J. Li. Zn(tbip) (H_2tbip= 5-tert-Butyl Isophthalic Acid): A Highly Stable Guest-Free Microporous Metal Organic Framework with Unique Gas Separation Capability [J]. J. Am. Chem. Soc., 2006, 128: 4180-4181.
    [20] L. J. Murray, M. Dincǎ, J. R. Long. Hydrogen storage in metal-organic frameworks [J]. Chem. Soc. Rev., 2009, 38: 1294-1314.
    [21] S. S. Han, J. L. Mendoza-Cortés, W. A. GoddardⅢ. Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks [J]. Chem. Soc. Rev., 2009, 38: 1460-1476.
    [22] L. Q. Ma, C. Abney, W. Lin. Enantioselective catalysis with homochiral metal-organic frameworks [J]. Chem. Soc. Rev., 2009, 38: 1248-1256.
    [23] C. Wu, W. Lin. Heterogeneous Asymmetric Catalysis with Homochiral Metal-Organic Frameworks: Network-Structure-Dependent Catalytic Activity [J]. Angew. Chem. Int. Ed., 2007, 46: 1075-1078.
    [24] D. N. Dybtsev, A. L. Nuzhdin, H. Chun, K. P. Bryliakov, E. P. Talsi, V. P. Fedin, K. Kim. A Homochrial Metal-Organic Material with Permanent Porosity, Enantioselective Sorption Properties, and Catalytic Activity [J]. Angew. Chem. Int. Ed., 2006, 45: 916-920.
    [25] C. Wu, A. Hu, L. Zhang, W. Lin. A Homochiral Porous Metal-Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis [J]. J. Am. Chem. Soc.,2005, 127: 8940-8941.
    [26] S. H. Cho, B. Q. Ma, S. T. Nguyen, J. T. Hupp, T. E. Albrecht-Schmitt. A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation [J]. Chem. Commun., 2006, 24: 2563-2565.
    [27] O. R. Evans, W. Lin. Crystal Engineering of NLO Materials Based on Metal-Organic Coordination Networks [J]. Acc. Chem. Res., 2002, 35: 511-522.
    [28] M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk. Luminescent metal-organic frameworks [J]. Chem. Soc. Rev., 2009, 38: 1330-1352.
    [29] Y. Qiu, Z. Liu, Y. Li, H. Deng, R. Zeng, M. Zeller. Reversible Anion Exchange and Sensing in Large Porous Materials Built from 4, 4’-Bipyridine viaπ-πand H-Bonding Interactions [J]. Inorg. Chem., 2008, 47: 5122-5128.
    [30] B. V. Harbuzaru, A. Corma, F. Rey, P. Atienzar, J. L. Jorda, H. Garcia, D. Ananias, L. D. Carlos, J. Rocha. Metal-Organic Nanoporous Structures with Anisotropic Photoluminescence and Magnetic Properties and Their Use as Sensors [J]. Angew. Chem. Int. Ed., 2008, 47: 1080-1083.
    [31] B. L. Chen, L. B. Wang, F. Zapata, G. D. Qian, E. B. Lobkovsky. A Luminescent Microporous Metal-Organic Framework for the Recognition and Sensing of Anions [J]. J. Am. Chem. Soc., 2008, 130: 6718-6719.
    [32] P. C. R. Soares-Santos, L. Cunha-Silva, F. A. A. Paz, R. A. S. Ferreira, J. Rocha, T. Trindade, L. D. Carlos, H. I. S. Nogueira. Photoluminescent 3D Lanthanide-Organic Frameworks with 2, 5-Pyridinedicarboxylic and 1, 4-Phenylenediacetic Acids [J]. Cryst. Growth Des., 2008, 8: 2505-2516.
    [33] Z. Chen, B. Zhao, Y. Zhang, W. Shi, P. Cheng. Construction and Characterization of Several New Lanthanide-Organic Frameworks: From 2D Lattice to 2D Double-Layer and to Porous 3D Net with Interweaving Triple-Stranded Helixes [J]. Cryst. Growth Des., 2008, 8: 2291-2298.
    [34] J. L. Du, T. L. Hu, J. R. Li, S. M. Zhang, X. H. Bu. Metal Coordination Architectures of 2, 3-Bis(triazol-1-ylmethyl)quinoxaline: Effect of Metal Ion and Counterion on Complex Structures [J]. Eur. J. Inorg. Chem., 2008, 7: 1059-1066.
    [35] M. X. Li, Z. X. Miao, M. Shao, S. W. Liang, S. R. Zhu. Metal-Organic Frameworks Constructed from 2, 4, 6-Tris(4-pyridyl)-1, 3, 5-triazine [J]. Inorg. Chem., 2008, 47: 4481-4489.
    [36] J. G. Lin, Y. Y. Xu, L. Qiu, S. Q. Zang, C. S. Lu, C. Y. Duan, Y. Z. Li, S. Gao, Q. J. Meng. Ligand-to-metal ratio controlled assembly of nanoporous metal-organic frameworks [J]. Chem. Commun., 2008, 23: 2659-2661.
    [37] R. Sun, Y. Z. Li, J. F. Bai, Y. Pan. Synthesis, Structure, Water-Induced Reversible Crystal-to-Amorphous Transformation, and Luminescence Properties of Novel Cationic Spacer-Filled 3D Transition Metal Supramolecular Frameworks from N, N’, N’’-Tris(carboxymethyl)-1, 3, 5-benzenetricarboxamide [J]. Cryst. Growth Des., 2007, 7: 890-894.
    [38] G. R. Desiraju. Supramolecular Synthons in Crystal Engineering-A New Organic Synthesis [J]. Angew. Chem. Int. Ed. Engl., 1995, 34: 2311-2327.
    [39] A. J. Blake, N. R. Champness, P. Hubberstey, W. S. Li, M. A. Withersby, M. Schr(o|¨)der. Inorganic crystal engineering using self-assembly of tailored building-blocks [J]. Coord. Chem. Rev., 1999, 183: 117-138.
    [40] A. N. Khlobystov, A. J. Blake, N. R. Champness, D. A. Lemenovskii, A. G. Majouga, N. V. Zyk, M. Schr(o|¨)der. Supramolecular design of one-dimensional coordination polymers based on silver(I) complexes of aromatic nitrogen-donor ligands [J]. Coord. Chem. Rev., 2001, 222: 155-192.
    [41] S. L. Zheng, M. L. Tong, X. M. Chen. Silver(Ⅰ)-hexamethylenetetramine molecular architectures: from self-assembly to designed assembly [J]. Coord. Chem. Rev., 2003, 246: 185-202.
    [42] M. Fujita. Self-Assembly of [2]Catenanes Containing Metals in Their Backbones [J]. Acc. Chem. Res., 1999, 32: 53-61.
    [43] S. Shit, S. Sen, S. Mitra, D. L. Hughes. Syntheses, characterization and crystal structures of two square-planar Ni(Ⅱ) complexes with unsymmetrical tridentate Schiff base ligands and monodentate pseudohalides [J]. Transition Met. Chem., 2009, 34: 269-274.
    [44] D. D. Qin, Z. Y. Yang, G. F. Qi, T. R. Li. Crystal structure and biological activities of water-soluble nickel(Ⅱ) and copper(Ⅱ) complexes of a Schiff-base derived from paeonol [J]. Transition Met. Chem., 2009, 34: 499-505.
    [45] T. Ghosh, A. Mukhopadhyay, K. S. C. Dargaiah, S. Pal. Syntheses and structures of nickel(Ⅱ) and copper(Ⅱ) complexes with biacetyl bis(benzoylhydrazone): one-dimensional self-assembly viaπ-πinteraction and hydrogen bonding [J]. Struct. Chem., 2010, 21: 147-152.
    [46] A. T. (?)olak, D. Akduman, O. Z. Ye(?)ilel, O. Büyükgüng(o|¨)r. Pyridine-2, 5-dicarboxylic acid complexes of nickel(Ⅱ) with 2, 2’-bipyridine and 1, 10-phenanthroline coligands; syntheses, crystal structures, spectroscopic and thermal studies [J]. Transition Met. Chem., 2009, 34: 861-868.
    [47] C. S. Liu, S. T. Ma, L. Q. Guo, M. Hu. Cobalt(Ⅱ) complexes of a pyridyl/benzimidazol-1-yl-based ligand: syntheses, crystal structures, andphotoluminescent properties [J]. Transition Met. Chem., 2009, 34: 507-512.
    [48] W. Lu, D. R. Zhu, Y. Xu, H. M. Cheng, J. Zhao, X. Shen. Syntheses and crystal structures of two novel Cu(Ⅱ) and Co(Ⅱ) complexes with 3-methyl-4-(p-bromophenyl)-5-(2-pyridyl)-1, 2, 4-triazole [J]. Struct. Chem., 2010, 21: 237-244.
    [49] C. H. Zhan, Y. L. Feng. Two 3D supramolecules with helices constructed by hydrogen bonds based on p-thioacetatebenzoic acid ligand [J]. Struct. Chem., 2010, 21: 893-899.
    [50] Y. Rodríguez-Martín, M. Hernández-Molina, F. S. Delgado, J. Pasán, C. Ruiz-Pérez, J. Sanchiz, F. Lloret, M. Julve. Structural versatility of the malonate ligand as a tool for crystal engineering in the design of molecular magnets [J]. Cryst. Eng. Comm., 2002, 4: 522-535.
    [51] Y. H. Wan, L. P. Zhang, L. P. Jin, S. Gao, S. Z. Lu. High-Dimensional Architectures from the Self-Assembly of Lanthanide Ions with Benzenedicarboxylates and 1, 10-Phenanthroline [J]. Inorg. Chem., 2003, 42: 4985-4994.
    [52] S. K. Ghosh, P. K. Bharadwaj. Puckered-Boat Conformation Hexameric Water Clusters Stabilized in a 2D Metal-Organic Framework Structure Build from Cu(Ⅱ) and 1, 2, 4, 5-Benzenetetracarboxylic Acid [J]. Inorg. Chem., 2004, 43: 5180-5182.
    [53] K. Schlichte, T. Kratzke, S. Kaskel. Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu_3(BTC)_2 [J]. Microporous and Mesoporous Materials, 2004, 73: 81-88.
    [54] X. L. Wang, C. Qin, E. B. Wang, Z. M. Su, L. Xu, S. R. Batten. An unprecedented eight-connected self-penetrating network based on pentanuclear zinc cluster building blocks [J]. Chem. Commun., 2005, 38: 4789-4791.
    [55] S. R. Miller, P. A. Wright, C. Serre, T. Loiseau, J. Marrot, G. Ferey. A microporous Scandium terephthalate, Sc_2(O_2CC_6H_4CO_2)_3, with high thermal stability [J]. Chem. Commun., 2005, 30: 3850-3852.
    [56] L. G. Qiu, A. J. Xie, L. D. Zhang. Encapsulation of Catalysts in Supramolecular Porous Frameworks: Size- and Shape-Selective Catalytic Oxidation of Phenols [J]. Adv. Mater., 2005, 17: 689-692.
    [57] H. F. Zhu, J. Fan, T. A. Okamura, Z. H. Zhang, G. X. Liu, K. B. Yu, W. Y. Sun, N. Ueyama. Metal-Organic Architectures of Silver(Ⅰ), Cadmium(Ⅱ), and Copper(Ⅱ) with a Flexible Tricarboxylate Ligand [J]. Inorg. Chem., 2006, 45: 3941-3948.
    [58] L. Pan, K. M. Adams, H. E. Hernandez, X. T. Wang, C. Zheng, Y. Hattori, K. Kaneko. Porous Lanthanide-Organic Frameworks: Synthesis, Characterization, and Unprecedented Gas Adsorption Properties [J]. J. Am. Chem. Soc., 2003, 125: 3062-3067.
    [59] D. B. Cordes, L. R. Hanton. Structural Invariance in Silver(I) Coordination Networks Formed Using Flexible Four-Armed Thiopyridine Ligands [J]. Inorg. Chem., 2007, 46: 1634-1644.
    [60] S. Hu, A. J. Zhou, Y. H. Zhang, S. Ding, M. L. Tong. 1D Tubular Chains and 3D Polycatenane Frameworks Constructed with Cu2X2 Dimers (X = Br, I, CN) and Flexible Dipyridyl Spacers [J]. Cryst. Growth Des., 2006, 6: 2543-2550.
    [61] X. Q. Lü, Y. Q. Qiao, J. R. He, M. Pan, B. S. Kang, C. Y. Su. Triple-Stranded Helical and Plywood-Like Arrays: Two Uncommon Framework Isomers Based on the Common One-Dimensional Chain Structures [J]. Cryst. Growth Des., 2006, 6: 1910-1914.
    [62] X. Xu, Y. Lu, E. Wang, Y. Ma, X. Bai. Metal-Controlled Assembly of Coordination Polymers with the Flexible Ligand 1,1’-Biphenyl-2,2’-dicarboxylate Acid [J]. Cryst. Growth Des., 2006, 6: 2029-2035.
    [63] S. Zang, Y. Su, Y. Song, Y. Li, Z. Ni, H. Zhu, Q. Meng. Tuning the Framework Formation of Ni(Ⅱ) Complexes by Controlling the Hydrolysis of 2,2’,3,3’-Thiodiphthalic Dianhydride: Syntheses, Crystal Structures, and Physical Properties [J]. Cryst. Growth Des., 2006, 6: 2369-2375.
    [64] N. Ohata, H. Masuda, O. Yamauchi. Dianion-controlled supramolecular assembly of copper(Ⅱ)-arginine complex ion [J]. Inorg. Chim. Acta, 2000, 302: 749-761.
    [65] X. W. Wang, L. Han, T. J. Cai, Y. Q. Zheng, J. Z. Chen, Q. Deng. A Novel Chrial Doubly Folded Interpenetrating 3D Metal-Organic Framework Based on the Flexible Zwitterionic Ligand [J]. Cryst. Growth Des., 2007, 7: 1027-1030.
    [66] Z. Chen, Y. Su, W. Xiong, L. Wang, F. Liang, M. Shao. Controlling the dimensionalities and structures of homochiral Zn(Ⅱ) and Cd(Ⅱ) compounds of metal ions and chiral linkers by different kinds of ancillary ligands [J]. Cryst. Eng. Comm., 2009, 11: 318-328.
    [67] J. Zhou, C. Y. Sun, L. P. Jin. Metal-dependent assembly and structure of metal 1, 4-phenylenediacetate complexes with 1, 10-phenanthroline [J]. J. Mol. Struct., 2007, 832: 55-62.
    [68] Y. Q. Xu, Y. F. Zhou, D. Q. Yuan, M. C. Hong. Cadmium(Ⅱ)-1,4-phenylenediacetate Complex with Green Luminescence [J]. Chinese J. Struct. Chem., 2006, 25: 704-708.
    [69] W. M. Singh, J. B. Baruah. Structural study of few p-phenylenediacetate complexes of Mn~(2+), Cu~(2+), Zn~(2+) and Cd~(2+) [J]. Inorg. Chim. Acta, 2009, 362: 4268-4271.
    [70] J. E. V. Babb, A. D. Burrows, R. W. Harrington, M. F. Mahon. Zinc thiosemicarbazide dicarboxylates: the influence of the anion shape on supramolecular structure [J]. Polyhedron, 2003, 22: 673-686.
    [71] M. A. Braverman, P. L. LaDuca. Luminescent Two- and Three-Dimensional ZincCoordination Polymers Containing Isomers of Phenylenediacetate and a Kinked Tethering Organodiimine [J]. Cryst. Growth Des., 2007, 7: 2343-2351.
    [72] G. M. Sheldrick, SHELXS-97, Program for X-ray Crystal Structure Solution. University of G(o|¨)ttingen, Germany 1997.
    [73] G. M. Sheldrick, SHELXL-97, Program for X-ray Crystal Structure Refinement. University of G(o|¨)ttingen, Germany 1997.
    [74] N. Hao, Y. G. Li, E. B. Wang, E. H. Shen, C. W. Hu, L. Xu. Hydrothermal synthesis and crystal structure of an infinite 1D ladderlike metal-organic compound: [Cu2(btec)(2,2’-bipy)2]∞(btec = 1,2,4,5-benzenetetracarboxylate) [J]. J. Mol. Struct., 2004, 697: 1-8.
    [75] X. J. Wang, L. C. Gui, Q. L. Ni, Y. F. Liao, X. F. Jiang, L. H. Tang, Z. Zhang, Q. Wu.π-Stacking induced complexes with Z-shape motifs featuring a complementary approach between electron-rich arene diamines and electron-deficient aromatic N-heterocycles [J]. Cryst. Eng. Comm., 2008, 10: 1003-1010.
    [76] A. H. Narten, W. E. Thiessen, L. Blum. Atom pair distribution functions of liquid water at 25℃from neutron diffraction [J]. Science, 1982, 217: 1033-1034.
    [77] J. K. Gregory, D. C. Clary, K. Liu, M. G. Brown, R. J. Saykally. The water dipole moment in water clusters [J]. Science, 1997, 275: 814-817.
    [78] L. R. MacGillivray, J. L. Atwood. Molecular Recognition of the Cyclic Water Trimer in the Solid State [J]. J. Am. Chem. Soc., 1997, 119: 2592-2593.
    [79] P. S. Lakshminarayanan, E. Suresh, P. Ghosh. Formation of an Infinite 2D-Layered Water of (H_2O)45 Cluster in a Cryptand-Water Supramolecular Complex: A Template Effect [J]. J. Am. Chem. Soc., 2005, 127: 13132-13133.
    [80] L. Infantes, S. Motherwell. Water clusters in organic molecular crystals [J]. Cryst. Eng. Comm., 2002, 4: 454-461.
    [81] M. Du, X. J. Zhao, Y. Wang. Crystal engineering of a versatile building block toward the design of novel inorganic-organic coordination architectures [J]. Dalton Trans., 2004, 14: 2065-2072.
    [82] Y. Wang, N. Okabe. Crystal Structures and Spectroscopic Properties of Zn(Ⅱ) Ternary Complexes of Vitamin L, H’and Their Isomer m-Aminobenzoic Acid with Bipyridine [J]. Chem. Pharm. Bull., 2005, 53: 645-652.
    [83] B. L. Chen, K. F. Mok, S. C. Ng, Y. L. Feng, S. X. Liu. Synthesis, characterization and crystal structures of three diverse copper(Ⅱ) complexes with thiophene-2,5-dicarboxylic acid and 1,10-phenanthroline [J]. Polyhedron, 1998, 17: 4237-4247.
    [84] X. Shi, G. S. Zhu, X. H. Wang, G. H. Li, Q. R. Fang, X. J. Zhao, G. Wu, G. Tian, M. Xue, R.W. Wang, S. L. Qiu. Polymeric frameworks constructed from a metal-organic coordination compound, in 1-D and 2-D systems: synthesis, crystal structures, and fluorescent properties [J]. Cryst. Growth Des., 2005, 5: 341-346.
    [85] M. Thirumavalavan, P. Akilan, M. Kandaswamy. Synthesis of lateral macrobicyclic compartmental ligands: structural, magnetic, electrochemical, and catalytic studies of mono- and binuclear copper(Ⅱ) complexes [J]. Inorg. Chem., 2003, 42: 3308-3317.
    [86] R. J. Crutchley, R. Hynes, E. J. Gabe. Five- and four-coordinate copper(Ⅱ) complexes of 2,2’-bipyridine and phenylcyanamide anion ligands: crystal structures, cyclic voltammetry, and electronic absorption spectroscopy [J]. Inorg. Chem., 1990, 29: 4921-4928.
    [87] Y. P. Tian, X. J. Zhang, J. Y. Wu, H. K. Fun, M. H. Jiang, Z. Q. Xu, A. Usman, S. Chantrapromma, L. K. Thompson. Structural diversity and properties of a series of dinuclear and mononuclear copper(Ⅱ) and copper(I) carboxylato complexes [J]. New J. Chem., 2002, 26: 1468-1473.
    [88] F. P. W. Agterberg, H. A. J. Provo-Kluit, W. L. Driessen, H. Oevering, W. Buijs, M. T. Lakin, A. L. Spek, J. Reedijk. Dinuclear Paddle-Wheel Copper(Ⅱ) Carboxylates in the Catalytic Oxidation of Carboxylic Acids. Unusual Polymeric Chains Found in the Single-Crystal X-ray structures of [Tetrakis(μ-1-phenylcyclopropane-1-carboxylato-O,O’)bis(ethanol-O)dicopper(Ⅱ)] and catena-Poly[[bis(μ-diphenylacetato-O:O’)dicopper](μ3-diphenylacetato-1-O:O’:1’-O’)(μ3-diphenylacetato-1-O:2-O’:2’-O’)] [J]. Inorg. Chem., 1997, 36: 4321-4328.
    [89] Q. Z. Zhang. Synthesis and structure of a one-dimensional copper(Ⅱ) complex supported by 1,2-phenylenediacetate [J]. J. Coord. Chem., 2008, 61: 1849-1855.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700