用户名: 密码: 验证码:
水稻硅同位素组成及分馏机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅是地壳和土壤中含量仅次于氧的大量元素,从单细胞的藻类到维管植物,几乎所有的生命体中都可以发现含硅组织的存在。硅是硅藻生长的必需元素,虽然还没有被列为高等植物生长的必需元素,但它的有益作用已被广泛关注。硅不仅是生物体的重要的组成部分,而且还可以缓冲土壤pH值、调节大气CO_2浓度。因此,植物硅生理和硅生物地球化学一直是人们研究的热点。
     研究表明,在岩石风化和生物吸收硅的过程中会发生硅同位素分馏,在不同的物质中留下独特的硅同位素特征值。近年来,随着硅同位素测试精度的提高和快速测量技术的出现,利用硅同位素信号来研究硅生物地球化学循环开始逐渐引起人们的关注。目前关于硅同位素的研究主要集中海洋和河流系统,已报道的生物数据主要是硅藻、海绵体等海洋生物。陆生植物对全球硅循环和硅同位素平衡有重要的影响,但是国际上关于陆生植物的硅同位素组成只有零星的报道,还未开展系统研究。本课题以水稻为对象,研究了陆生高等植物硅同位素组成的分市规律和分馏机理,得到以下主要结论:
     (1)试验中观察到两种类型的硅同位素分馏:1、在水稻内部不同组织器官之间存在硅同位素分馏。2、在水稻与其生长环境之间存在硅同位素分馏。
     (2)水稻不同器官间存在明显的硅同位素组成的差异。常规水培条件下水稻不同器官中δ~(30)Si值变化范围是-2.7‰~2.1‰,各器官δ~(30)Si值变化顺序为:茎<根<叶<稻壳<糙米。限定硅源水培条件下水稻不同器官中δ~(30)Si值变化范围是-2.3‰~2.6‰,各器官δ~(30)Si值变化顺序为:茎<根<叶<稻壳<糙米。可以看出,水稻各器官δ~(30)Si值的变化顺序显示出一个明显的趋势。除根外,从下部器官到上部器官δ~(30)Si值逐渐增加。
     水稻单独器官—稻叶不同部位同样存在明显的硅同位素组成的差异。δ~(30)Si值的变化范围分别为:常规水培,-2.5‰~2.3‰;限定硅源水培,-2.6‰~1.7‰,两种培养方式稻叶各部位δ~(30)Si值变化顺序相同,叶鞘<叶片基段<叶片中段<叶片顶段,也显示出从下部到上部逐渐增加的趋势。
     (3)植物体内硅同位素分馏的成因是硅随蒸腾流运输到各器官的过程中,相对质量较轻的~(28)Si优先沉淀在蒸腾流先到达的器官,使得蒸腾流中剩余的溶解性硅酸富含~(30)Si,随着蒸腾流的运输,硅沉淀的过程继续进行,溶解硅酸的δ~(30)Si值逐渐升高,因而在硅后续沉淀的器官较先沉淀的器官有更高的δ~(30)Si值,最终在蒸腾流末端沉淀的SiO_2获得最高的δ~(30)Si值,整个过程是一个类似于同位素动力学分馏的瑞利行为(Rayleigh-like behavior)。
     在水稻样品中观察到根部的δ~(30)Si值比茎高。按照瑞利模型来解释植物体内的硅同位素分馏,根部δ~(30)Si值应该最低,因为根是硅进入植株后最先沉淀的器官。结合硅生理研究数据分析显示,取样时在植物根部存有大量的溶解态硅,且这部分溶解硅比根部的沉淀硅有更高的δ~(30)Si值,而所测量的根δ~(30)Si值是根部溶解硅和沉淀硅的混合值,因此显示根部δ~(30)Si值比茎高。
     (4)水稻与外界环境中溶解硅之间存在硅同位素分馏(植株~(30)Si的亏缺)。这个现象指出在植物根部吸收硅时存在轻硅同位素优先进入植物的生物分馏作用,其成因可能是硅随质流进入植物时,轻硅同位素有更高的扩散系数。本次试验观察到水稻生物硅与外界溶解硅之间的硅同位素分馏系数(α_(Pl-Sol))为0.9986~0.9996。
     (5)对植物内部及植物与环境之间硅同位素变化特征研究表明,在本试验条件下水稻对硅的吸收和体内运输都主要受蒸腾流的影响,硅吸收为随质流扩散的被动形式占主要成分。
     试验中观察到植物吸收硅时的生物分馏效应可以用来解释长江、黄河河水中δ~(30)Si值较高的成因,也为研究全球硅同位素平衡提供了重要的基础数据。
Silicon (Si) is the second most mass-abundant element after oxygen in theEarth's crust. From unicellular algae to vascular plants, numerous organisms arefound to produce siliceous structures. Si is essential for diatoms and is 'quasi-essential'for higher plant growth. Although Si is traditionally not considered as an essentialelement for plants, the beneficial effects of Si on the growth, development, yield anddisease resistance have been observed in a wide variety of plant species. Dissolved Siis absorbed in large amounts by terrestrial vegetation and weathering of silicatesremoves CO_2 from the atmosphere. Thus, there is a steadily growing scientific interestin the plant physiology and biogeochemistry of Si.
     It has been demonstrated that Si isotope is fractionated during weathering andbiological activity, which could provide unique information about numerous physicaland biological processes. Since recent developments in Si isotope measurementtechniques have provided a high degree of precise and rapid sample analysis, usingstable isotope of Si as proxies for understanding Si biogeochemical cycle has attractedsignificant scientific interest. The most work have particularly focused on ocean orriver systems. Some biogenic Si isotope data have been reported and the most wasfocused on marine materials (e.g. diatoms, sponges and radiolarian). It has alreadybeen evident that the processes of Si uptake and releasing by terrestrial plants alsoplay an important role on Si biogeochemical cycle and global Si isotope balance.However, to date there have only been very limited records of Si isotope compositionon terrestrial plants. The general objective of this study is to investigate Si isotopefractionation in rice to lay the groundwork for understanding biogeochemical Si cycleand mechanism of plant Si acquisition and allocation. The main results aresummarized as follows:
     (1) The results obtained from this study suggest: two types of kinetic Si isotopefractionations occur during the plant development: one when Si is taken up by plantroots and the other when silica precipitates in plant tissues and organs.
     (2) The silicon isotope compositions of rice exhibit significant variations. Theδ~(30)Si values varied from -2.7‰to 2.1‰among different organs in normal hydroponicrice, by the order stem<root<leaf<husk<grain (means brown grain in thisdissertation). Theδ~(30)Si values varied from -2.3‰to 2.6‰among different organs in Si-definite hydroponic rice, by the order stem<root<leaf<husk<grain. Theδ~(30)Sivalues exhibited a significantly gradient with a progressive increase from lower toupper organ except root.
     The silicon isotope compositions of rice leaf also exhibit significant variations.Theδ~(30)Si values varied from -2.5‰to 2.3‰among different parts in normalhydroponic rice leaf. Theδ~(30)Si values varied from -2.6‰to 1.7‰among differentparts in Si-definite hydroponic rice leaf. There was a consistent increasing trend ofδ~(30)Si values from lower to upper tissues (leaf sheath<leaf blade base<leaf blademiddle<leaf blade top).
     (3) We suggested that the variation pattern of Si isotope compositions could beexplained by the principle of kinetic isotope fractionation, according to whichdissolved H_4~(28)SiO_4 tends to precipitate preferentially, leaving the residual solutionenriched in H_4~(30)SiO_4. Preferential precipitation of light Si isotope contributed to aprogressive isotope fractionation with the transpiration stream moving from theuptake sites to the transpiration termini. Thus, Si isotope composition of the plantorgans was consistent with their position along the trajectory of the transpirationstream. We proposed that Si isotope fractionation in plant was a Rayleigh-likebehavior.
     Theδ~(30)Si value of stem was lower than that of root in rice. As discussed above,theδ~(30)Si of the root should be more negative than that of the stem, considering rootwas the foremost organ of dissolved Si precipitation within plant. A possibleexplanation was that the SiO_2 extracted from the rice root for Si isotope analyses wascomposed of depositional Si (SiO_2-nH_2O, opal, or phytoliths) and dissolved Si(monomeric silicic acid) in the root and the dissolved Si, isotopically heavier than thedepositional Si in the root, might play an more important role.
     (4) The ~(30)Si-depletion of whole rice plant relative to external nutrient solutiondisplayed that light Si isotope entered plants more readily than heavy Si isotope. Thisphenomenon indicated that biologically mediated Si isotope fractionation occurredduring uptake by the root. Si uptake might be dominated by mass-flow, which willfavour the light isotope because of its greater diffusion coefficient. In this experiment,the Si isotope fractionation factor (α_(Pl-Sol)) was estimated to be 0.9986~0.9996 in rice.
     (5) The Si isotope fractionation among different organs and between whole plantand source solution indicated that Si uptake and transport might be dominated bymass-flow, ion channels or via electrogenic pumps rather than by carrier-mediated transport. The contribution of passive component (mass-flow driven) played animportant role in Si accumulating plants in this experiment.
     In light of the Si isotope fractionation between plants and source solutions, wespeculate that biologically-mediated fractionation has greater influence on the Siisotope composition in the Yangtze River and Yellow River than other rivers. Theresults obtained in this study lay the groundwork for understanding Si biogeochemicalcycle and global Si isotope balance.
引文
1. Abrantes, R, A 340,000 year continental climate record from tropical Africa - news from opal phytoliths from the equatorial Atlantic. Earth and Planetary Science Letters. 2003. 209, 165-179.
    2. Aguirre, C., Chavez, T., Garcia, P., and Raya, J. C., Silicon in live organisms. Interciencia. 2007. 32, 504-509.
    3. Alexander, L., Miroslava, L., Jun, A., Eiichi, T., Taiichiro, H., and Shinobu, I., The dynamics of silicon deposition in the sorghum root endodermis. New Phytologist. 2003. 158,437-441.
    4. Alexandre, A., Meunier, J. D., Colin, F., and Koud, J. M., Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochimica Et Cosmochimica Acta. 1997. 61, 677-682.
    5. Alvarez, J. and Datnoff, L. E., The economic potential of silicon for integrated management and sustainable rice production. Crop Protection. 2001. 20, 43-48.
    6. Aouad, G, Stille, P., Crovisier, J. L., Geoffroy, V. A., Meyer, J. M, and Lahd-Geagea, M., Influence of bacteria on lanthanide and actinide transfer from specific soil components (humus, soil minerals and vitrified municipal solid waste incinerator bottom ash) to corn plants: Sr-Nd isotope evidence. Science of the Total Environment. 2006. 370, 545-551.
    7. Arrigo, K. R. and Thomas, D. N., Large scale importance of sea ice biology in the Southern Ocean. Antarctic Science. 2004. 16, 471-486.
    8. Atahan, P., Grice, K., and Dodson, J., Agriculture and environmental change at Qingpu, Yangtze delta region, China: a biomarker, stable isotope and palynological approach. Holocene. 2007. 17,507-515.
    9. Ball, T., Vrydaghs, L., Van Den Hauwe, I., Manwaring, J., and De Langhe, E., Differentiating banana phytoliths: wild and edible Musa acuminata and Musa balbisiana. Journal of Archaeological Science. 2006. 33, 1228-1236.
    10. Barbour, M. M., Stable oxygen isotope composition of plant tissue: a review. Functional Plant Biology. 2007. 34, 83-94.
    11. Bartoli, F., The biogeochemical cycle of silicon in two temperate forest ecosystems. Ecological Bulletins, Stockholm. 1983. 469-476.
    12. Basile-Doelsch, I., Si stable isotopes in the Earth's surface: A review. Journal of Geochemical Exploration. 2006. 88, 252-256.
    13. Basile-Doelsch, I., Meunier, J. D., and Parron, C., Another continental pool in the terrestrial silicon cycle. Nature. 2005. 433, 399-402.
    14. Bhattacharjee, P., Singhal, R. S., and Kulkarni, P. R., Basmati rice: a review. International Journal of Food Science and Technology. 2002. 37, 1-12.
    15. Bi, Y., Tian, S. P., Guo, Y. R., Ge, Y. H., and Qin, G. Z., Sodium silicate reduces postharvest decay on Hami melons: Induced resistance and fungistatic effects. Plant Disease. 2006. 90,279-283.
    16. Blecker, S. W., King, S. L., Derry, L. A., Chadwick, O. A., lppolito, J. A., and Kelly, E. F., The ratio of germanium to silicon in plant phytoliths: quantification of biological discrimination under controlled experimental conditions. Biogeochemistry. 2007. 86, 189-199.
    17. Blinnikov, M. S., Phytoliths in plants and soils of the interior Pacific Northwest, USA. Review of Palaeobotany and Palynology. 2005. 135, 71-98.
    18. Bluth, G. J. S. and Kump, L. R., Lithologic and climatologic controls of river chemistry. Geochimica Et Cosmochimica Acta. 1994. 58, 2341-2359.
    19. Brecht, M. O., Datnoff, L. E., Kucharek, T. A., and Nagata, R. T., The influence of silicon on the components of resistance to gray leaf spot in St. Augustinegrass. Journal of Plant Nutrition. 2007. 30, 1005-1021.
    20. Buck, G. B., Korndorfer, G. H., Nolla, A., and Coelho, L., Potassium silicate as foliar spray and rice blast control. Journal of Plant Nutrition. 2008. 31, 231-237.
    21. Buyanovsky, G. A. and Wagner, G. H., Annual cycles of carbon dioxide level in soil air. Soil Science Society of America Journal. 1983. 47, 1139-1145.
    22. Cardinal, D., Alleman, L. Y., de Jong, J., Ziegler, K., and Andre, L., Isotopic composition of silicon measured by multicollector plasma source mass spectrometry in dry plasma mode. Journal of Analytical Atomic Spectrometry. 2003. 18, 213-218.
    23. Cardinal, D., Alleman, L. Y., Dehairs, R, Savoye, N., Trull, T. W., and Andre, L., Relevance of silicon isotopes to Si-nutrient utilization and Si-source assessment in Antarctic. Global Biogeochemical Cycles. 2005. 19, GB002364.
    24. Carig, H., The geochemistry of the stable carbon isotopes. Geochimica Et Cosmochimica Acta. 1953. 3, 53-92.
    25. Carignan, J., Cardinal, D., Eisenhauer, A., Galy, A., Rehkamper, M., Wombacher, F., and Vigier, N., A reflection on Mg, Cd, Ca, Li and Si isotopic measurements and related reference materials. Geostandards and Geoanalytical Research. 2004. 28, 139-148.
    26. Carnelli, A. L., Madella, M., Theurillat, J. P., and Ammann, B., Aluminum in the opal silica reticule of phytoliths: A new tool in palaeoecological studies. American Journal of Botany. 2002. 89, 346-351.
    27. Casey, W. H., Kinrade, S. D., Knight, C. T. G., Rains, D. W., and Epstein, E., Aqueous silicate complexes in wheat, Triticum aestivum L. Plant Cell and Environment. 2004. 27, 51-54.
    28. Castelle, A. J. and Galloway, J. N., Carbon dioxide dynamics in acid forest soils in Shenandoah National Park, Virginia. Soil Science Society of America Journal. 1990. 54, 252-257.
    29. Chen, S., Bai, Y, Lin, G, Huang, J., and Han, X., Isotopic carbon composition and related characters of dominant species along an environmental gradient in Inner Mongolia, China. Journal of Arid Environments. 2007. 71, 12-28.
    30. Cheng, X. L., Luo, Y. Q., Chen, J. Q., Lin, G. H., Chen, J. K., and Li, B., Short-term C-4 plant Spartina alterniflora invasions change the soil carbon in C-3 plant-dominated tidal wetlands on a growing estuarine Island. Soil Biology & Biochemistry. 2006. 38, 3380-3386.
    31. Chikaraishi, Y. and Naraoka, H., Carbon and hydrogen isotope variation of plant biomarkers in a plant-soil system. Chemical Geology. 2006. 231, 190-202.
    32. Cholewa, E. and Peterson, C. A., Evidence for symplastic involvement in the radial movement of calcium in onion roots. Plant Physiology. 2004. 134, 1793-1802.
    33. Christanty, L., Kimmins, J. P., and Mailly, D., 'Without bamboo, the land dies': A conceptual model of the biogeochemical role of bamboo in an Indonesian agroforestry system. Forest Ecology and Management. 1997. 91, 83-91.
    34. Cloquet, C, Carignan, J., Libourel, G., Sterckeman, T., and Perdrix, E., Tracing source pollution in soils using cadmium and lead isotopes. Environmental Science & Technology. 2006. 40, 2525-2530.
    35. Cocker, K. M., Evans, D. E., and Hodson, M. J., The amelioration of aluminium toxicity by silicon in higher plants: Solution chemistry or an in planta mechanism? Physiologia Plantarum. 1998. 104,608-614.
    36. Conley, D. J., Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochemical Cycles. 2002a. 16, 1121.
    37. Conley, D. J., Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochemical Cycles. 2002b. 16.
    38. Conrad, C. F., Icopini, G. A., Yasuhara, H., Bandstra, J. Z., Brantley, S. L., and Heaney, P. J., Modeling the kinetics of silica nanocolloid formation and precipitation in geologically relevant aqueous solutions. Geochimica Et Cosmochimica Acta. 2007. 71, 531-542.
    39. Cook, P. G. and O'Grady, A. P., Determining soil and ground water use of vegetation from heat pulse, water potential and stable isotope data. Oecologia. 2006. 148, 97-107.
    40. Coplen, T. B. and Hanshaw, B. B., Ultrafiltration by a compacted clay membrane--I. Oxygen and hydrogen isotopic fractionation. Geochimica Et Cosmochimica Acta. 1973. 37,2295-2310.
    41. Coplen, T. B., Hopple, J. A., Bo" hlke, J. K., Peiser, H. S., Rieder, S. E., Krouse, H. R., Rosman, K. J. R., Ding, T. P., Vocke, R. D., Revesz, K. M., Lamberty, A., Taylor, P., and De Bievre, P., Compilation of Minimum and Maximum Isotope Ratios of Selected Elements in Naturally Occurring Terrestrial Materials and Reagents. U. S. Geological Survey, Washington, D. C. 2002. 45-50.
    42. Criss, R. E., Principles of Stable Isotope Distribution. Oxford Univ., New York. 1999. 12-98.
    43. Currie, H. A. and Perry, C. C., Silica in plants: Biological, biochemical and chemical studies. Annals of Botany. 2007. 100, 1383-1389.
    44. Dann, E. K. and Muir, S., Peas grown in media with elevated plant-available silicon levels have higher activities of chitinase and beta-1,3-glucanase, are less susceptible to a fungal leaf spot pathogen and accumulate more foliar silicon. Australasian Plant Pathology. 2002. 31,9-13.
    45. Dansgaard, W., Stable isotopes in precipitation. Tellus. 1964. 16, 436-438.
    46. Datnoff, L. E., Deren, C. W., and Snyder, G. H., Silicon fertilization for disease management of rice in Florida. Crop Protection. 1997. 16, 525-531.
    47. Daughtrey, M. L. and Benson, D. M., Principles of plant health management for ornamental plants. Annual Review of Phytopathology. 2005. 43, 141-169.
    48. Dawson, T. E. and Ehleringer, J. R., Isotopic enrichment of water in the 'woody' tissues: Implications for plant water source, water uptake, and other studies which use the stable isotopic composition of cellulose. Geochimica Et Cosmochimica Acta. 1993. 57, 3487-3492.
    49. de Bakker, N. V. J., Hemminga, M. A., and Van Soelen, J., The relationship between silicon availability, and growth and silicon concentration of the salt marsh halophyte Spartina anglica. Plant and Soil. 1999. 215, 19-27.
    50. De La Rocha, C. L., Measurement of silicon stable isotope natural abundances via multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Geochemistry Geophysics Geosystems. 2002. 3, GC00310.
    51. De La Rocha, C. L., Silicon isotope fractionation by marine sponges and the reconstruction of the silicon isotope composition of ancient deep water. Geology. 2003. 31,423-426.
    52. De La Rocha, C. L., Brzezinski. M. A., and DeNiro, M. J., Fractionation of silicon isotopes by marine diatoms during biogenic silica formation. Geochimica Et Cosmochimica Acta. 1997.61, 5051-5056.
    53. De La Rocha, C. L., Brzezinski, M. A., and DeNiro, M. J., A first look at the distribution of the stable isotopes of silicon in natural waters. Geochimica Et Cosmochimica Acta. 2000. 64, 2467-2477.
    54. De La Rocha, C. L., Brzezinski, M. A., DeNiro, M. J., and Shemesh, A., Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature. 1998. 395, 680-683.
    55. Derda, M., Chmielewski, A. G., and Licki, J., Sulphur isotope compositions of components of coal and S-isotope fractionation during its combustion and flue gas desulphurization. Isotopes in Environmental and Health Studies. 2007. 43, 57-63.
    56. Deren, C. W., Changes in nitrogen and phosphorus concentrations of silicon-fertilized rice grown on organic soil. Journal of Plant Nutrition. 1997. 20, 765-771.
    57. Descolas-Gros, C. and Scholzel, C., Stable isotope ratios of carbon and nitrogen in pollen grains in order to characterize plant functional groups and photosynthetic pathway types. New Phytologist. 2007. 176, 390-401.
    58. Desplanques, V., Cary, L., Mouret, J. C, Trolard, F., Bourne, G., Grauby, O., and Meunier, J. D., Silicon transfers in a rice field in Camargue (France). Journal of Geochemical Exploration. 2006. 88, 190-193.
    59. Ding, T. P., Jiang, S., Wan, D. F., Li, Y., Li, J., and Liu, Z., Silicon Isotope Geochemistry. Geological Publishing House, Beijing. 1996. 5-65.
    60. Ding, T. P., Ma, G. R., Shui, M. X., Wan, D. F., and Li, R. H., Silicon isotope study on rice plants from the Zhejiang province, China. Chemical Geology. 2005a. 218, 41-50.
    61. Ding, T. P., Ma, G. R., Tian, S. H., and Gao, J. F., Effect of rice growth on geochemical circle of silicon: Silicon isotope study on rice plants grew in field and laboratory. Geochimica Et Cosmochimica Acta. 2005b. 69, A551.
    62. Ding, T. P., Wan, D., Wang, C, and Zhang, F., Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China. Geochimica Et Cosmochimica Acta. 2004. 68,205-216.
    63. Ding, T. P., Wan, D. F., Wang, C. Y, and Zhang, F., Large and systematic silicon isotope fractionation discovered in single sticks of bamboo. Geochimica Et Cosmochimica Acta. 2003.67,A79-a79.
    64. Ding, T. P., Zhou, J. X., Wan, D. F., Chen, Z. Y, Wang, C. Y, and Zhang, F., Silicon isotope fractionation in bamboo and its significance to the biogeochemical cycle of silicon. Geochimica Et Cosmochimica Acta. 2008. 72, 1381-1395.
    65. Diogo, R. V. C. and Wydra, K., Silicon-induced basal resistance in tomato against Ralstonia solanacearum is related to modification of pectic cell wall polysaccharide structure. Physiological and Molecular Plant Pathology. 2007. 70, 120-129.
    66. Douthitt, C. B., The geochemistry of the stable isotopes of silicon. Geochimica Et Cosmochimica Acta. 1982.46, 1449-1458.
    67. Drever, J. I., The effect of land plants on weathering rates of silicate minerals. Geochimica Et Cosmochimica Acta. 1994. 58, 2325-2332.
    68. Durand, J. L., Bariac, T, Ghesquiere, M., Biron, P., Richard, P., Humphreys, M., and Zwierzykovski, Z., Ranking of the depth of water extraction by individual grass plants, using natural O-18 isotope abundance. Environmental and Experimental Botany. 2007. 60, 137-144.
    69. Elbaum, R., Weiner, S., Albert, R. M., and Elbaum, M., Detection of burning of plant materials in the archaeological record by changes in the refractive indices of siliceous phytoliths. Journal of Archaeological Science. 2003. 30, 217-226.
    70. Elliott, E. M. and Brush, G. S., Sedimented organic nitrogen isotopes in freshwater wetlands record long-term changes in watershed nitrogen source and land use. Environmental Science & Technology. 2006.40, 2910-2916.
    71. Ellsworth, P. Z. and Williams, D. G., Hydrogen isotope fractionation during water uptake by woody xerophytes. Plant and Soil. 2007. 291, 93-107.
    72. Elskens, M., de Brauwere, A., Beucher, C., Corvaisier, R., Savoye, N., Treguer, P., and Baeyens, W., Statistical process control in assessing production and dissolution rates of biogenic silica in marine environments. Marine Chemistry. 2007. 106, 272-286.
    73. Eneji, A. E., Inanaga, S., Muranaka, S., Li, J., Hattori, T., An, P., and Tsuji, W., Growth and nutrient use in four grasses under drought stress as mediated by silicon fertilizers. Journal of Plant Nutrition. 2008. 31, 355-365.
    74. Epstein, E., The anomaly of silicon in plant biology. Proceedings National Academy Of Sciences Usa. 1994.91, 11-17.
    75. Epstein, E., Silicon. Annual Review of Plant Physiology and Plant Molecular Biology. 1999.50,641-664.
    76. Epstein, E. and Bloom, A. J., Mineral Nutrition of Plants: Principles and Perspectives, second edition. Sinauer Associates Publishers, New York. 2005. 203-233.
    77. Epstein, S. and Taylor, H. P., Jr., 180/160, 30Si/28Si, D/H, and 13C/12C Studies of Lunar Rocks and Minerals. Science. 1970. 167, 533-535.
    78. Evans, R. D., Physiological mechanisms influencing plant nitrogen isotope composition. Trends in Plant Science. 2001. 6, 121-126.
    79. Farquhar, G. D., On the nature of carbon isotope discrimination in C4 species. Australian Journal of Plant Physiology. 1983. 10, 205-226.
    80. Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T., Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biolology. 1989.40,503-537.
    81. Farquhar, G. D., O'Leary, M., and Berry, J., On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology. 1982. 9, 121-137.
    82. Fauteux, F., Chain, F., Belzile, F., Menzies, J. G., and Belanger, R. R., The protective role of silicon in the Arabidopsis-powdery mildew pathosystem. Proceedings of the National Academy of Sciences of the United States of America. 2006. 103, 17554-17559.
    83. Fawe, A., Abou-Zaid, M., Menzies, J. G., and Belanger, R. R., Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology. 1998. 88, 396-401.
    84. Fischer, A., Theuerkorn, K., Stelzer, N., Gehre, M., Thullner, M., and Richnow, H. H., Applicability of stable isotope fractionation analysis for the characterization of benzene biodegradation in a BTEX-contaminated aquifer. Environmental Science & Technology. 2007.41,3689-3696.
    85. Friedmen, E. L., Light and scanning electron microscopy of the endolithic desert algal habitat. Phycologia. 1971. 10,441-428.
    86. Fripiat, F., Cardinal, D., Tison, J. L., Worby, A., and Andre, L., Diatom-induced silicon isotopic fractionation in Antarctic sea ice. Journal of Geophysical Research-Biogeosciences. 2007. 112, G02001.
    87. Fujii, M. and Chai, F., Effects of biogenic silica dissolution on silicon cycling and export production. Geophysical Research Letters. 2005. 32, GL022054.
    88. Gajurel, A. P., France-Lanord, C, Huyghe, P., Guilmette, C, and Gurung, D., C and O isotope compositions of modem fresh-water mollusc shells and river waters from the Himalaya and Ganga plain. Chemical Geology. 2006. 233, 156-183.
    89. Gao, J., Ding, T. P., and Tian, S. H., Silicon isotope compositions of dissolved silicon and suspended matter in the yellow river. Geochimica Et Cosmochimica Acta. 2006a. 70, A19.
    90. Gao, T. P., Chen, T., Feng, H. Y., An, L. Z., Xu, S. J., and Wang, X. L., Seasonal and annual variation of osmotic solute and stable carbon isotope composition in leaves of endangered desert evergreen shrub Ammopiptanthus mongolicus. South African Journal of Botany. 2006b. 72, 570-578.
    91. Gat, J. R., Yakir, D., Goodfriend, G., Fritz, P., Trimborn, P., Lipp, J., Gev, I., Adar, E., and Waisel, Y, Stable isotope composition of water in desert plants. Plant and Soil. 2007. 298,31-45.
    92. Gentili, F., Phosphorus, nitrogen and their interactions affect N-2 fixation, N isotope fractionation and N partitioning in Hippophae rhamnoides. Symbiosis. 2006. 41, 39-45.
    93. Georg, R. B., Reynolds, B. C., Frank, M., and Halliday, A. N., Mechanisms controlling the silicon isotopic compositions of river waters. Earth and Planetary Science Letters. 2006. 249, 290-206.
    94. Georg, R. B., Reynolds, B. C., West, A. J., Burton, K. W., and Halliday, A. N., Silicon isotope variations accompanying basalt weathering in Iceland. Earth and Planetary Science Letters. 2007. 261, 476-490.
    95. Gersonde, R. and Zielinski, U., The reconstruction of late Quaternary Antarctic sea-ice distribution - the use of diatoms as a proxy for sea-ice. Palaeogeography Palaeoclimatology Palaeoecology. 2000. 162, 263-286.
    96. Gessler, A., Peuke, A. D., Keitel, C., and Farquhar, G. D., Oxygen isotope enrichment of organic matter in Ricinus communis during the diel course and as affected by assimilate transport. New Phytologist. 2007. 174, 600-613.
    97. Goffart, A., Catalano, G., and Hecq, J. H., Factors controlling the distribution of diatoms and Phaeocystis in the Ross Sea. Journal of Marine Systems. 2000. 27, 161-175.
    98. Golden, K. M., Brine percolation and the transport properties of sea ice. Annals of Glaciology. 2001.33,28-36.
    99. Gomes, F. B., de Moraes, J. C., dos Santos, C. D., and Goussain, M. M., Resistance induction in wheat plants by silicon and aphids. Scientia Agricola. 2005. 62, 547-551.
    100. Gonfiantini, R., Valkiers, S., Taylor, P. D. P., and DeBievre, P., Adsorption in gas mass spectrometry .1. Effects on the measurement of individual isotopic species. International Journal of Mass Spectrometry and Ion Processes. 1997. 163, 207-219.
    101. Gong, H. J., Chen, K. M., Chen, G. C, Wang, S. M., and Zhang, C. L., Effects of silicon on growth of wheat under drought. Journal of Plant Nutrition. 2003. 26, 1055-1063.
    102. Gong, H. J., Randall, D. P., and Flowers, T. J., Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell and Environment. 2006. 29, 1970-1979.
    103. Goto, M., Ehara, H., Karita, S., Takabe, K., Ogawa, N., Yamada, Y, Ogawa, S., Yahaya, M. S., and Morita, O., Protective effect of silicon on phenolic biosynthesis and ultraviolet spectral stress in rice crop. Plant Science. 2003. 164, 349-356.
    104. Goussain, M. M., Prado, E., and Moraes, J. C, Effect of silicon applied to wheat plants on the biology and probing behaviour of the greenbug Schizaphis graminum (Rond.) (Hemiptera : Aphididae). Neotropical Entomology. 2005. 34, 807-813.
    105. Grant, F. S., The geological significance of variations in the abundances of the isotopes of silicon in rocks. Geochimica Et Cosmochimica Acta. 1954. 5, 225-242.
    106. Grimoldi, A. A., Kavanova, M., Lattanzi, F. A., Schaufele, R., and Schnyder, H., Arbuscular mycorrhizal colonization on carbon economy in perennial ryegrass: quantification by (CO2)-C-13/(CO2)-C-12 steady-state labelling and gas exchange. New Phytologist. 2006. 172, 544-553.
    107. Guelke, M. and Von Blanckenburg, F., Fractionation of stable iron isotopes in higher plants. Environmental Science & Technology. 2007. 41, 1896-1901.
    108. Gugel, I. L., Grupe, G., and Kunzelmann, K. H., Simulation of dental microwear: Characteristic traces by opal phytoliths give clues to ancient human dietary behavior. American Journal of Physical Anthropology. 2001. 114, 124-138.
    109. Gunes, A., Inal, A., Bagci, E. G., Coban, S., and Sahin, O., Silicon increases boron tolerance and reduces oxidative damage of wheat grown in soil with excess boron. Biologia Plantarum. 2007. 51, 571-574.
    110. Hamm, C. E., Merkel, R., Springer, O., Jurkojc, P., Maier, C, Prechtel, K., and Smetacek, V., Architecture and material properties of diatom shells provide effective mechanical protection. Nature. 2003. 421, 841-843.
    111. Hancock, J. E., Loya, W. M, Giardina, C. P., Li, L. G., Chiang, V. L., and Pregitzer, K. S., Plant growth, biomass partitioning and soil carbon formation in response to altered lignin biosynthesis in Populus tremuloides. New Phytologist. 2007. 173, 732-742.
    112. Hara, T., Gu, M. H., and Koyama, H., Ameliorative effect of silicon an aluminum injury in the rice plant. Soil Science and Plant Nutrition. 1999. 45, 929-936.
    113. Heine, G., Tikum, G, and Horst, W. J., The effect of silicon on the infection by and spread of Pythium aphanidermatum in single roots of tomato and bitter gourd. Journal of Experimental Botany. 2007. 58, 569-577.
    114. Helliker, B. R. and Griffiths, H., Toward a plant-based proxy for the isotope ratio of atmospheric water vapor. Global Change Biology. 2007. 13, 723-733.
    115. Henriet, C, Draye, X., Oppitz, I., Swennen, R., and Delvaux, B., Effects, distribution and uptake of silicon in banana (Musa spp.) under controlled conditions. Plant and Soil. 2006. 287,359-374.
    116. Hildebrand, M., Volcani, B. E., Gassmann, W., and Schroeder, J. I., A gene family of silicon transporters. Nature. 1997. 385, 688-689.
    117. Hinsinger, P., Barros, O. N. F., Benedetti, M. F., Noack, Y., and Callot, G., Plant-induced weathering of a basaltic rock: Experimental evidence. Geochimica Et Cosmochimica Acta. 2001.65, 137-152.
    118. Hobbie, E. A. and Werner, R. A., Intramolecular, compound-specific, and bulk carbon isotope patterns in C-3 and C-4 plants: a review and synthesis. New Phytologist. 2004. 161,371-385.
    119. Hoffman, J. C. and Bronk, D. A., Interannual variation in stable carbon and nitrogen isotope biogeochemistry of the Mattaponi River, Virginia. Limnology and Oceanography. 2006.51,2319-2332.
    120. Hogberg, P., Tansley review No 95 - N-15 natural abundance in soil-plant systems. New Phytologist. 1997. 137, 179-203.
    121. Horrocks, M., A combined procedure for recovering phytoliths and starch residues from soils, sedimentary deposits and similar materials. Journal of Archaeological Science. 2005.32, 1169-1175.
    122. Horrocks, M., Irwin, G. J., McGlone, M. S., Nichol, S. L., and Williams, L. J., Pollen, phytoliths and diatoms in prehistoric coprolites from Kohika, Bay of Plenty, New Zealand. Journal of Archaeological Science. 2003. 30, 13-20.
    123. Hou, J. Z., D'Andrea, W. J., MacDonald, D., and Huang, Y. S., Hydrogen isotopic variability in leaf waxes among terrestrial and aquatic plants around Blood Pond, Massachusetts (USA). Organic Geochemistry. 2007. 38, 977-984.
    124. Her, R. K., The Chemistry of Silica: Solubility, Polymerization, Colloid and Surfaces Properties, and Biochemistry. Wiley, Chichester. 1979. 13-121.
    125. Inanaga, S., Higuchi, Y, and Chishaki, N., Effect of silicon application on reproductive growth of rice plant. Soil Science and Plant Nutrition. 2002. 48, 341-345.
    126. Inanaga, S., Okasaka, A., and Tanaka, S., Does silicon exist in association with organic compounds in rice plants? Soil Science and Plant Nutrition. 1995. 41, 111-117.
    127. Iriarte, J., Assessing the feasibility of identifying maize through the analysis of cross-shaped size and three-dimensional morphology of phytoliths in the grasslands of southeastern South America. Journal of Archaeological Science. 2003. 30, 1085-1094.
    128. Itzstein-Davey, F., Taylor, D., Dodson, J., Atahan, P., and Zheng, H., Wild and domesticated forms of rice (Oryza sp.) in early agriculture at Qingpu, lower Yangtze, China: evidence from phytoliths. Journal of Archaeological Science. 2007. 34, 2101-2108.
    129. Iwasaki, K., Maier, P., Fecht, M., and Horst, W. J., Leaf apoplastic silicon enhances manganese tolerance of cowpea (Vigna unguiculata). Journal of Plant Physiology. 2002. 159,167-173.
    130. Jahren, A. H., Kelm, K., Wendland, B., Petersen, G., and Seberg, O., Carbon stable isotope composition of DNA isolated from an incipient paleosol. Geology. 2006. 34, 381-384.
    131. James, W. D., Showier, A. T., Westbrook, J. K., and Armstrong, J. S., Stable isotope tracer marking of individual boll weevils. Journal of Radioanalytical and Nuclear Chemistry. 2006. 269, 267-270.
    132. Jiang, Q. Z., Roche, D., and Hole, D. J., Carbon isotope discrimination of two-rowed and six-rowed barley genotypes under irrigated and non-irrigated field conditions. Canadian Journal of Plant Science. 2006. 86, 433-441.
    133. Jones, L. H. P. and Handreck, K. A., Studies of silica in the oat plant, Ⅲ :Uptake of silica from soils by the plant. Plant and Soil. 1965. 23, 79-96.
    134. Jones, L. H. P. and Handreck, K. A., Uptake of silica by Trifolium incarnatum in relation to the concentration in the external solution and to transpiration. Plant and Soil. 1969. 30, 71-80.
    135. Jucker, E. I., Foy, C. D., de Paula, J. C, and Centeno, J. A., Electron paramagnetic resonance studies of manganese toxicity, tolerance, and amelioration with silicon in snapbean. Journal of Plant Nutrition. 1999. 22, 769-782.
    136. Jugdaohsingh, R., Silicon and bone health. Journal of Nutrition Health & Aging. 2007. 11,99-110.
    137. Kaakinen, A., Sonninen, E., and Lunkka, J. P., Stable isotope record in paleosol carbonates from the Chinese Loess Plateau: Implications for late Neogene paleoclimate and paleovegetation. Palaeogeography Palaeoclimatology Palaeoecology. 2006. 237, 359-369.
    138. Kamenidou, S., Cavins, T. J., and Marek, S., Silicon supplements affect horticultural traits of greenhouse-produced ornamental sunflowers. Hortscience. 2008. 43, 236-239.
    139. Kerns, B. K., Diagnostic phytoliths for a ponderosa pine-bunchgrass community near Flagstaff, Arizona. Southwestern Naturalist. 2001. 46, 282-294.
    140. Kim, S. G, Kim, K. W., Park, E. W., and Choi, D., Silicon-induced cell wall fortification of rice leaves: A possible cellular mechanism of enhanced host resistance to blast. Phytopathology. 2002. 92, 1095-1103.
    141. Knoll, M. A. and James, W. C., Effect of the advent and diversification of vascular land plants on mineral weathering through geologic time. Geology. 1987. 15, 1099-1102.
    142. Kroger, N., Lorenz, S., Brunner, E., and Sumper, M., Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science. 2002. 298, 584-586.
    143. Landais, A., Barkan, E., Yakir, D., and Luz, B., The triple isotopic composition of oxygen in leaf water. Geochimica Et Cosmochimica Acta. 2006. 70, 4105-4115.
    144. Li, Y., Ding, T. P., and Wan, D., Experimental study of silicon isotope dynamic fractionation and its application in geology. Chinese Journal of Geochemistry. 1995. 14, 212-219.
    145. Li, Z. J., Lin, P., He, J. Y, Yang, Z. W., and Lin, Y. M., Silicon's organic pool and biological cycle in moso bamboo community of Wuyishan Biosphere Reserve. Journal of Zhejiang University SCIENCE B. 2006. 11, 849-857.
    146. Liang, Y. C, Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant and Soil. 1999. 209, 217-224.
    147. Liang, Y. C., Chen, Q., Liu, Q., Zhang, W. H., and Ding, R. X., Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of Plant Physiology. 2003. 160, 1157-1164.
    148. Liang, Y. C. and Ding, R. X., Influence of silicon on microdistribution of mineral ions in roots of salt-stressed barley as associated with salt tolerance in plants. Science in China Series C-Life Sciences. 2002. 45, 298-308.
    149. Liang, Y C., Hua, H. X., Zhu, Y G., Zhang, J., Cheng, C. M., and Romheld, V., Importance of plant species and external silicon concentration to active silicon uptake and transport. New Phytologist. 2006a. 172, 63-72.
    150. Liang, Y. C., Sun, W. C., Si, J., and Romheld, V., Effects of foliar- and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathology. 2005. 54, 678-685.
    151. Liang, Y. C., Yang, C. G., and Shi, H. H., Effects of silicon on growth and mineral composition of barley grown under toxic levels of aluminum. Journal of Plant Nutrition. 2001.24,229-243.
    152. Liang, Y. C., Zhang, W. H., Chen, Q., Liu, Y. L., and Ding, R. X., Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Environmental and Experimental Botany. 2006b. 57, 212-219.
    153. Lins, U., Barros, C. F., da Cunha, M., and Miguens, F. C., Structure, morphology, and composition of silicon biocomposites in the palm tree Syagrus coronata (Mart.) Becc. Protoplasma. 2002. 220, 89-96.
    154. Lu, H. Y., Wang, Y. J., Wang, G. A., Yang, H., and Li, Z., Analysis of carbon isotope in phytoliths from C3 and C4 plants and modern soils. Chinese Science Bulletin. 2000. 45, 1804-1808.
    155. Lucas, Y., The role of plants in controlling rates and products of weathering: Importance of biological pumping. Annual Review of Earth and Planetary Sciences. 2001. 29, 135-163.
    156. Lucas, Y., Luizao, F. J., Chauvel, A., Rouiller, J., and Nahon, D., The Relation Between Biological Activity of the Rain Forest and Mineral Composition of Soils. Science. 1993. 260,521-523.
    157. Lux, A., Luxova, M., Abe, J., Morita, S., and Inanaga, S., Silicification of bamboo (Phyllostachys heterocycla Mitf.) root and leaf. Plant and Soil. 2003. 255, 85-91.
    158. Lux, A., Luxova, M., Hattori, T., Inanaga, S., and Sugimoto, Y., Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiologia Plantarum. 2002. 115,87-92.
    159. Ma, J. F., Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition. 2004. 50, 11-18.
    160. Ma, J. F., Higashitani, A., Sato, K., and Takeda, K., Genotypic variation in silicon concentration of barley grain. Plant and Soil. 2003. 249, 383-387.
    161. Ma, J. F., Mitani, N., Nagao, S., Konishi, S., Tamai, K., Iwashita, T., and Yano, M., Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiology. 2004. 136, 3284-3289.
    162. Ma, J. F., Miyake, Y., and Takahashi, E., Silicons as a beneficial element for crop plants. In: Datonoff, L., Korndorfer, G., and Synder, G. Eds.), Silicon in Agriculture. Elsevier Science, New York. 2001. 24-38.
    163. Ma, J. F. and Takahashi, E., Soil, Fertilizer and Plant Silicon Research in Japan. Elsevier Science, Amsterdam. 2002.
    164. Ma, J. F., Tamai, K., Ichii, M., and Wu, G. F., A rice mutant defective in Si uptake. Plant Physiology. 2002. 130,2111-2117.
    165. Ma, J. F., Tamai, K., Yamaji, N., Mitani, N., Konishi, S., Katsuhara, M., Ishiguro, M., Murata, Y, and Yano, M., A silicon transporter in rice. Nature. 2006. 440, 688-691.
    166. Ma, J. F. and Yamaji, N., Silicon uptake and accumulation in higher plants. Trends in Plant Science. 2006. 11, 392-397.
    167. Ma, J. F., Yamaji, N., Mitani, N., Tamai, K., Konishi, S., Fujiwara, T., Katsuhara, M., and Yano, M., An efflux transporter of silicon in rice. Nature. 2007. 448, 209-U12.
    168. Martin-Jezequel, V., Hildebrand, M., and Brzezinski, M. A., Silicon metabolism in diatoms: Implications for growth. Journal of Phycology. 2000. 36, 821-840.
    169. Martin, G. J., Heck, G., Djamaris-Zainal, R., and Martin, M. L., Isotopic criteria in the characterization of aromatic molecules. 1. Hydrogen affiliation in natural benzenoid/phenylpropanoid molecules. Journal of Agricultural and Food Chemistry. 2006.54,10112-10119.
    170. Matichenkov, V. V. and Bocharnikova, E. A., The relationship between silicon and soil physical and chemical properties. In: Datnoff, L. E. (Ed.), Silicon in Agriculture. Elsevier, Florida. 2001.
    171. Matichenkov, V. V., Calvert, D. V., and Snyder, G. H., Prospective of silicon fertilization for citrus in Florida. Soil and Crop Science Society of Florida Proceedings. 2000. 59, 137-141.
    172. Mayland, H. F. and Shewmaker, G. E., Animal health problems caused by silicon and other mineral imbalances. Journal of Range Management. 2001. 54, 441-446.
    173. Meunier, J. D., The role of plants in the terrestrial biogeochemical cycle of Si. Geochimica Et Cosmochimica Acta. 2004. 68, A411-A411.
    174. Meybeck, M., Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science. 1987. 287, 401-428.
    175. Milligan, A. J., Varela, D. E., Brzezinski, M. A., and Morel, F. O. M. M., Dynamics of silicon metabolism and silicon isotopic discrimination in a marine diatom as a function of pCO(2). Limnology and Oceanography. 2004. 49, 322-329.
    176. Misra, S. C., Randive, R., Rao, V. S., Sheshshayee, M. S., Serraj, R., and Monneveux, P., Relationship between carbon isotope discrimination, ash content and grain yield in wheat in the Peninsular Zone of India. Journal of Agronomy and Crop Science. 2006. 192, 352-362.
    177. Miura, C. and Tanaka, F., Determination of C-13 content in starch from paddy rice plants using stable isotope ratio mass spectrometry. Soil Science and Plant Nutrition. 2007. 53, 606-611.
    178. Monneveux, P., Sheshshayee, M. S., Akhter, J., and Ribaut, J. M., Using carbon isotope discrimination to select maize (Zea mays L.) inbred lines and hybrids for drought tolerance. Plant Science. 2007. 173, 390-396.
    179. Motomura, H., Mita, N., and Suzuki, M., Silica accumulation in long-lived leaves of Sasa veitchii (Carriere) Rehder (Poaceae-Bambusoideae). Annals of Botany. 2002. 90, 149-152.
    180. Moulton, K. L., West, J., and Berner, R. A., Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering. American Journal of Science. 2002. 300, 539-570.
    181. Murase, J., Matsui, Y., Katoh, M., Sugimoto, A., and Kimura, M., Incorporation of 13 C-labeled rice-straw-derived carbon into microbial communities in submerged rice field soil and percolating water. Soil Biology & Biochemistry. 2006. 38, 3483-3491.
    182. Nelson, D. M., Trtguer, P., Brzezinski, M. A., Leynaert, A., and Qutguiner, B., Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycles. 1995. 9, 359-372.
    183. Nelwamondo, A. and Dakora, F. D., Silicon promotes nodule formation and nodule function in symbiotic cowpea (Vigna unguiculata). New Phytologist. 1999.142, 463-467.
    184. Neumann, D. and De Figueiredo, C., A novel mechanism of silicon uptake. Protoplasma. 2002. 220, 59-67.
    185. Neumann, D. and zur Nieden, U., Silicon and heavy metal tolerance of higher plants. Phytochemistry. 2001. 56, 685-692.
    186. Nikolic, M., Nikolic, N., Liang, Y. C., Kirkby, E. A., and Romheld, V., Germanium-68 as an Adequate Tracer for Silicon Transport in Plants. Characterization of Silicon Uptake in Different Crop Species. Plant Physiology. 2007. 143, 495-503.
    187. Nishimura, K., Miyaki, Y., and Takahashi, E., On silicon, aluminium, and zinc accumulators discriminated from 147 species of Angiospermae. Memoirs of the College of Agriculture Kyoto University. 1989. 133,23-43.
    188. O'Leary, M. H., Carbon isotope fractionation in plants. Phytochemistry. 1981. 20, 553-567.
    189. Ogee, J., Cuntz, M., Peylin, P., and Bariac, T., Non-steady-state, non-uniform transpiration rate and leaf anatomy effects on the progressive stable isotope enrichment of leaf water along monocot leaves. Plant Cell and Environment. 2007. 30, 367-387.
    190. Oliver, I. W., Ma, Y. B., Lombi, E., Nolan, A. L., and McLaughlin, M. J., Stable isotope techniques for assessing labile Cu in soils: Development of an L-value procedure, its application, and reconciliation with E values. Environmental Science & Technology. 2006. 40, 3342-3348.
    191. Opfergelt, S., Cardinal, D., Henriet, C., Andre, L., and Delvaux, B., Silicon isotope fractionation between plant parts in banana: In situ vs. in vitro. Journal of Geochemical Exploration. 2006a. 88, 224-227.
    192. Opfergelt, S., Cardinal, D., Henriet, C., Draye, X., Andre, L., and Delvaux, B., Silicon isotopic fractionation by banana (Musa spp.) grown in a continuous nutrient flow device. Plant and Soil. 2006b. 285, 333-345.
    193. Parker, A. G., Eckersley, L., Smith, M. M., Goudie, A. S., Stokes, S., Ward, S., White, K., and Hodson, M. J., Holocene vegetation dynamics in the northeastern Rub' al-Khali desert, Arabian Peninsula: a phytolith, pollen and carbon isotope study. Journal of Quaternary Science. 2004. 19, 665-676.
    194. Parr, J. F., A comparison of heavy liquid floatation and microwave digestion techniques for the extraction of fossil phytoliths from sediments. Review of Palaeobotany and Palynology. 2002. 120, 315-336.
    195. Parr, J. F., Dolic, V., Lancaster, G., and Boyd, W. E., A microwave digestion method for the extraction of phytoliths from herbarium specimens. Review of Palaeobotany and Palynology. 2001. 116, 203-212.
    196. Parr, J. F. and Sullivan, L. A., Soil carbon sequestration in phytoliths. Soil Biology & Biochemistry. 2005. 37, 117-124.
    197. Parry, D. W. and Winslow, A., Electron-proe microanalysis of silicon accumulation in the leaves and tendrils of Pisum sativum(L.)following root severance. Annals of Botany. 1977.41,275-278.
    198. Patwardhan, S. V., Clarson, S. J., and Perry, C.C., On the role(s) of additives in bioinspired silicification. Chemical Communications. 2005. 1113-1121.
    199. Pearsall, D. M., Chandler-Ezell, K., and Chandler-Ezell, A., Identifying maize in neotropical sediments and soils using cob phytoliths. Journal of Archaeological Science. 2003.30,611-627.
    200. Pearsall, D. M., Chandler-Ezell, K., and Chandler-Ezell, A., Maize can still be identified using phytoliths: response to Rovner. Journal of Archaeological Science. 2004. 31, 1029-1038.
    201. Pereira, H. S., Vitti, G. C., and Korndorfer, G. H., Behavior of different silicon sources in the soil and in tomato crop. Revista Brasileira De Ciencia Do Solo. 2003. 27, 101-108.
    202. Peuke, A. D., Gessler, A., and Rennenberg, H., The effect of drought on C and N stable isotopes in different fractions of leaves, stems and roots of sensitive and tolerant beech ecotypes. Plant Cell and Environment. 2006. 29, 823-835.
    203. Poulsen, N., Sumper, M., and Kroger, N., Biosilica formation in diatoms: Characterization of native silaffin-2 and its role in silica morphogenesis. Proceedings of the National Academy of Sciences of the United States of America. 2003. 100, 12075-12080.
    204. Prychid, C. J., Rudall, P. J., and Gregory, M., Systematics and biology of silica bodies in monocotyledons. Botanical Review. 2003. 69, 377-440.
    205. Rafi, M. M. and Epstein, E., Silicon absorption by wheat (Triticum aestivum L.). Plant and Soil. 1999.211,223-230.
    206. Rafi, M. M., Epstein, E., and Falk, R. H., Silicon deprivation causes physical abnormalities in wheat (Triticum aestivum L.). Journal of Plant Physiology. 1997. 151, 497-501.
    207. Ragueneau, O., Schultes, S., Bidle, K., Claquin, P., and La Moriceau, B., Si and C interactions in the world ocean: Importance of ecological processes and implications for the role of diatoms in the biological pump. Global Biogeochemical Cycles. 2006. 20, gb4s02.
    208. Rains, D. W., Epstein, E., Zasoski, R. J., and Aslam, M., Active silicon uptake by wheat. Plant and Soil. 2006. 280, 223-228.
    209. Raven, J. A., Cycling silicon - the role of accumulation in plants - Commentary. New Phytologist. 2003. 158,419-421.
    210. Reinhard, K. J. and Danielson, D. R., Pervasiveness of phytoliths in prehistoric southwestern diet and implications for regional and temporal trends for dental microwear. Journal of Archaeological Science. 2005. 32, 981-988.
    211. Remus-Borel, W., Menzies, J. G., and Belanger, R. R., Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiological and Molecular Plant Pathology. 2005. 66, 108-115.
    212. Reynolds, B. C, Frank, M., and Halliday, A. N., Silicon isotope fractionation during nutrient utilization in the North Pacific. Earth and Planetary Science Letters. 2006. 244, 431-443.
    213. Richmond, K. E. and Sussman, M., Got silicon? The non-essential beneficial plant nutrient. Current Opinion in Plant Biology. 2003. 6, 268-272.
    214. Roden, J. S., Bowling, D. R., McDowell, N. G., Bond, B. J., and Ehleringer, J. R., Carbon and oxygen isotope ratios of tree ring cellulose along a precipitation transect in Oregon, United States. Journal of Geophysical Research-Biogeosciences. 2005. 110, 11.
    215. Rodrigues, F. A., Benhamou, N., Datnoff, L. E., Jones, J. B., and Belanger, R. R., Ultrastructural and cytochemical aspects of silicon-mediated rice blast resistance. Phytopathology. 2003. 93, 535-546.
    216. Rodrigues, F. A., Datnoff, L. E., Korndorfer, G. H., Seebold, K. W., and Rush, M. C., Effect of silicon and host resistance on sheath blight development in rice. Plant Disease. 2001.85,827-832.
    217. Rogalla, H. and Romheld, V., Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant Cell and Environment. 2002. 25, 549-555.
    218. Romero-Aranda, M. R., Jurado, O., and Cuartero, J., Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. Journal of Plant Physiology. 2006. 163, 847-855.
    219. Rose, A. W., Kato, T., and Machesky, M. L., The significance of biogenic element cycling in ancient tropical soils. Chemical Geology. 1993. 107,401-403.
    220. Rosman, K. J. R. and Taylor, P. D. P., Isotopic compositions of the elements 1997. Pure and Applied Chemistry. 1998. 70, 217-235.
    221. Rovner, I., On transparent blindfolds - Comments on identifying maize in Neotropical sediments and soils using cob phytoliths. Journal of Archaeological Science. 2004. 31, 815-819.
    222. Sanson, G. D., Kerr, S. A., and Gross, K. A., Do silica phytoliths really wear mammalian teeth? Journal of Archaeological Science. 2007. 34, 526-531.
    223. Savant, N. K., Korndorfer, G. H., Datnoff, L. E., and Snyder, G. H., Silicon nutrition and sugarcane production: A review. Journal of Plant Nutrition. 1999. 22, 1853-1903.
    224. Savant, N. K., Snyder, G. H., and Datnoff, L. E., Silicon management and sustainable rice production. Advances in Agronomy, Vol 58. 1997. 58, 151-199.
    225. Schmitt, A. D., Chabaux, F., and Stille, P., The calcium riverine and hydrothermal isotopic fluxes and the oceanic calcium mass balancel. Earth and Planetary Science Letters. 2003.213, 503-518.
    226. Schuerger, A. C. and Hammer, W., Suppression of powdery mildew on greenhouse-grown cucumber by addition of silicon to hydroponic nutrient solution is inhibited at high temperature. Plant Disease. 2003. 87, 177-185.
    227. Scott, L., Grassland development under glacial and interglacial conditions in southern Africa: review of pollen, phytolith and isotope evidence. Palaeogeography Palaeoclimatology Palaeoecology. 2002. 177, 47-57.
    228. Siegenthaler, U. and Oeschger, H., Correlation of 18O in precipitation with temperature and altitude. Nature. 1980. 285, 314-317.
    229. Sigman, D. M., Altabet, M. A., Francois, R., McCorkle, D. C, and Gaillard, J. F., The isotopic composition of diatom-bound nitrogen in Southern Ocean sediments. Paleoceanography. 1999. 14, 118-134.
    230. Sistani, K. R., Savant, N. K., and Reddy, K. C., Effect of rice hull ash silicon on rice seedling growth. Journal of Plant Nutrition. 1997. 20, 195-201.
    231. Smith, F. A. and White, J. W. C., Modem calibration of phytolith carbon isotope signatures for C-3/C-4 paleograssland reconstruction. Palaeogeography Palaeoclimatology Palaeoecology. 2004. 207, 277-304.
    232. Song, T. R. and Ding, T. P., A new probe on application of silicon isotopes composition (δ~(30)Si) in siliceous rocks to sedimentary facies analysis. Chinese Science Bulletin. 1990. 35,761-766.
    233. Sternberg, L., Pinzon, M. C, Anderson, W. T., and Jahren, A. H., Variation in oxygen isotope fractionation during cellulose synthesis: intramolecular and biosynthetic effects. Plant Cell and Environment. 2006. 29, 1881-1889.
    234. Steinberg, L. D. L., Pinzon, M. C., Vendramini, P. F., Anderson, W. T., Jahren, A. H., and Beuning, K., Oxygen isotope ratios of cellulose-derived phenylglucosazone: An improved paleoclimate indicator of environmental water and relative humidity. Geochimica Et Cosmochimica Acta. 2007. 71, 2463-2473.
    235. Sumper, M. and Lehmann, G., Silica pattern formation in diatoms: Species-specific polyamine biosynthesis. Chembiochem. 2006. 7, 1419-1427.
    236. Takahashi, E., Ma, J. F., Ma, Y., and Miyake, Y., The possibility of silicon as an essential element for higher plants. Comments on Agricultural and Food Chemistry. 1990. 2, 99-112.
    237. Takahashi, N., Kato, T., Tsunagawa, M., Sasaki, N., and Kitahara, Y., Mechanisms of dormancy in rice seeds. II. New growth inhibitors, momilactone-A and -B isolated from the hulls of rice seeds. Japanese Journal of Breeding. 1976. 26, 91-98.
    238. Tamai, K. and Ma, J. F., Characterization of silicon uptake by rice roots. New Phytologist. 2003. 158,431-436.
    239. Thorn, V. C., Phytoliths from subantarctic Campbell Island: plant production and soil surface spectra. Review of Palaeobotany and Palynology. 2004. 132, 37-59.
    240. Tilburey, G. E., Patwardhan, S. V., Huang, J., Kaplan, D. L., and Perry, C. C., Are hydroxyl-containing biomolecules important in biosilicification? A model study. Journal of Physical Chemistry B. 2007. 111,4630-4638.
    241. Tuna, A. L., Kaya, C, Higgs, D., Murillo-Amador, B., Aydemir, S., and Girgin, A. R., Silicon improves salinity tolerance in wheat plants. Environmental and Experimental Botany. 2008. 62, 10-16.
    242. VareIa, D. E., Pride, C. J., and Brzezinski, M. A., Biological fractionation of silicon isotopes in Southern Ocean surface waters. Global Biogeochemical Cycles. 2004. 18, GB002140.
    243. Wang, W. M., Liu, J. L., and Zhou, X. D., Climate indexes of phytoliths from Homo erectus' cave deposits in Nanjing. Chinese Science Bulletin. 2003. 48, 2005-2009.
    244. Wang, X. S. and Han, J. G., Effects of NaCl and silicon on ion distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance. Soil Science and Plant Nutrition. 2007. 53, 278-285.
    245. Weiss, D. J., Mason, T. F. D., Zhao, F. J., Kirk, G. J. D., Coles, B. J., and Horstwood, M. S. A., Isotopic discrimination of zinc in higher plants. New Phytologist. 2005. 165, 703-710.
    246. Weres, O., Yee, A., and Tsao, L., Kinetics of silica polymerization. Journal of Colloid and Interface Science. 1981. 84, 379-402.
    247. Werth, M. and Kuzyakov, Y., Assimilate partitioning affects C-13 fractionation of recently assimilated carbon in maize. Plant and Soil. 2006. 284, 319-333.
    248. White, A. F. and Blum, A. E., Effects of climate on chemical_ weathering in watersheds. Geochimica Et Cosmochimica Acta. 1995. 59, 1729-1747.
    249. White, K. N., Ejim, A. I., Walton, R. C., Brown, A. P., Jugdaohsingh, R., Powell, J. J., and McCrohan, C. R., Avoidance of aluminum toxicity in freshwater snails involves intracellular silicon-aluminum biointeraction. Environmental Science & Technology. 2008.42,2189-2194.
    250. Wickman, F. E., Variation in the relative abundance of carbon isotopes in plants. Geochimica Et Cosmochimica Acta. 1952. 2, 243-254.
    251. Winslow, M. D., Okada, K., and CorreaVictoria, F., Silicon deficiency and the adaptation of tropical rice ecotypes. Plant and Soil. 1997. 188, 239-248.
    252. Wischmeyer, A. G, De La Rocha, C. L., Maier-Reimer, E., and Wolf-Gladrow, D. A., Control mechanisms for the oceanic distribution of silicon isotopes. Global Biogeochemical Cycles. 2003. 17, -.
    253. Wollast, R. and Mackenzie, F. T., The global cycle of silicon. In: Aston, S. R. (Ed.), Silicon Geochemistry and Biogeochemistry. Academic Press, London. 1983.
    254. Wu, Q. S., Wan, X. Y, Su, N., Cheng, Z. J., Wang, J. K., Lei, C. L., Zhang, X., Jiang, L., Ma, J. F., and Wan, J. M., Genetic dissection of silicon uptake ability in rice (Oryza sativa L.). Plant Science. 2006. 171, 441-448.
    255. Xiao, X., Boles, S., Liu, J., Zhuang, D., Frolking, S., Li, C., Salas, W., and Moore Iii, B., Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sensing of Environment. 2005. 95, 480-492.
    256. Yoshida, S., Routine procedures for growing rice plants in culture solution. In: Yoshida, S., Forno, D. A., Cock, J. H., and Gomez, K. A. Eds.), In Laboratory Manual for Physiological Studies of Rice. International Rice Research Institute, Manila. 1976.
    257. Zhao, L. J., Xiao, H. L., and Liu, X. H., Relationships between carbon isotope discrimination and yield of spring wheat under different water and nitrogen levels. Journal of Plant Nutrition. 2007. 30, 947-963.
    258. Zhu, Z. J., Wei, G. Q., Li, J., Qian, Q. Q., and Yu, J. Q., Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science. 2004. 167, 527-533.
    259. Ziegler, K., Chadwick, O. A., Brzezinski, M. A., and Kelly, E. F., Natural variations of delta Si-30 ratios during progressive basalt weathering, Hawaiian Islands. Geochimica Et Cosmochimica Acta. 2005a. 69, 4597-4610.
    260. Ziegler, K., Chadwick, O. A., White, A. F., and Brzezinski, M. A., (DSi)-Si-30 systematics in a granitic saprolite, Puerto Rico. Geology. 2005b. 33, 817-820.
    261. Zsoldos, F., Vashegyi, A., Bona, L., and Pecsvaradi, A., Effects of silicon on growth and potassium transport in triticale and rye exposed to aluminium and nitrite stress. Cereal Research Communications. 2003.31,379-386.
    262. Zuccarini, P., Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. Biologia Plantarum. 2008.52, 157-160.
    263.丁悌平,蒋少涌,万德芳,李延河,硅同位素地球化学.地质出版社,北京.1994.50-64.
    264.韩兴国,李凌浩,黄建辉,生物地球化学概论.高等教育出版社,北京.1999.52-64.
    265.何电源,土壤和植物中的硅.土壤学进展.1980.5,1-10.
    266.江立庚,甘秀芹,韦善清,徐建云,曹卫星,水稻物质生产与氮、磷、钾、硅素积累特点及其相互关系.应用生态学报.2004.15,226-230.
    267.姜钦华,评价《植物硅石分析》一书及学科的应用前景.地质评论.1992.38,481-482.
    268.李春俭,王震宇,张福锁等译,高等植物的矿质营养.中国农业大学出版社,北京.2001.289-306.
    269.梁永超,张永春,马同生,植物的硅素营养.土壤学进展.1993.21,7-14.
    270.陆景陵,植物营养学.农业出版社,北京.2003.56-167.
    271.吕厚远,王永吉,植物硅酸体研究及在青岛三千年来古环境解释中的应用.科学通报.1989.19,1485-1488.
    272.水茂兴,蒋式洪,水稻硅氮营养的相互作用及其对产量的影响.土壤通报.1995.26,29-32.
    273.王荔军,李敏,李铁津,王运华,张福锁,植物体内的纳米结构SiO2.科学通报.2001.46.625-632.
    274.王永吉,吕厚远,植物硅酸体研究及应用简介.黄渤海海洋.1989.7,66-68.
    275.邢雪荣,张蕾,植物的硅素营养研究综述.植物学通报.1998.15,33-40.
    276.徐呈祥,刘友良,郑青松,硅改善盐胁迫下库拉索芦荟生长和离子吸收与分布.植物生理与分子生物学学报.2006.32,73-78.
    277.徐呈祥,刘兆普,刘友良,硅在植物中的生理功能.植物生理学通讯.2004.6,753-757.
    278.徐金森,段鹏程,锗,硅对水稻营养生长的影响.厦门大学学报:自然科学版.1999.38,121-128.
    279.徐毅,长江口及邻近海域颗粒态及溶解态硅稳定同位素的ICP MS测定及分布研究[硕士论文],上海.华东师范大学.2007.15-72.
    280.杨东方,高振会,孙培艳,赵蓓,李梅,胶州湾水温和营养盐硅限制初级生产力的时空变化.海洋科学进展.2006.2,203-212.
    281.张国良,戴其根,张洪程,霍中洋,许柯,水稻硅素营养研究进展.江苏农业科学.2003.3.8-12.
    282.张新荣,胡克,王东坡等,植硅体研究及其应用的讨论.世界地质.2004.23,112-117.
    283.张宜春,刘同仇,谢振翅译,植物营养原理与技术.农业出版社,北京.1987.567-570.
    284.郑宪滨,曹一平,张福锁,不同供钾水平下烤烟体内钾的循环、累积和分配.植物营养与肥料学报.2006.6,162-172.
    285.郑永飞,稳定同位素地球化学.科学出版社,北京.2000.1-19.
    286.中国科学院贵阳地球化学研究所《简明地球化学手册》编译组,简明地球化学手册.科学出版社,北京.1977.21-76.
    287.周启星,黄国宏,环境生物地球化学和全球环境变化.科学出版社,北京.2001.113-127.
    288.朱小平,王义炳,水稻硅素营养特性的研究.土壤通报.1995.26,232-233.
    289.邹春琴,高霄鹏,刘颖杰,王荔军,张福锁,硅对向日葵水分利用效率的影响.植物营养与肥料学报.2005.11,547-550.
    290.邹春琴,高霄鹏,张福锁,施硅对玉米生长及蒸腾速率的影响.中国生态农业学报.2007.15.55-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700