用户名: 密码: 验证码:
好氧颗粒污泥的培养过程、作用机制及数学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
好氧颗粒污泥是活性污泥微生物通过自固定最终形成的结构紧凑、外形规则的生物聚集体。它具有相对密实的微观结构、优良的沉淀性能、较高浓度的生物体截留和多样的微生物种群。因此,好氧颗粒污泥技术作为一种新型的废水生物处理形式,在城市污水和工业废水处理中具有非常广阔的应用前景。好氧颗粒污泥的形成过程非常复杂,它的作用机制涉及到微生物的生长与竞争、氧的传质、底物的扩散及微生物产物的形成等各个方面。本论文系统地研究了好氧颗粒污泥的形成过程、作用机制和数学模拟,探索了颗粒污泥在好氧和缺氧条件下的胞内储存过程机理,深入阐明了颗粒污泥中胞外聚合物和溶解性微生物产物的形成规律,并首次成功地以低有机物浓度城市污水为基质在中试规模反应器中培养出性能优良的好氧颗粒污泥。主要研究内容和研究结果如下:
     1.分别采用豆制品加工废水和混合酸废水在SBR反应器中培养好氧颗粒污泥,基于实验结果和形成机理的分析,实现了好氧颗粒污泥形成过程的定量描述。粒污泥在形成过程中粒径逐渐增大,沉降速度提高到40 mh~(-1),污泥体积指数SVI减小至20 mL g~(-1),COD去除效率高于98%;模型能够很好地定量描述好氧颗粒污泥的形成过程及基质在颗粒内部的扩散:好氧颗粒污泥的形成过程可分为适应期、快速生长期和成熟期。
     2.通过好氧颗粒污泥的间歇实验,探索了颗粒中自养微生物和异养微生物的生长与竞争;根据实验结果修正了ASM3模型,用以描述好氧颗粒SBR反应器中自养菌和异养菌的同时生长,并分析两类微生物对于溶解氧的竞争和在颗粒中的空间分布;发现氨氮和COD在颗粒SBR反应器运行周期的前1.5小时内分别被自养茵和异养菌消耗完毕,且异养菌消耗更多的溶解氧;自养菌主要位于颗粒的外层,而异养菌则分布于颗粒的外层或者中心。
     3.通过McCarty建立的生物热能学方法估算出活性污泥的微生物产率,分析了反应器中关键化学和生物组分的总体计量学;与生化反应和电子平衡相耦合,建立了分析反应器中各种重要化学组分的动态变化的热力学新方法,并同修正后的ASM1模型相结合,解析了豆制品废水活性污泥处理系统中C_(16)H_(24)O_5N_4、CH_2O、细胞(C_5H_7O_2N)、H~-、NH_4~+、HCO_3~-和CO_2浓度的动态变化规律。
     4.通过不同初始条件下的颗粒污泥储存实验,探索了好氧条件下颗粒污泥的胞内储存机制和电子转移途径,实现了好氧颗粒污泥胞内储存过程的准确描述。当系统中外源底物过剩时,底物被微生物快速利用并形成一定量的储存物质;在外源底物消耗完之后,微生物则会利用胞内储存物质进行生长。
     5.采用好氧和缺氧条件下的呼吸速率实验结果对反硝化条件下颗粒污泥的储存机理进行了探索,发现其生化机理过程主要包括反硝化条件下的水解、缺氧同时储存和生长、缺氧维持以及生物衰减。动力学分析结果表明,好氧颗粒污泥的反硝化胞内储存过程NUR包括4个不同的硝酸盐利用线性阶段;根据缺氧储存机理,建立了缺氧校正系数的估算方法,并解析出好氧颗粒污泥在反硝化条件下的胞内储存过程。
     6.采用凝胶渗透色谱(GPC)和三维荧光光谱(EEM)对活性污泥胞外多聚物(EPS)的产生过程进行了表征。EPS的形成量及其组分分子量分布依赖于外源底物的利用,EPS量在底物利用过程中逐渐增加;EPS中的荧光物质主成分有两种:最大激发发射波长位于280/340 nm的蛋白类物质和最大激发发射波长位于320/400 nm的类富里酸物质。
     7.提出了一套估算活性污泥EPS形成动力学参数的新方法。在该方法中利用非线性最小二乘法建立目标函数,而采用蒙特卡罗法优化目标函数;参数估计结果表明,此方法能够准确、简便地获得活性污泥微生物降解有机物过程中EPS的形成动力学参数值及其相应的可靠性信息:外源底物电子的分布途径为:61%的电子用于细胞生物量的合成,21%的电子转移到电子受体溶解氧用于生物呼吸产生能量,而剩下的18%的电子则用于EPS的形成。
     8.集成运用凝胶渗透色谱、耗氧速率分析、多糖和蛋白测定、三维荧光光谱、傅立叶变换红外光谱和溶解性有机碳测定等技术,全面分析了活性污泥SMP的分子量分布、化学特性及其分类,对污泥微生物降解底物过程中SMP的形成及其分类划分进行了定性和定量研究。发现UAP产生于底物利用阶段,其分子量低于290 kDa,而BAP为290-5000 kDa范围内的生物大分子物质,BAP则可进一步分为生长相关BAP(GBAP)和内源相关BAP(EBAP)。
     9.提出了分析SMP、UAP和BAP产生动力学的新方法,并建立了描述SMP形成过程及其划分的数学模型。基于底物利用积分方程分别建立了UAP和BAP目标函数,运用规划求解法优化目标函数使其最小化,从而得到活性污泥SMP形成的相关速率系数μ_G、K_S、k_(BAP)以及产率系数Y_H、k_(UAP)的最佳估计值;在此基础上描述了3种SMP的产生与底物利用之间的联系以及SMP的形成机理。
     10.采用实验分析和数学模拟相结合的方法阐明了好氧颗粒污泥系统中EPS、SMP和X_(STO)的形成和消耗过程,在将这3种不同微生物代谢产物的电子转移途径相耦合的基础上,建立一套统一的EPS、SMP和X_(STO)的形成动力学模型,分析了反应器污泥停留时间(SRT)对EPS、SMP和X_(STO)形成的影响,并提出了基于EPS、SMP和X_(STO)动力学模型调控颗粒反应器的新方法。
     11.对好氧颗粒污泥自养菌微生物产物的产生规律、成分特性及数学模拟进行了系统的研究,阐明了自养菌微生物代谢产物的形成机理,并对自养微生物体系中产生的EPS和SMP进行了表征:探索了自养微生物体系中异养微生物利用自养微生物代谢产物的生长规律;发现NOB在好氧条件下以亚硝酸盐作为电子供体进行生长,并产生新的NOB细胞、UAP、EPS和硝酸盐:这些自养微生物的代谢产物是自养体系中异养菌细胞合成的唯一电子供体来源。
     12.首次利用低浓度实际城市污水在中试规模反应器中培养出性能优良的好氧颗粒污泥,探索了低浓度有机废水作为底物条件时污泥颗粒化的关键因素,并且实现了中试颗粒污泥反应器的数学模拟。好氧颗粒污泥粒径适中、沉降性良好、生物活性高;颗粒污泥主要以丝状菌为骨架,由结构密实地杆状细菌和球菌组成;分析表明体积交换率和沉降时间是低浓度废水条件下SBR反应器中污泥颗粒化的关键参数。
     13.采用好氧颗粒污泥为接种物,在上流式厌氧污泥反应器(UASB)中实现厌氧氨氧化(ANAMMOX)过程的快速启动,并对所形成ANAMMOX颗粒污泥的结构和物化特性以及反应器运行工况进行表征:在此基础上,采用16S rRNA基因扩增和PCR-DGGE等分子生物学技术对启动过程中颗粒污泥的微生物种群结构变化进行定量分析,为拓展好氧颗粒污泥的应用领域提供了新的思路。
Aerobic granular sludge is a type of microbial aggregate through self-immobilization and granulation of the microorganisms in activated sludge. Aerobic granule usually has regular shape,good settling ability,compact structure, high biomass retention,and diversity of microbial population.It ensures a higher substrate removal efficiency,less excess sludge disposal,less area consumption and lower costs for capital construction,compared with activated sludge floes.Therefore, this process has been regarded as a promising wastewater treatment system.However, aerobic granulation is a very complex phenomenon.There are numerous internal interactions among process variables,such as growth,storage,microbial products formation and endogenous respiration,and sludge characteristics,including biomass detachment,oxygen transfer and diffusion.In this thesis,the formation,the function mechanism and the mathematical modeling of aerobic granular sludge were systematically explored.The storage processes of aerobic granules under both aerobic and anoxic conditions were investigated.The production of extracellular polymeric substances(EPS) and soluble microbial products(SMP) in aerobic granular sludge were also explored.Furthermore,this work was the first attempt to cultivate aerobic granules on low-strength municipal wastewater in a pilot-scale sequencing batch reactor(SBR).Main contents and results are as follows:
     1.Aerobic granules were successfully cultivated in SBRs fed with both soybean-processing and fatty-acids-rich wastewaters.,Based on experimental observations and formation mechanism analysis,the aerobic granulation process in terms of mean radius profiles was quantitatively characterized.In the granulation process,the mean diameter of bioparticles gradually increased.Their settling velocity increased to 40 m h~(-1),while their sludge volume index(SVI) decreased to 20 mL g~(-1). The chemical oxygen demand(COD) removal efficiency increased to 98%.The developed model is applicable to describing the aerobic sludge granulation process and substrate diffusion within granules appropriately.Three phases in the granule formation process could be clearly distinguished:initial exponential growth phase, linear growth phase afterwards and final stable phase.
     2.The autotrophic and heterotrophic growth and competition in aerobic granular sludge were explored using a batch experimental approach.The activated sludge model No.3(ASM3) was modified based on experimental results in order to describe the simultaneous autotrophic and heterotrophic growth in aerobic granules.The distribution within granules and competition for dissolved oxygen of autotrophs and heterotrophs were analyzed.It was found that full oxidation of ammonia and COD by autotrophs and heterotrophs occurred within 1.5 h.The heterotrophs accounted for major oxygen consumption than the autotrophs.The autotrophs were mainly located on the outer layer of granules,whereas the heterotrophs were present in the center of granules,or on the outer layer of granules.
     3.With the bioenergetic methodology established by McCarty,the microbial yield was predicted and the overall stoichiometrics for biological reactions involving the key chemical and biological species in activated sludge were established.The bioenergetic methodology was integrated with a modified activated sludge model No.1(ASM1) to formulate a new approach to analyze the activated sludge process, with the treatment of soybean-processing wastewater as an example.This approach was able to approximately describe the treatment of soybean wastewater by activated sludge in terms of the concentration dynamics of C_(16)H_(24)O_5N_4,CH_2O,cell(C_5H_7O_2N), H~+,NH_4~+,HCO_3~-and CO_2.
     4.The internal storage mechanisms and electron flows from the external substrate occurring in aerobic granule sludge were explored with extensive storage experiments under different initial conditions.The simultaneous growth and storage processes in aerobic granules were accurately modeled.Aerobic granules in an SBR were subjected to alternative feast and famine conditions,and were able to rapidly take up carbon substrate in wastewater and to store it as intracellular storage products when the substrate was in excess.After the depletion of the external substrate,the accumulated storage polymer was utilized for heterotrophic growth.
     5.The internal storage mechanisms in aerobic granule sludge under anoxic conditions were investigated with respirometric experimental results.Hydrolysis, simultaneous anoxic storage and growth,anoxic maintenance,and endogenous decay were found to be the main bioreaction processes governing the anoxic storage in the aerobic granules.Kinetic analysis of nitrate utilization rate(NUR) indicates that the NUR of granules-based denitrification process included four linear phases of nitrate reduction.Furthermore,the methodology for determining the most important parameter in anoxic storage,i.e.,anoxic reduction factor,was established based on an analysis of anoxic storage mechanisms.The performance of storage process in a granule-based denitrification system was accurately modeled.
     6.EPS produced by mixed microbial community were characterized using gel-permeating chromatography(GPC) and 3-dimensional excitation emission matrix (EEM) fluorescence spectroscopy measurement.The production of EPS,as well as its molecular weight(MW),depended on the external substrate utilization.The quantity of produced EPS increases significantly in the substrate utilization process.With the parallel factor analysis(PARAFAC) approach,two components of the polymer matrix are identified by the EEM analysis,one as proteins at Ex/Em 280/340 nm and one matrix associated as fulvic-acid-like substances at 320/400 nm.
     7.A novel and convenient approach to evaluate the EPS production kinetics was developed.The weighted least-squares analysis was employed to calculate approximate differences in EPS concentration between model predictions and experimental results.An iterative search routine in Monte Carlo simulation was utilized for optimizing the objective function by minimizing the sum of squared weighted errors.Parameters estimation results indicate that the kinetic coefficients of EPS production by activated sludge and their practical identifiability information could be obtained accurately and conveniently with this approach.Electrons from the external substrate were distributed in the following order:new biomass synthesis of 61%,oxygen for respiration of 21%,and EPS of 18%.
     8.The sub-fractions of the SMP,i.e.,utilization-associated products(UAP) and biomass-associated products(BAP),excreted by activated sludge were characterized in terms of formation sequence,MW and chemical natures,using MW and dissolved organic carbon(DOC) measurements,coupled with oxygen utilization rate determination,polysaccharide and protein measurement,3-dimensional EEM fluorescence spectroscopy and Fourier transform infrared spectroscopy(FTIR) analysis.The UAP,produced in the substrate utilization process,were found to be carbonaceous compounds with an MW lower than 290 kDa.The BAP were mainly cellular macromolecules with an MW in a range of 290-5000 kDa,and were further classified into the growth-associated BAP(GBAP) and the endogeny-associated BAP (EBAP).
     9.A new approach for determinating SMP,UAP and BAP and their production kinetics was established.A mathematical model was developed to further quantitatively and qualitatively describe the production kinetics and sub-fractionation of SMP.The objective functions of UAP and BAP were constructed based on the integrated substrate utilization equation.A spreadsheet program was utilized to optimize the objective function by minimizing the sum of squared weighted errors.In this way,the best estimations of the rate coefficientsμH,Ks and k_(B.(?)p) and the two yield coefficients for active bacteria(Y_H) and UAP(k_(UAP)) were determined.Furthermore, the relationships among the formation of the three sub-fractions of the SMP and the substrate utilization,as well as the SMP formation mechanisms,were elucidated.
     10.The formation of EPS,SMP and internal storage products(X_(STO)) in aerobic granular sludge was investigated using experimental and modeling approaches.An expanded unified model describing the production and the consumption of EPS,SMP, and X_(STO) was formulated after integrating the electron flows from the external substrate to EPS,SMP,and X_(STO).The effect of the sludge retention time(SRT) of the reactor on the formation of EPS,SMP,and X_(STO) in the aerobic granular sludge was analyzed.The new model could be used for process control and thus for the optimization of aerobic-granule-based reactors.
     11.The formation mechanism,component characterization,and mathematical modeling of the microbial products of autotrophs in the aerobic granular sludge were investigated systemically.The formation mechanism of EPS and SMP by autotrophs the nitrifying sludge was explored using EEM fluorescence spectroscopy and GPC measurement.The heterotrophic growth on the microbial products in the nitrifying sludge feeding with non-organic carbon source was also evaluated.The aerobic growth of the NOB occurred at the expense of nitrite as an electron donor and resulted in the production of new biomass,UAP,EPS,and nitrate.These autotrophic microbial products could be utilized as the sole electrons and carbon source for the heterotrophic growth in autotrophic systems.
     12.For the first time,aerobic granules with an excellent settling ability were cultivated in a pilot-scale SBR for the treatment of low-strength municipal wastewater. The key factors in the granulation of activated sludge grown on the low-strength municipal wastewater were identifed.Mathematical modeling of this pilot-scale granule-based reactor was successfully achieved.The granules had a diameter ranging from 0.2 to 0.8 mm and had good settling ability with a settling velocity of 18-40 m h~(-1).Three bacteria with rod,coccus and filament morphologies coexisted in the granules.The volume exchange ratio and settling time were found to be two key factors in the granulation of activated sludge grown on such a low-concentration wastewater in an SBR.
     13.The accelerating startup of anaerobic ammonium oxidation(ANAMMOX) process in an upflow anaerobic sludge blanket(UASB) reactor was achieved by seeding aerobic granules.The structure and physicochemical properties of the ANAMMOX granules and the reactor performance were characterized.Microbial community analysis was performed to reveal the composition and dynamics of the microbial consortium based on denaturing gradient gel electrophoresisanalysis and 16S rRNA genes amplified from the granular sludge.The obtained results demonstrate that aerobic granular sludge could be effectively used to inoculate ANAMMOX reactors.
引文
[1]Grady,C.P.L.Jr.,Daigger,G.T.,Lim,H.C.Biological Wastewater Treatment.Second Edition.USA:Marcel Dekker Inc.1999.
    [2]Metcalf and Eddy Inc.,著.秦裕珩译.废水工程处理与回用.第四版.北京:化学工业出版社.2004.
    [3]许保玖,龙腾锐.当代给水与废水处理原理.北京:高等教育出版社.2000.
    [4]Beun,J.J.,Hendriks,A.,van Loosdrecht,M.C.M.,Morgenroth,E.,Wilderer,P.A.,Heijnen,J.J.Aerobic granulation in a sequencing batch reactor.Water Res.1999,33,2283-2290.
    [5]竺建荣,刘纯新。好氧颗粒活性污泥的培养及理化特性研究。环境科学1999,20,38-41。
    [6]Liu,Y.,Yang,S.E,Tay,J.H.Elemental compositions and characteristics of aerobic granules cultivated at different substrate N/C ratios.Appl.Microbiol.Biotechnol.2003,61,556-561.
    [7]Yang,S.F.,Li,X.Y.,Yu,H.Q.Formation and characterization of fungal and bacterial granules under different feeding alkalinity and pH conditions.2008,43,8-14.
    [8]Ni,B.J.,Yu,H.Q.Modeling and simulation of the formation and utilization of microbial products in aerobic granular sludge.AIChE J.2009,in press.
    [9]Bathe,S.,de Kreuk,M.K.,McSwain,B.S.,Schwarzenbeck,N.(eds) 2005,Aerobic Granular Sludge IWA Publishing,LondonWater and Environmental Management Series(WEMS).
    [10]de Kreuk,M.K.,De Bruin,L.M.M.and van Loosdrecht,M.C.M.Aerobic granular sludge;from idea to pilot plant.In Aerobic Granular Sludge,Bathe,S.,De Kreuk,M.K.,Me Swain,B.S.and Schwarzenbeck,N.(eds),IWA,London,UK,5005,pp.111-123.
    [11]de Kreuk,M.K.,Kishida,N.,van Loosdrecht,M.C.M.Aerobic granular sludgestate of the art.Water Sci.Technol.2007,55,75-81.
    [12]Peng,D.,Bernet,N.,Delgenes,J.P.,Moletta,R.Aerobic granular sludge - a case report.Water Res.1999,33,890-893.
    [13]陈坚,王强,堵国成。好氧颗粒污泥的形成及其性质。无锡轻工大学学报2002,21,317-322。
    [14]Liu,Y.,Tay,J.H.The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge.Water Res.2002,36,1653-1665.
    [15]Tay,J.H.,Liu,Q.S.,Liu,Y.Shear force influences the structure of aerobic granules cultivated in sequencing batch reactor.5th International Conference on Biofilm Systems.Cape Town,South Africa.2003,14-19 September.
    [16]Qin,L.,Liu,Y.,Tay,J.H.Effect of settling time on aerobic granulation in sequencing batch reactor.Biochem.Eng.J.2004,21,47-52.
    [17]Beun,J.J.,van Loosdrecht,M.C.M.,Heijnen,J.J.Aerobic granulation in a sequencing batch airlift reactor.Water Res.2002,36,702-712.
    [18]Pan,S.,Tay,J.H.,He,Y.X.,Tay,S.T.L.The effect of hydraulic retention time on the stability of aerobically grown microbial granules.Lett.Appl.Microbiol.2004,38,158-163.
    [19]Liu,Y.,Tay,J.H.State of the art of biogranulation technology for wastewater treatment.Biotechnol.Adv.2004,22,533-563.
    [20]McSwain,B.S.,Irvine,R.L.,Hausner,M.,Wilderer,P.A.Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge.Appl.Environ.Microbiol.2005,71,1051-1057.
    [21]Adav,S.S.,Lee,D.J.,Lai,J.Y.Effects of aeration intensity on formation of phenol-fed aerobic granules and extracellular polymeric substances.Appl.Microbiol.Biotechnol.2007,77,175-182.
    [22]Adav,S.S.,Lee,D.J.,Ren,N.Q.Biodegradation of pyridine using aerobic granules in the presence of phenol.Water Res.2007,41,2903-2910
    [23]Chen,M.Y.,Lee,D.J.,Yang,Z.,Peng,X.F.Fluorescent staining for study of extracellular polymeric substances in membrane biofouling layers.Environ.Sci.Technol.2006,40,6642-6646.
    [24]Chen,M.Y.,Lee,D.J.,Tay,J.H.Distribution of extracellular polymeric substances in aerobic granules.Appl.Microbiol.Biotechnol.2007,73,1463-1469.
    [25]Chen,M.Y.,Lee,D.J.,Tay,J.H.Staining of extracellular polymeric substances and cells in bioaggregates.Appl.Microbiol.Biotechnol.2007,75,467-474.
    [26]Yang,Z.,Peng,X.F.,Chen,M.Y.,Lee,D.J.Intra-layer flow in fouling layer on membranes.J.Membrane Sci.2007,287,280-286.
    [27]Adav,S.S.,Lee,D.J.,Show,K.Y.,Tay,J.H.Aerobic granular sludge:Recent advances.Biotechnol.Adv.2008,26,411-423.
    [28]Liu,Y.,Yang,S.F.,Qin,L.,Tay,J.H.A thermodynamic interpretation of cell hydrophobicity in aerobic granulation.Appl.Microbiol.Biotechnol.2004,64,410-415.
    [29]Tay,J.H.,Liu,Q.S.,Liu,Y.The role of cellular polysaccharides in the formation and stability of aerobic granules.Letts.Appl.Microbiol.2001,33,222-226.
    [30]王强,陈坚,堵国成。选择压法培育好氧颗粒污泥的试验。环境科学2003,24,99-104。
    [31]王建龙,张子健,吴伟伟。好氧颗粒污泥的研究进展。环境科学学报2009,29,449-473。
    [32]Liu,Y.,Wang,Z.W.,Qin,L.,Liu,Y.Q.,Tay,J.H.Selection pressure-driven aerobic granulation in a sequencing batch reactor.Appl.Microbiol.Biotechnol.2005,67,26-32.
    [33]Tsuneda,S.,Ogiwara,M.,Ejiri,Y.,Hirata,A.High-Rate Nitrification Using Aerobic Granular Sludge.Water Sci.Technol.2006,53,147-154
    [34]Meyer,R.L.,Saunders,A.M.,Zeng,R.J.,Keller,J.,Blackall,L.L.Microscale structure and function of anaerobic-aerobic granules containing glycogen accumulating organisms.FEMS Mcrobiol.Ecology.2003,45,253-261
    [35]Weber,S.D.,Ludwig,W.,Schleifer,K.H.,Fried,J.Microbial Composition and Structure of Aerobic Granular Sewage Biofilms.Appl.Environ.Microbiol.2007,73,6233-6240
    [36]Kishida,N.,Kim,J.,Tsuneda,S.,Sudo,R.Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms.Water Res.2006,40,2303-2310.
    [37]Arrojo,B.,Mosquera-Corral,A.,Garrido,J.M.,Mendez,R.Aerobic granulation with industrial wastewater in sequencing batch reactors.Water Res.2004,38,3389-3399.
    [38]Jiang,H.L.,Tay,J.H.,Maszenana,M.,Tay,S.T.L.Bacterial Diversity and Function of Aerobic Granules Engineered in a Sequencing Batch Reactor for Phenol Degradation.Appl.Environ.Microbiol.2004,70,6767-6775.
    [39]Lemaire,R.,Yuan,Z.,Blackall,L.L.,Crocetti,G.R.Microbial distribution of Accumulibacter spp.and Competibacter spp.in aerobic granules from a lab-scale biological nutrient removal system.Environm.Microbiol.2008,10,354-363.
    [40]Adav,S.S.,Lee,D.J.,Tay,J.H.Activity and Structure of Stored Aerobic Granules.Environ.Technol.2007,28,1227-1235.
    [41]Morgenroth,E.,Sherden,T.,van Loosdrecht,M.C.M,Heijnen,J.J.,Wilderer,P.A.Aerobic granular sludge in a sequencing batch reactor.Water Res.1997,31,3191-3194.
    [42]Moy,B.Y.P.,Tay,J.H.,Toh,S.K.,Liu,Y.,Tay,S.T.L.High organic loading influences the physical characteristics of aerobic sludge granules.Lett.Appl.Microbiol.2002,34,407-412.
    [43]杨麒,李小明,曾光明,谢珊,刘精今。好氧颗粒污泥实现同步硝化反硝化。城市环境与城市生态2003,16,40-42。
    [44]白晓慧。利用好氧颗粒污泥实现同步硝化反硝化。中国给水排水2002,18,26-28。
    [45]阮文权,陈坚。同步脱氮好氧颗粒污泥的特性及其反应过程。中国环境科学2003,23,380-384。
    [46]阮文权,陈坚。同步硝化与反硝化(SND)好氧颗粒污泥脱氮过程初步研究。安全与环境学报2003,3,3-7。
    [47]谢珊,李小明,曾光明,杨国靖,杨麒。SBR系统中好氧颗粒污泥脱氮特性研究。中国环境科学2004,24,355-359。
    [48]Beun,J.J.,Heijnen,J.J.,van Loosdrecht,M.C.M.N-removal in a granular sludge sequencing batch airlift reactor.Biotechnol.Bioeng.2001,75,82-92.
    [49]Yang,S.F.,Tay,J.H.,Liu,Y.Respirometric activities of heterotrophic and nitrifying populations in aerobic granules developed at different substrate N/COD ratios.Curr.Microbiol.2004,49,42-46.
    [50]Lin,Y.M.,Liu,Y.,Tay,J.H.Development and characteristics of phosphorous-accumulating granules in sequencing batch reactor.Appl.Microbiol.Biotechnol.2003,62,430-435.
    [51]de Kreuk,M.K.,Heijnen,J.J.,van Loosdrecht,M.C.M.Simultaneous COD, nitrogen,and phosphate removal by aerobic granular sludge.Biotechnol.Bioeng.2005,90,761-769.
    [52]Salehizadeh,H.,van Loosdrecht,M.C.M.Production of polyhydroxyalkanoates by mixed culture:recent trends and biotechnological importance.Biotechnol.Adv.2004,22,261-279
    [53]Ni,B.J.,Yu,H.Q.A new kinetic approach to microbial storage process.Appl.Microbiol.Bioteclmol.2007,76,1431-1438.
    [54]Kessler,B.,Witholt,B.Factors involved in the regulatory network of polyhydroxyalkanoate metablism.J.Biotechnol.2001,86,97-104.
    [55]Anderson,A.J.,Dawes,E.A.Occurrence,metablism,metabolic role,and industrial uses of bacterial polyhydroxyalkanoate.Mcrobiol.Rev.1990,54,450-472.
    [56]Dowes,E.A.,Senior,P.J.The role and regulation of energy reserve polymers in microorganisms.Adv.Microb.Physiol.1973,10,135-226.
    [57]Sudesh,K.,Abe,H.,Doi,Y.Synthesis,structure and properties of polyhydroxyalkanoates:biological ployesters.Prog.Polym.Sci.2000,25,1503-1555.
    [58]Yan,Y.B.,Wu,Q.,Zhang,R.Q.Dynamic accumulation and degradation of poly(3-hydroxyalkanoate)s in living cells of Azotobacter vinelandii UMD characterized by 13C NMR.FEMS Microbiol.Lett.2000,193,269.
    [59]Ruiz,J.A.,L6pez,N.I.,Fern(?)ndez,R.O.,M(?)ndez,B.S.Polyhydroxyalkanoate Degradation Is Associated with Nucleotide Accumulation and Enhances Stress Resistance and Survival of Pseudomonas oleovorans in Natural Water Microcosms.Appl.Environ.Microbiol.2001,67,225-230.
    [60]Emeruwa,A.C.,Hawirko,R.Z.Poly-β- hydroxyalkanoate metablism during growth and sporulation of Clostridium botulinum.J.Bacteriol.1973,116,989-993.
    [61]胡林林,王建龙,文湘华,杨宁,钱易。SBR中厌氧颗粒污泥向好氧颗粒污泥的转化。环境科学2004,25,74-77。
    [62]史晓慧,刘芳,刘虹,竺建荣。进料负荷调控培养好氧颗粒污泥的试验研究。环境科学2007,28,1026-1032。
    [63]Irvine,R.L.,Ketchum,L.H.Sequencing batch reactors for biological wastewater treatment.Critical Rev.Environ.Control.1989,18,255-294.
    [64]Liu,H.,Fang,H.H.P.Extraction of extracellular polymeric substances(EPS) of sludges.J.Biotechnol.2002,95,249-256.
    [65]Wang,Z.P.,Liu,L.L.,Cai,W.M.Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors.Chemosphere.2006,63,1728-1735.
    [66]Jiang,H.L.,Tay,J.H.,Tay,S.T.L.Changes in structure,activity and metabolism of aerobic granules as a microbial response to high phenol loading.Appl.Microbiol.Biotechnol.2004,63,602-608.
    [67]Adav,S.S.,Lee,D.J.,Tay,J.H.Extracellular polymeric substances and structural stability of aerobic granule.Water Res.2008,42,1644-1650.
    [68]Liu,Y.Q.,Liu,Y.,Tay,J.H.The effects of extracellular polymeric substances on the formation and stability of biogranules.Appl.Microbiol.Biotechnol.2004,65,143-148.
    [69]Wang,Z.W.,Liu,Y.,Tay,J.H.The role of SBR mixed liquor volume exchange ratio in aerobic granulation.Chemosphere.2006,62,767-771.
    [70]Su,K.Z.,Yu,H.Q.Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater.Environ.Sci.Technol.2005,39,2818-2827.
    [71]Tay,J.H.,Liu,Q.S.,Liu,Y.The effects of shear force on the formation,structure and metabolism of aerobic granules.Appl.Microbiol.Biotechnol.2001,57,227-233.
    [72]Tay,J.H.,Yang,S.F.,Liu,Y.Hydraulic selection pressure-induced nitrifying granulation in sequencing batch reactors.Appl.Microbiol.Biotechnol.2002,59,332-337.
    [73]Qin,L.,Tay,J.H.,Liu,Y.Selection pressure is a driving force of aerobic granulation in sequencing batch reactors.Process Biochem.2004,39,579-584.
    [74]de Silva,D.G.V.,Rittmann,B.E.Interpreting the response to loading changes in a mixed-culture completely stirred tank reactor.Water Environ.Res.2000,72,566-573.
    [75]de Silva,D.G.V.,Rittmann,B.E.Nonsteady-state modeling of multispecies activated-sludge processes.Water Environ.Res.2000,72,554-565.
    [76]Laspidou,C.S.,Rittmann,B.E.A unified theory for extracellular polymeric substances,soluble microbial products,and active and inert biomass.Water Res.2002,36,2711-2720.
    [77]Laspidou,C.S.,Rittmann,B.E.Non-steady state modeling of extracellular polymeric substances,soluble microbial products,and active and inert biomass.Water Res.2002,36,1983-1992.
    [78]Laspidou,C.S.,Rittmann,B.E.A model for membrane bioreactor process based on the concept of formation and degradation of soluble microbial products.Water Res.,2001,35,2038-2048.
    [79]Kindaichi,T.,Ito,T.,Okabe,S.Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization.Appl.Environ.Microbiol.2004,70,1641-1650.
    [80]Aquino,S.F.,Stuckey,D.C.Production of soluble microbial products (SMP) in anaerobic chemostats under nutrient deficiency.J.Environ.Engin.2003,129,1007-1014.
    [81]Chudoba,J.Quantitative estimation in COD units of reflectory organic compounds produced by activated sludge microorganisms.Water Res.1985,19,37-43.
    [82]Barker,D.J.,Stuckey.D.C.A review of soluble microbial products (SMP) in wastewater treatment systems.Water Res.1999,33,3063-3082.
    [83]Gaudy,A.F.Jr.,Blachly,J.R.A study of t he biodegradability of residual COD.Proc.39th Purdue industrial waste conf.Indiana:W.Lafayette,1984.
    [84]Barker,D.J.,Stuckey,D.C.Modeling of soluble microbial products in anaerobic digestion:The effect of feed strength and composition.Water Environ.Res.2001,73,173-184.
    [85]Barker,D.J.,Mannucchi,G.A.,Salvi,S.M.L.,Stuckey,D.C.Characterisation of soluble residual chemical oxygen demand(COD) in anaerobic wastewater treatment effluents.Water Res.1999,33,2499-2510.
    [86]Pribyl,M.,Tucek,F.,Wilderer,P.A.,Wanner,J.Amount and nature of soluble refractory organics produced by activated sludge microorganisms in sequencing batch and continuous flow reactors.Water Sci.Technol.1997,35,27-34.
    [87]Boero,V.J.,Bowers,A.R.,Eckenfelder,Jr.W.W.Molecular weight distribution of soluble microbial products in biological systems.Water Sci.Technol.1996,34:241-248.
    [88]国际水协废水生物处理设计与运行数学模型课题组著,张亚雷,李咏梅译。活性污泥数学模型。同济大学出版社。上海,2002.3。
    [89]Henze,M.,Grady,C.P.L.J.,Gujer,W.,Marais,G.V.R.,Matsuo,T.1987.Activated sludge model No.1.Scientific and Technical Report No.1,IAWPRC.
    [90]Gujer,W.,Henze,M.,Mino,T.,van Loosdrecht,M.C.M.Activated sludge model No.3.Water Sci.Technol.1999,39,183-193.
    [1]Beun,J.J.,Hendriks,A.,van Loosdrecht,M.C.M.,Morgenroth,E.,Wilderer,P.A., Heijnen,J.J.Aerobic granulation in a sequencing batch reactor.Water Res.1999,33,2283-2290.
    [2]de Kreuk,M.K.,Heijnen,J.J.,van Loosdrecht,M.C.M.Simultaneous COD,nitrogen,and phosphate removal by aerobic granular sludge.Biotechnol.Bioeng.2005,90,761-769.
    [3]Jiang,H.L.,Tay,J.H.,Tay,S.T.L.Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol.Lett.Appl.Microbiol.2002,35,439-445.
    [4]Morgenroth,E.,Sherden,T.,van Loosdrecht,M.C.M.,Heijnen,J.J.,Wilderer,P.A.Aerobic granular sludge in a sequencing batch reactor.Water Res.1997,31,3191-3194.
    [5]Su,K.Z.,Yu,H.Q.Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater.Environ.Sci.Technol.2005,39,2818-2827.
    [6]Tay,J.H.,Liu,Q.S.,Liu,Y.The effects of shear force on the formation,structure and metabolism of aerobic granules.Appl.Microbiol.Biotechnol.2001,57,227-233.
    [7]Liu Y,Tay J.H.State of the art of biogranulation technology for wastewater treatment.Biotechnol.Adv.2004,22,533-563.
    [8]Mu,Y.,Yu,H.Q.Biological hydrogen production in a UASB reactor with granules I:Physicochemical characteristics of hydrogen-producing granules.Biotechnol.Bioeng.2006,94,980-987.
    [9]Araya-Kroff,P.,Amaral,A.L.,Neves,L.,Ferreira,E.C.,Pons,M.N.,Mota,M.,Alves,M.M.Development of image analysis techniques as a tool to detect and quantify morphological changes in anaerobic sludge:I.Application to a granulation process.Biotechnol.Bioeng.2004,87,184-193.
    [10]Grimm,L.H.,Kelly,S.,Gobel,A.,Krull,R.,Hempel,D.C.Kinetic studies on the aggregation of aspergillus niger conidia.Biotechnol.Bioeng.2004,87,213-218.
    [11]APHA,1995.Standard Methods for the Examination of Water and Wastewater.19~(th) ed.American Public Health Association,Washington,DC.
    [12]Yang,S.F.,Liu,Q.S.,Tay,J.H.,Liu,Y.Growth kinetics of aerobic granules developed in sequencing batch reactors.Lett.Appl.Microbiol.2004,38,106-112.
    [13]Wanner,O.,Reichert,P.Mathematical modeling of mixed-culture biofilms.Biotechnol.Bioeng.1996.,49,172-184.
    [14]Karahan,O.,van Loosdrecht,M.C.M.,Orhon,D.Modeling the utilization of starch by activated sludge for simultaneous substrate storage and microbial growth.Biotechnol.Bioeng.2006,94,43-53.
    [15]Su,K.Z.,Yu,H.Q.Gas holdup and oxygen transfer in an aerobic granule-based sequencing batch reactor.Biochem.Eng.J.2005,25,201-207.
    [16]Nicolella,C,van Loosdrecht,M.C.M.,Heijnen,J.J.Mass transfer and reaction in a biofilm airlift suspension reactor.Chem.Eng.Sci.1998,53,2743-2753.
    [17]Reichert,P.,1998.Aquasim 2.0-User Manual,Computer Program for the Identification and Simulation of Aquatic Systems;EAWAG:Dübendorf, Switzerland (ISBN 3 906484 16 5).
    [18]Wu,M.M.,Criddle,C.S.,Hickey,R.F.Mass transfer and temperature effects on substrate utilization in brewery granules.Biotechnol.Bioeng.1995,46,465-475.
    [19]Karahan,0.,Artan,N.,Orhon,D.,Henze,M.,van Loosdrecht,M.C.M.Experimental assessment of bacterial storage yield.J.Environ.Eng.2002,128,1030-1035.
    [20]Henze,M.,Grady,C.P.L.Jr.,Gujer,W.,Marais,G.V.R.,Matsuo,T.,1987.Activated sludge model No.1.Scientific and Technical Report No.1,IAWPRC,London.
    [21]Avcioglu,E.,Karahan,G.,Orhon,D.Estimation of stoichiometric and kinetic coefficients of ASM3 under aerobic and anoxic conditions via respirometry.Water Sci.Technol.2003,48,185-194.
    [22]Gujer,W,Henze,M.,Mino,T.,van Loosdrecht,M.C.M.Activated sludge model NO.3.Water Sci.Technol.1999,39,183-193.
    [23]Horn,H.,Neu,T.R.,Wulkow,M.Modelling the structure and function of extracellular polymeric substances in biofilms with new numerical techniques.Water Sci.Technol.2001,43,121-127.
    [24]Beun,J.J,Heijnen,J.J,van Loosdrecht,M.C.M.N-removal in a granular sludge sequencing batch airlift reactor.Biotechnol.Bioeng.2001,75,82-92.
    [1]Jiang,H.L.,Tay,J.H.,Tay,S.T.L.Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol.Lett.Appl.Microbiol.2002,35,439-445.
    [2]Beun,J.J.,Heijnen,J.J.,van Loosdrecht,M.C.M.N-removal in a granular sludge sequencing batch airlift reactor.Biotechnol.Bioeng.2001,75,82-92.
    [3]Grady,Jr,C.P.L.,Glen,T.D.,Henry,C.L.,1999.Biological wastewater treatment:Second edition,Marcel Dekker,Inc.
    [4]de Kreuk,M.K.,Heijnen,J.J.,van Loosdrecht,M.C.M.Simultaneous COD,nitrogen,and phosphate removal by aerobic granular sludge.Biotechnol.Bioeng.2005,90,761-769.
    [5]de Kreuk,M.K.,Picioreanu,C.,Hosseini,M.,Xavier,J.B.,van Loosdrecht,M.C.M.Kinetic model of a granular sludge SBR- Influences on nutrient removal.Biotechnol.Bioeng.2007,97,801-815.
    [6]Arrojo,B.,Mosquera-Corral,A.,Garrido,J.M.,Mendez,R.Aerobic granulation with industrial wastewater in sequencing batch reactors.Water Res.2004,38,3389-3399.
    [7]Mu,Y.,Yu,H.Q.Biological hydrogen production in a UASB reactor with granules Ⅰ:Physicochemical characteristics of hydrogen-producing granules.Biotechnol.Bioeng.2006,94,980-987.
    [8]Henze,M.,Grady,C.P.L.,Gujer,W.,Marais,G.V.R.,Matsuo,T.,1987.Activated Sludge Model No,1,vol.1.IAWPRC,London.
    [9]Gujer,W.,Henze,M.,Mino,T.,van Loosdrecht,M.C.M.Activated sludge model NO.3.Water Sci.Technol.1999,39,183-193.
    [10]APHA,Standard Methods for the Examination of Water and Wastewater.19~(th) ed.1995.American Public Health Association,Washington,DC.
    [11]Pratt,S.,Yuan,Z.,Keller,J.Modelling aerobic carbon oxidation and storage by integrating respirometric,titrimetric,and off-gas CO_2 measurements.Biotechnol.Bioeng.2004,88,135-147.
    [12]Reichert,P.,1998.AQUASIM 2.0--User Manual,Computer Program for the Identification and Simulation of Aquatic Systems.Swiss Federal Institute for Environmental Science and Technology(EAWAG).
    [13]Moussa,M.S.,Hooijmans,C.M.,Lubberding,H.J.,Gijzen,H.J.,van Loosdrecht,M.C.M.Modelling nitrification,heterotrophic growth and predation in activated sludge.Water Res.2005,39,5080-5098.
    [14]Krishna,C.,van Loosdrecht,M.C.M.Substrate flux into storage and growth in relation to activated sludge modelling.Water Res.1999,33,3149-3161.
    [15]Su,K.Z,Yu,H.Q.Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater.Environ.Sci. Technol.2005,39,2818-2827.
    [16]Su,K..Z,Yu,H.Q.A generalized model for aerobic granule-based sequencing batch reactor.1.Model development.Environ.Sci.Technol.2006,40,4703-4708.
    [17]Gujer,W.,Larsen,T.A.The implementation of biokinetics and conservation principles in ASIM.Water Sci.Technol.1995,31,257-266.
    [18]Insel,G.,Celikyilmaz,G.,Ucisik-Akkaya,E.,Yesiladali,K.,Cakar,Z.P.,Tamerler,C,Orhon,D.Respirometric evaluation and modeling of glucose utilization by Escherichia coli under aerobic and mesophilic cultivation conditions.Biotechnol.Bioeng.2007,96,94-105.
    [19]Nicolella,C,van Loosdrecht,M.C.M.,Heijnen,J.J.Mass transfer and reaction in a biofilm airlift suspension reactor.Chem.Eng.Sci.1998,53,2743-2753.
    [20]Jubany,I.,Baeza,J.A.,Carrera,J.,Lafuente,J.Respirometric calibration and validation of a biological nitrite oxidation model including biomass growth and substrate inhibition.Water Res.2005,39,4574-4584.
    [21]Xu,S.L.,Hultman,B.Experiences in wastewater characterization and model calibration for the activated sludge process.Water Sci.Technol.1996,33,89-98.
    [22]Sin,G.,Guisasola,A.,De Pauw,D.J.W.,Baeza,J.A.,Carrera,J.,Vanrolleghem,P.A.A.new approach for modelling simultaneous storage and growth processes for activated sludge systems under aerobic conditions.Biotechnol.Bioeng.2005,92,600-613.
    [23]Mosquera-Corral,A.,de Kreuk,M.K.,Heijnen,J.J.,van Loosdrecht,M.C.M.Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor.Water Res.2005,39,2676-2686.
    [24]Liu,Y.,Yang,S.F.,Tay,J.H.Elemental compositions and characteristics of aerobic granules cultivated at different substrate N/C ratios.Appl.Microbiol.Biotechnol.2003,61,556-561.
    [25]van Benthum,W.A.J.,van Loosdrecht,M.C.M.,Heijnen,J.J.Control of heterotrophic layer formation on nitrifying biofilms in a biofilm airlift suspension reactor.Biotechnol.Bioeng.1997,53,397-405.
    [1]van Briesen,J.M.,Rittmann,B.E.Mathematical description of microbiological reactions involving intermediates.Biotechnol.Bioeng.2000,67,35-52.
    [2]Keesman,K.J.,Spanjers,H.,van Straten,G.Analysis of endogenous process behavior in activated sludge.Biotechnol.Bioeng.1998,57,155-163.
    [3]Grady,C.P.L.Jr.,Glen,T.D.,Henry,C.L.Biological wastewater treatment:Second edition,Marcel Dekker,Inc,1999.
    [4]Keesman,K.J.,Spanjers,H.Endogenous model state and parameter estimation from an extensive batch experiment.Biotechnol.Bioeng.2000,68,422-429.
    [5]Smets,I.Y.,Haegebaert,J.V.,Carrette,R.,van Impe,J.F.Linearization of the activated sludge model ASM1 for fast and reliable predictions.Water Res.2003,37,1831-1851.
    [6]Su,K.Z.,Yu,H.Q.A generalized model for aerobic granule-based sequencing batch reactor.1.Model development.Environ.Sci.Technol.2006,40,4703-4708.
    [7]Henze,M.,Gujer,W.,Mino,T.,van Loosdrecht,M.C.M.Activated Sludge Models ASM1,ASM2,ASM2d,and ASM3.IWA Scientific and Technical Report No.9.IWA Publishing,London,UK,2000.
    [8]Droste,R.L.Endogenous decay and bioenergetics theory for aerobic wastewater treatment.Water Res.1998,32,410-418.
    [9]McCarty,P.L.Energetics and bacterial growth.In:Faust SD,Hunter JV,editors.Organic compounds in aquatic environments.New York:Marcel Dekker,1971.
    [10]McCarty,P.L.Energetics and bacterial growth.The Fifth Rudolf Research Conference;2;Rutgers.The State University,New Bruswick,USA,1969.
    [11]McCarty,P.L.Stoichiometry of biological reactions.Paper presented at the International Conference toward a Unified Concept of Biological Waste Treatment Design,Atlanta,USA,1972.
    [12]McCarty,P.L.Thermodynamics of biological synthesis and growth.In:Baers J,editor.Advances in Water Pollution Research:Proceedings of the 2nd International Conference on Water Pollution Research.Oxford,England:Pergamon Press,Inc.1965,169-199.
    [13]Dubois,M.,Gilles,K.A.,Hamilton,J.K.,Rebers,P.A.,Smith,F.Colorimetric method for determination sugars and related substance.Anal.Chem.1956;28:350-356.
    [14]Lowry,O.H.,Farr,A.L.,Randall,R.J.Protein measurement with the folin phenol reagent.J.Biol.Chem.1951,193,265-275.
    [15]APHA.Standard Methods for the Examination of Water and Wastewater,19~(th) ed.;American Public Health Association:Washington,DC,1995.
    [16]Rittmann,B.E.,McCarty,P.L.Environmental biotechnology:Principles and applications.New York:McGraw-Hill.754 p,2001.
    [17]Heijnen,J.J.,van Loosdrecht,M.C.M.,Tijhuis,L.A black box mathematical model to calculate auto-and heterotrophic biomass yields based on Gibbs energy dissipation.Biotechnol.Bioeng.1992,40,1139-1154.
    [18]Xiao,J.H.,van Briesen,J.M.Expanded thermodynamic model for microbial true yield prediction.Biotechnol.Bioeng.2006,93,110-121.
    [19]McCarty,P.L.Thermodynamic electron equivalents model for bacterial yield prediction:Modifications and comparative evaluations.Biotechnol.Bioeng. 2007,97,377-388.
    [20]Henze,M.,Grady,C.P.L.Jr.,Gujer,W.,Marais,G.V.R.,Matsuo,T.Activated sludge model No.1.Scientific and Technical Report No.1,IAWPRC,London,1987.
    [21]Christensen,D.R.,McCarty,P.L.Multi-process biological treatment model.J.Water Pollution Control Federation 1975,47,2652-2664.
    [1]Schwarzenbeck,N.,Erley,R.,McSwain,B.S.,Wilderer,P.A.,Irvine,R.L.Treatment of malting wastewater in a granular sludge sequencing batch reactor (SBR).Acta Hydrochim.Hydrobiol.2004,32,16-24.
    [2]Su,K.Z.,Yu,H.Q.Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean processing wastewater.Environ.Sci.Technol.2005,39,2818-2827.
    [3]Arrojo,B.,Mosquera-Corral,A.,Garrido,J.M.,Mendez,R.Aerobic granulation with industrial wastewater in sequencing batch reactors.Water Res.2004,38,3389-3399.
    [4]Tay,S.T.L.,Zhang,W.Q.,Tay,J.H.Start-up,microbial community analysis and formation of aerobic granules in a tert-butyl alcohol degrading sequencing batch reactor.Environ.Sci.Technol.2005,39,5774-5780.
    [5]Yi,S.,Zhang,W.Q.,Wu,B.,Tay,S.T.L.,Tay,J.H.Biodegradation of p-nitrophenol by aerobic granules in a sequencing batch reactor.Environ.Sci.Technol.2006,40,2396-2401.
    [6]Jiang,H.L.,Tay,J.H.,Maszenan,A.M.,Tay,S.T.L.Enhanced phenol biodegradation and aerobic granulation by two coaggregating bacterial strains.Environ.Sci.Technol.2006,40,6137-6142.
    [7]de Kreuk,M.K.,van Loosdrecht,M.C.M.Formation of aerobic granules with domestic sewage.J.Environ.Eng.2006,132,694-697.
    [8]Dircks,K.,Pind,P.F.,Mosbaek,H.,Henze,M.Yield determination by respirometry:The possible influence of storage under aerobic conditions in activated sludge.Water SA 1999,25,69-74.
    [9]Majone,M.,Dircks,K.,Beun,J.J.Aerobic storage under dynamic conditions in activated sludge processes-The state of the art.Water Sci.Technol.1999,39,61-73.
    [10]Krishna,C,van Loosdrecht,M.C.M.Substrate flux into storage and growth in relation to activated sludge modelling.Water Res.1999,33,3149-3161.
    [11]Carucci,A.,Dionisi,D.,Majone,M.,Rolle,E.,Smurra,P.Aerobic storage by activated sludge on real wastewater.Water Res.2001,35,3833-3844.
    [12]Pratt,S.,Yuan,Z.,Keller,J.Modelling aerobic carbon oxidation and storage by integrating respirometric,titrimetric,and off-gas CO_2 measurements.Biotechnol.Bioeng.2004,88,135-147.
    [13]Sin,G.,Guisasola,A.,De Pauw,D.J.W.,Baeza,J.A.,Carrera,J.,Vanrolleghem,P.A.A new approach for modelling simultaneous storage and growth processes for activated sludge systems under aerobic conditions.Biotechnol.Bioeng.2005,92,600-613.
    [14]Beun,J.J.;Heijnen,J.J.;van Loosdrecht,M.C.M.N-removal in a granular sludge sequencing batch airlift reactor.Biotechnol.Bioeng.2001,75,82-92.
    [15]Su,K.Z.,Yu,H.Q.A generalized model for aerobic granule-based sequencing batch reactor.1.Model development.Environ.Sci.Technol.2006,40,4703-4708.
    [16]Beun,J.J.,Verhoef,E.V.,van Loosdrecht,M.C.M.,Heijnen,J.J.Stoichiometry and kinetics of poly-0 hydroxybutyrate metabolism under denitrifying conditions in activated sludge culture.Biotechnol.Bioeng.2000,68,496-507.
    [17]Dionisi,D.,Majone,M.,Ramadori,R.,Beccari,M.The storage of acetate under anoxic conditions.Water Res.2001,35,2661-2668.
    [18]van Loosdrecht,M.C.M.,Pot,M.A.,Heijnen,J.J.Importance of bacterial storage polymers in bioprocesses.Water Sci.Technol.1997,35,41-47.
    [19]Karahan,O.,Artan,N.,Orhon,D.,Henze,M.,van Loosdrecht,M.C.M.Experimental assessment of bacterial storage yield.J.Environ.Eng.2002,128,1030-1035.
    [20]Henze,M.,Grady,C.P.L.Jr.,Gujer,W.,Marais,G.V.R.,Matsuo,T.Activated sludge model No.1.Scientific and Technical Report No.1,1987,IAWPRC, London.
    [21]Avcioglu,E.,Karahan-Gulo,O.,Orhon,D.Estimation of stoichiometric and kinetic coefficients of ASM3 under aerobic and anoxic conditions via respirometry.Water Sci.Technol.2003,48,185-194.
    [22]APHA,Standard Methods for the Examination of Water and Wastewater.19~(th) ed.1995.American Public Health Association,Washington,DC.
    [23]Reichert,P.AQUASIM 2.0—User Manual,Computer Program for the Identification and Simulation of Aquatic Systems.Swiss Federal Institute for Environmental Science and Technology (EAWAG),1998.
    [24]Wanner,O.,Reichert,P.Mathematical modelling of mixed-culture bioflms.Biotechnol.Bioeng.1996,49,172-184.
    [25]Gujer,W,Henze,M.,Mino,T.,van Loosdrecht,M.C.M.Activated sludge model NO.3.Water Sci.Technol.1999,39,183-193.
    [26]Karahan,O.,van Loosdrecht,M.C.M.,Orhon,D.Modeling the utilization of starch by activated sludge for simultaneous substrate storage and microbial growth.Biotechnol.Bioeng.2006,94,43-53.
    [27]Karahan,O.,Martins,M.,Orhon,D.,van Loosdrecht,M.C.M.Experimental evaluation of starch utilization mechanism by activated sludge.Biotechnol.Bioeng.2006,93,964-970.
    [28]Hao,X.D.,Heijnen,J.J.,van Loosdrecht,M.C.M.Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (CANON) process.Biotechnol.Bioeng.2002,77,266-277.
    [29]Wik,T.Adsorption and denitrification in nitrifying trickling filters.Water Res.1999,33,1500-1508.
    [30]Abasaeed,A.E.Sensitivity analysis on a sequencing batch reactor model.Ⅰ.Effect of kinetic parameters.J.Chem.Technol.Biotechnol.1997,70,379-383.
    [31]Abasaeed,A.E.Sensitivity analysis on a sequencing batch reactor model.Ⅱ:Effect of stoichiometric and operating parameters.J.Chem.Technol.Biotechnol.1999,74,451-455.
    [32]Shahalam,A.B.,Elsamra,R.,Ayoub,G.M.,Acra,A.Parametric sensitivity of comprehensive model of aerobic fluidized-bed biofilm process.J.Environ.Eng.-ASCE 1996,122,1085-1093.
    [33]Flora,E.M.C.V.,Suidan,M.T.,Flora,J.R.V.,Kim,B.J.Speciation and chemical interactions in nitrifying biofilms.I:Model development.J.Environ.Eng.-ASCE 1999,125,871-877.
    [34]Xu,S.L.,Hultman,B.Experiences in wastewater characterization and model calibration for the activated sludge process.Water Sci.Technol.1996,33,89-98.
    [35]Karahan,O.,van Loosdrecht,M.C.M.,Orhon,D.Modification of Activated Sludge NO.3 considering direct growth on primary substrate.Water Sci.Technol.2003,47,219-225.
    [36]Almeida,J.S.,Reis,M.A.M.,Carrondo,M.J.T.Competition between nitrate and nitrite reduction in denitrification by Pseudomonas Fluorescens.Biotechnol.Bioeng.1995,46,476-484.
    [37]Thomsen,J.K.,Geest,T.,Cox,R.P.Mass Spectrometric studies of the effect of pH on the accumulation of intermediates in denitrification by Paracoccus denitrificans.Appl.Environ.Microbiol.1994,60,536-541.
    [38]Oh,J.,Silverstein,J.Acetate limitation and nitrite accumulation during denitrification.J.Environ.Eng.1999,125,234-242.
    [39]Sozen,S.,Cokgor,E.U.,Orhon,D.,Henze,M.Respirometric analysis of activated sludge behaviour-Ⅱ.Heterotrophic growth under aerobic and anoxic conditions.Water Res.1998,32,476-488.
    [40]Kujawa,K.,Klapwijk,B.A method to estimate denitrification potential for predenitrification systems using NUR test.Water Res.1999,33,2291-2300.
    [41]Cokgor,E.U.,Sozen,S.,Orhon,D.,Henze,M.Respirometric analysis of activated sludge behaviour-1.Assessment of the readily biodegradable substrate.Water Res.1998,32,461-475.
    [42]Dircks,K.,Henze,M,van Loosdrecht,M.C.M.,Mosbaek,H.,Aspegren,H.Storage and degradation of poly-B-hydroxybutyrate in activated sludge under aerobic conditions.Water Res.2001,35,2277-2285.
    [43]Sin,G 2004.Systematic calibration of activated sludge model.Thesis for the degree of Doctor (Ph.D) in Applied Biological Sciences:Environmental Technology.Ghent university.
    [44]Wild,D.,Kisliakova,A.,Siegrist,H.P-fixation by Mg,Ca and zeolite A during stabilization of excess sludge from enhanced biological P-removal.Water Sci.Technol.1996,34,391-398.
    [45]Sozen,S.,Orhon,D.The effect of nitrite correction on the evaluation of the rate of nitrate utilization under anoxic conditions.J.Chem.Technol.Biotechnol.1999,74,790-800.
    [46]Malisse,K.2002.Monitoring van de denitrificatie in actief slib aan de hand van nitraat-en titrimetrische gegevens.Engineers Thesis.Faculty of Agricultural and Applied Biological Sciences.Ghent University.(In Dutch).
    [47]Wilderer,P.A.,Warren,L.J.,Dau,U.Competition in denitrification systems affecting reduction rate and accumulation of nitrite.Water Res.1987,21,239-245.
    [48]Orhon,D.,Soen,S.,Artan,N.The effect of heterotrophic yield on assessment of the correction factor for the anoxic growth.Water Sci.Technol.1996,34,67-74.
    [1]Frolund.B.,Palmgren,R.,Keiding,K.,Nielsen,P.H.Extraction of extracellular polymers from activated sludge using a cation exchange resin.Water Res.1996,30,1749-1758.
    [2]Wingender,J.,Neu,T.R.,Flemming,H.C.1999.Microbial extracellular polymeric substances:characterization,structures and function.Springer-Verlag,Berlin Heidelberg.
    [3]Flemming,H.C.,Wingender,J.Relevance of microbial extracellular polymeric substances(EPSs) - Part Ⅰ:structural and ecological aspects.Water Sci.Technol.2001,43,1-8.
    [4]Hsieh,K.M.,Murgel,G.A.,Lion,L.W.,Shuler,M.L.Interactions of microbial biofilms with toxic trace metals:2.Prediction and verification of an integrated computer model of lead(Ⅱ) distribution in the presence of microbial activity.Biotechnol.Bioeng.1994,44,232-239
    [5]Horn,H.,Neu,T.R.,Wulkow,M.Modelling the structure and function of extracellular polymeric substances in biofilms with new numerical techniques.Water Sci.Technol.2001,43,121-127.
    [6]Frolund,B.,Keiding,K.,Implementation of an HPLC polystyrene divinylbenzene column for separation of activated sludge exopolymers.Appl.Microbiol.Biotechnol.1994,4,708-716.
    [7]Gorner,T.,de Donato,P.,Ameil,M-H.,Montarges-Pelletier,E.,Lartiges,B.S.,Activated sludge exopolymers:separation and identification using size exclusion chromatography and infrared micro-spectroscopy.Water Res.2007,37,2388-2393.
    [8]Garnier,Ch.,Gomer,T.,Guinot-Thomas,P.,Chappe,P.,de Donato,P.Exopolymeric production by bacterial strains isolated from activated sludge of paper industry.Water Res.2006,40,3115-3122.
    [9]Gaudy,A.F.Colorimetric determination of protein and carbohydrate.Indust.Water Wastes 1962,7,17-22.
    [10]Raunkjaer,K.,Hvitved-Jacobsen,T.,Nielsen,P.H.Measurement of pools of protein,carbohydrate and lipid in domestic wastewater.Water Res.1994,28,251-261.
    [11]Frolund,B.,Griebe,T.,Nielsen,P.H.Enzymatic activity in the activated-sludge floe matrix.Appl.Microbiol.Biotechnol.1995,43,755-761.
    [12]APHA,1995.Standard Methods for the Examination of Water and Wastewater,19~(th) ed.,American Public Health Association,New York.
    [13]Bro,R.PARAFAC.Tutorial and applications.Chemo.Intell.Lab.Syst.1997,38, 149-171.
    [14]Harrison,D.E.F.,Chance,B.Fluorometric technique for monitoring changes in the level of reduced nicotinamide nucleotides in continuous culture of microorganisms.Appl.Microbiol.1970,19,446-449.
    [15]Mikkelsen,L.H.,Nielsen,P.H.Quantification of the bond energy of bacteria attached to activated sludge floe surfaces.Water Sci.Technol.2001,43,67-75.
    [16]Laspidou,CD.,Rittmann,B.E.A unified theory for extracellular polymeric substances,soluble microbial products,and active and inert biomass.Water Res.2002,36,2711-2720.
    [17]Laspidou,C.S.,Rittmann,B.E.Non-steady state modeling of extracellular polymeric substances,soluble microbial products,and active and inert biomass.Water Res.2002,36,1983-1992.
    [18]Aquino,S.F.,Stuckey,D.C.Integrated model of the production of soluble microbial products (SMP) and extracellular polymeric substances (EPS) in anaerobic chemostats during transient conditions.Biochem.Eng.J.2008,38,138-146.
    [19]Kreft,J.U.,Wimpenny,J.W.T.Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth.Water Sci.Technol.2001,43,135-141.
    [20]Goovaerts,P.,Semrau,J.,Lontoh,S.Monte Carlo analysis of uncertainty attached to microbial pollutant degradation rates.Environ.Sci.Technol.2001,35,3924-3930.
    [21]Miller,S.A.,Landis,A.E.,Theis,T.L.Use of Monte Carlo analysis to characterize nitrogen fluxes in agroecosystems.Environ.Sci.Technol.2006,40,2324-2332.
    [22]Huijbregts,M.A.J.,Gilijamse,W.,Ragas,A.M.J.,Reijnders,L.Evaluating uncertainty in environmental life-cycle assessment.A case study comparing two insulation options for a Dutch one-family dwelling.Environ.Sci.Technol.2003,37,2600-2608.
    [23]Luo,J.,Farrell,J.Examination of hydrophobic contaminant adsorption in mineral micropores with grand canonical Monte Carlo simulations.Environ.Sci.Technol.2003,37,1775-1782.
    [24]Kohonen,T.,Oja,E.,Simula,O.,Visa,A.,Kangas,J.Engineering applications of the self organizing map.Proceedings IEEE 1996,84,1358-1384.
    [25]Alhoniemi,E.,Hollmen,J.,Simula,O.,Vesanto,J.Process monitoring and modeling using the self-organizing map.Integrated Computer-Aided Engin.1999,6,3-14.
    [26]Kommedal,R.,Bakke,R.,Dockery,J.,Stoodley,P.Modelling production of extracellular polymeric substances in a Pseudomonas aeruginosa chemostat culture.Water Sci.Technol.2001,43,129-134.
    [27]Ni,B.J.,Fang,F.,Xie,W.M.,Sun,M.,Sheng,GR,Li,W.H.,Yu,H.Q.Characterization of extracellular polymeric substances produced by mixed microorganisms in activated sludge with gel-permeating chromatography,excitation emission matrix fluorescence spectroscopy measurement and kinetic modeling.Water Res.2009,doi:10.1016/j.watres.2008.12.004.
    [28]Laspidou,C.S.,Rittmann,B.E.Evaluating trends in biofilm densityusing the UMCCA model.Water Res.2004,38,3362-3372.
    [29]Sin,G.,Guisasola,A.,de Pauw,D.J.W.,Baeza,J.A.,Carrera,J.,Vanrolleghem,P.A.A new approach for modelling simultaneous storage and growth processes for activated sludge systems under aerobic conditions.Biotechnol.Bioeng.2005,92,600-613.
    [30]Hsieh,K.M.,Murgel,G.A.,Lion,L.W.,Schuller,M.L.Interactions of microbial biofilms with toxic trace metals 1.Observation and modeling of cell growth,attachment,and production of extracellular polymer.Biotechnol.Bioeng.1994,44,219-231.
    [31]Wang,J.,Yu,H.Q.Biosynthesis of polyhydroxybutyrate (PHB) and extracellular polymeric substances (EPS) by Ralstonia eutropha ATCC 17699 in batch cultures.Appl.Microbiol.Biotechnol.2007,75,871-878.
    [32]Smith,L.H.,McCarty,P.L.,Kitanidis,P.K.Spreadsheet method for evaluation of biochemical reaction rate coefficients and their uncertainties by weighted nonlinear least-squares analysis of the integrated Monod equation.Appl.Environ.Microbiol.1998,64,2044-2050.
    [33]Sin,G.,de Pauw,D.J.W.,Weijers,S.,Vanrolleghem,P.A.An efficient approach to automate the manual trial and error calibration of activated sludge models.Biotechnol.Bioeng.2008,100,516-528.
    [34]Sheintuch,M.,Tartakovsky,B.Activated-sludge system design for species selection:analysis of a detailed multispecies model.Chem.Eng.Sci.1997,52,3033-3046.
    [35]Ding,A.,Hounslow,M.J.,Biggs,C.A.Population balance modelling of activated sludge flocculation:Investigating the size dependence of aggregation,breakage and collision efficiency.Chem.Eng.Sci.2006,61,63-74.
    [36]Curvers,D.,Maes,K.C.,Saveyn,H.,De Baets,B.,Miller,S.,Van der Meeren,P.Modelling the electro-osmotically enhanced pressure dewatering of activated sludge.Chem.Eng.Sci.2007,62,2267-2276.
    [37]Ni,B.J.,Yu,H.Q.An approach for modeling two-step denitrification in activated sludge systems.Chem.Eng.Sci.2008,63,1449-1459.
    [38]Henze,M.,Gujer,W.,Mino,T.,van Loosdrecht,M.C.M.2000.Activated Sludge Models ASM1,ASM2,ASM2d,and ASM3.IWA Scientific and Technical Report No.9.IWA Publishing,London,UK.
    [39]Reichert,P.1998.Aquasim 2.0-User Manual,Computer Program for the Identification and Simulation of Aquatic Systems;EAWAG:Dubendorf,Switzerland (ISBN 3 906484 16 5).
    [1]Noguera,D.R.,Araki,N.,Rittmann,B.E.Soluble microbial products in anaerobic chemostates.Biotechnol.Bioeng.1994,44,1040-1047.
    [2]Barker,D.J.,Stuckey,D.C.A review of soluble microbial products(SMP) in wastewater treatment systems.Water Res.1999,33,3063-3082.
    [3]Laspidou,C.D.,Rittmann,B.E.A unified theory for extracellular polymeric substances,soluble microbial products,and active and inert biomass.Water Rcs.2002,36,2711-2720.
    [4]Aquino,S.F.Formation of soluble microbial products(SMP) in anaerobic digesters during stress conditions.Ph.D.Thesis,2004,Imperial College,London.
    [5]Roscnbcrgcr,S.,Laabs,C.,Lesjean,B.,Gnirss,R.,Amy,G.,Jekel,M.,Schrotter,J.C.Impact of colloidal and soluble organic material on membrane performance in membrane biorcactors for municipal wastcwatcr treatment.Water Rcs.2006,40,710-719.
    [6]Jarusutthirak,C.,Amy,G.,Croue,J.P.Fouling characteristics of wastewater effluent organic matter(EfOM) isolates on NF and UF membranes.Desalination 2005,145,247-255.
    [7]Shon,H.K.,Vigncswaran,S.,Kim,I.S.,Cho,J.,Ngo,H.H.The effect of pretreatment to ultrafiltration of biologically treated sewage effluent:a detailed effluent organic matter (EfOM) characterization.Water Res.2004,38,1933-1939.
    [8]Grunheid,S.,Amy,G.,Jekela,M.Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge.Water Res.2005,39,3219-3228.
    [9]Labbs,C,Amy,G.,Jekel,M.Understanding the size and character of fouling-causing substances from effluent organic matter (EfOM) in low-pressure membrane filtration.Environ.Sci.Technol.2006,40,4495-4499.
    [10]Gao,M.,Yang,M.,Li,H.,Yang,Q.,Zhang,Y.Comparison between a submerged membrane bioreactor and a conventional activated sludge system on treating ammonia-bearing inorganic wastewater.J.Biotechnol.2004,108,265-269.
    [11]Holakoo,L.,Nakhla,G.,Yanful,E.K.,Bassi,A.S.Chelating properties and molecular weight distribution of soluble microbial products from an aerobic membrane bioreactor.Water Res.2006,40,1531-1538.
    [12]Ichihashi,O.,Satoh,H.,Mino,T.Effect of soluble microbial products on microbial metabolisms related to nutrient removal.Water Res.2006,40,1627-1633.
    [13]Magbanua,Jr.,B.S.,Bowers,A.R.Characterization of soluble microbial products (SMP) derived from glucose and phenol in dual substrate activated sludge bioreactors.Biotechnol.Bioeng.2006,93,862-870.
    [14]Grady,C.P.L.Jr.,Daigger,G.T.,Lim,H.C.Biological Wastewater Treatment,2~(nd) ed.;Marcel Dekker:New York,1999;pp 282-284.
    [15]Jarusutthirak.C,Amy,G.Role of soluble microbial products (SMP) in membrane fouling and flux decline.Environ.Sci.Technol.2006,40,969-974.
    [16]Lowry,O.H.,Farr,A.L.,Randall,R.J.Protein measurement with the folin phenol reagent.J.Biology.Chem.1951,193,265-275.
    [17]Dubois,M.,Gilles,K.A.,Hamilton,J.K.,Rebers,P.A.,Smith,F.Colorimetric method for determination sugars and related substance.Anal.Chem.1956,28,350-356.
    [18]Keesman,K.J.,Spanjers,H.Endogenous model state and parameter estimation from an extensive batch experiment.Biotechnol.Bioeng.2000,68,422-429.
    [19]APHA,Standard Methods for the Examination of Water and Wastewater,1995,19~(th) ed.American Public Health Association,New York.
    [20]Jarusutthirak.C,Amy,G.Understanding soluble microbial products (SMP) as a component of effluent organic matter (EfOM).Water Res.2007,41,2787-2793.
    [21]Laspidou,C.S.Rittmann,B.E.Non-steady state modeling of extracellular polymeric substances,soluble microbial products,and active and inert biomass.Water Res.2002,36,1983-1992.
    [22]Schiener,P.,Nachaiyasit,S.,Stuckey,D.C.Production of soluble microbial products (SMP) in an anaerobic baffled reactor,composition,biodegradability and the effect of process parameters.Environ.Sci.Technol.1998,19,391-400.
    [23]Smith,L.H.,McCarty,P.L.,Kitanidis,P.K.Spreadsheet method for evaluation of biochemical reaction rate coefficients and their uncertainties by weighted nonlinear least-squares analysis of the integrated Monod equation.Appl.Environ.Microbiol.1998,64,2044-2050.
    [24]Dochain,D.,Vanrolleghem,P.A.Dynamical modelling and estimation in wastewater treatment processes.London,2001,UK:IWA Publishing.
    [25]Huijbregts,M.A.J.,Gilijamse,W.,Ragas,A.M.J.,Reijnders,L.Evaluating uncertainty in environmental life-cycle assessment.A case study comparing two insulation options for a Dutch one-family dwelling.Environ.Sci.Technol.2003,37,2600-2608.
    [26]Sin,G.,Guisasola,A.,de Pauw,D.J.W.,Baeza,J.A.,Carrera,J.,Vanrolleghem,P.A.A new approach for modelling simultaneous storage and growth processes for activated sludge systems under aerobic conditions.Biotechnol.Bioeng.2005,92,600-613.
    [27]Reichert,P.AQUASIM 2.0-User Manual,Computer Program for the Identification and Simulation of Aquatic Systems.Swiss Federal Institute for Environmental Science and Technology(EAWAG),1998.
    [1]McSwain,B.S.,Irvine,R.L.,Hausner,M.,Wilderer,P.A.Composition and distribution of extracellular polymeric substances in aerobic floes and granular sludge.Appl.Environ.Microbiol.2005,71,1051-1057.
    [2]Sheng,G.P.,Yu,H.Q.,Li,X.Y.Stability of sludge floes under shear conditions:Roles of extracellular polymeric substances(EPS).Biotechnol.Bioeng.2006,93,1095-1102.
    [3]Tay,J.H.,Liu,Q.S.,Liu,Y.The effects of shear force on the formation,structure and metabolism of aerobic granules.Appl.Microbiol.Biotechnol.2001,57,227-233.
    [4]de Silva,D.G.V.,Rittmann,B.E.Interpreting the response to loading changes in a mixed-culture completely stirred tank reactor.Water Environ.Res.2000,72,566-573.
    [5]de Silva,D.G.V.,Rittmarm,B.E.Nonsteady-state modeling of multispecies activated-sludge processes.Water Environ.Res.2000,72,554-565.
    [6]Benjamin,S.,Magbanua,Jr.,Bowers,A.R.Characterization of soluble microbial products(SMP) derived From glucose and phenol in dual substrate Activated Sludge Bioreactors.Biotechnol.Bioeng.2006,93,862-870.
    [7]van Loosdrecht,M.C.M.,Pot,M.,Heijnen,J.Importance of bacterial storage polymers in bioprocesses.Water Res.1997,35,41-47.
    [8]Majone,M.,Dircks,K.,Beun,J.J.Aerobic storage under dynamic conditions in activated sludge processes-The state of the art.Water Sci.Technol.1999,39,61-73.
    [9]Pratt,S.,Yuan,Z.,Keller,J.Modelling aerobic carbon oxidation and storage by integrating respirometric,titrimetric,and off-gas CO_2 measurements.Biotechnol.Bioeng.2004,88,135-147.
    [10]Mu,Y.,Yu,H.Q.Biological hydrogen production in a UASB reactor with granules Ⅰ:Physicochemical characteristics of hydrogen-producing granules. Biotechnol.Bioeng.2006,94,980-987.
    [11]Henze,M.,Grady,C.P.L.Jr.,Gujer,W.,Marais,G.V.R.,Matsuo,T.Activated sludge model No.1.Scientific and Technical Report No.1,1987,IAWPRC,London.
    [12]Avcioglu,E.,Karahan,G.,Orhon,D.Estimation of stoichiometric and kinetic coefficients of ASM3 under aerobic and anoxic conditions via respirometry.Water Sci.Technol.2003,48,185-194.
    [13]APHA,Standard Methods for the Examination of Water and Wastewater.19~(th) ed.1995.American Public Health Association,Washington,DC.
    [14]Pratt,S.,Yuan,Z.,Keller,J.Modelling aerobic carbon oxidation and storage by integrating respirometric,titrimetric,and off-gas CO_2 measurements.Biotechnol.Bioeng.2004,88,135-147.
    [15]Wang,J.,Yu,H.Q.Biosynthesis of polyhydroxybutyrate (PHB) and extracellular polymeric substances (EPS) by Ralstonia eutropha ATCC 17699 in batch cultures.Appl.Microbiol.Biotechnol.2007,75,871-879.
    [16]Aquino,S.F.,Stuckey,D.C.Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds.Water Res.2004,38,255-266.
    [17]Jendrossek,D.,Selchow,O.,Hoppert M.Poly(3-hydroxybutyrate) granules at the early stages of formation are localized close to the cytoplasmic membrane in Caryophanon latum.Appl.Environ.Microbiol.2007,73,586-593.
    [18]Laspidou,C.S.,Rittmann,B.E.A unified theory for extracellular polymeric substances,soluble microbial products,and active and inert biomass.Water Res.2002,36,2711-2720.
    [19]Ni,B.J.,Yu,H.Q.A new kinetic approach to microbial storage process.Appl.Microbiol.Biotechnol.2007,76,1431-1438.
    [20]Sin,G.,Guisasola,A.,de Pauw,D.J.W.,Baeza,J.A.,Can-era,J.,Vanrolleghem,P.A.A new approach for modelling simultaneous storage and growth processes for activated sludge systems under aerobic conditions.Biotechnol.Bioeng.2005,92,600-613.
    [21]Karahan,O.,van Loosdrecht,M.C.M.,Orhon,D.Modeling the utilization of starch by activated sludge for simultaneous substrate storage and microbial growth.Biotechnol.Bioeng.2006,94,43-53.
    [22]Su,K.Z.,Yu,H.Q.Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater.Environ.Sci.Technol.2005,39,2818-2827.
    [23]Laspidou,C.S.,Rittmann,B.E.Non-steady state modeling of extracellular polymeric substances,soluble microbial products,and active and inert biomass.Water Res.2002,36,1983-1992.
    [24]Gujer,W,Henze,M.,Mino,T.,van Loosdrecht,M.C.M.Activated sludge model NO.3.Water Sci.Technol.1999,39,183-193.
    [25]Nicolella,C,van Loosdrecht,M.C.M.,Heijnen,J.J.Mass transfer and reaction in a biofilm airlift suspension reactor.Chem.Eng.Sci.1998,53,2743-2753.
    [26]Beun,J.J.,Heijnen,J.J.,van Loosdrecht,M.C.M.N-removal in a granular sludge sequencing batch airlift reactor.Biotechnol.Bioeng.2001,75,82-92.
    [27]Horn,H.,Neu,T.R.,Wulkow,M.Modelling the structure and function of extracellular polymeric substances in biofilms with new numerical techniques.Water Sci.Technol.2001,43,121-127.
    [28]de Kreuk,M.K.,Picioreanu,C.,Hosseini,M.,Xavier,J.B.,van Loosdrecht,M.C.M.Kinetic model of a granular sludge SBR - Influences on nutrient removal.Biotechnol.Bioeng.2007,97,801-815.
    [1]Vadivelu,M.V.,Yuan,Z.,Fux,C.,Keller,J.Stoichiometric and kinetic characterization of Nitrobacter in mixed culture by decoupling the growth and energy generation processes.Biotechnol.Bioeng.2006,94,1176-1188.
    [2]Hellinga,C.,Schellen,A.A.J.C.,Mulder,J.W.,van Loosdrecht,M.C.M.,Heijnen,J.J.The SHARON process:an innovative method for nitrogen removal from ammonium-rich waste waster.Water Sci.Technol.1998,37,135-142.
    [3]Picioreanu,C.,van Loosdrecht,M.C.M.,Heijnen,J.J.Modelling the effect of oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor.Water Sci.Technol.1997,36,147-156.
    [4]Guisasola,A.,Jubany,I.,Baeza,J.A.,Carrera,J.,Lafuente,J.Respirometric estimation of the oxygen affinity constants for biological ammonium and nitrite oxidation.J.Chem.Technol.Biotechnol.2005,80,388-396.
    [5]McSwain,B.S.,Irvine,R.L.,Hausner,M.,Wilderer,P.A.Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge.Appl.Environ.Microbiol.2005,71,1051-1057.
    [6]Sheng,G.P.,Yu,H.Q.,Li,X.Y.Stability of sludge flocs under shear conditions:roles of extracellular polymeric substances(EPS).Biotechnol.Bioeng.2006,93, 1095-1102.
    [7]Al-Halbouni,D.,Traber,J.,Lyko,S.,Wintgens,T.,Melin,T.,Tacke,D.,Janot,A.,Dott,W.,Hollender,J.Correlation of EPS content in activated sludge at different sludge retention times with membrane fouling phenomena.Water Res.2008,42,1475-1488.
    [8]Larsen,P.,Nielsen,J.L.,Svendsen,T.C.,Nielsen,P.H.Adhesion characteristics of nitrifying bacteria in activated sludge.Water Res.2008,42,2814-2826.
    [9]Benjamin,S.,Magbanua,Jr.,Bowers,A.R.,Characterization of soluble microbial products (SMP) derived from glucose and phenol in dual substrate activated sludge bioreactors.Biotechnol.Bioeng.2006,93,862-870.
    [10]de Silva,D.G.V.,Rittmann,B.E.Nonsteady-state modeling of multispecies activated-sludge processes.Water Environ.Res.2000,72,554-565.
    [11]de Silva,D.G.V.,Rittmann,B.E.Interpreting the response to loading changes in a mixed-culture completely stirred tank reactor.Water Environ.Res.2000,72,566-573.
    [12]APHA,Standard Methods for the Examination of Water and Wastewater.19~(th) ed.,1995.American Public Health Association,Washington,DC.
    [13]Frolund,B.,Palmgren,R.,Keiding,K.,Nielsen,P.H.Extraction of extracellular polymers from activated sludge using a cation exchange resin.Water Res.1996,30,1749-1758.
    [14]Aquino,S.F.,Stuckey,D.C.Soluble microbial product formation in anaerobic chemostats in the presence of toxic compounds.Water Res.2004,38,255-266.
    [15]Aquino,S.F.,Stuckey,D.C.Integrated model of the production of soluble microbial products (SMP) and extracellular polymeric substances (EPS) in anaerobic chemostats during transient conditions.Biochem.Eng.J.2008,38,138-146.
    [16]Henze,M.,Grady,C.P.L.Jr.,Gujer,W.,Marais,G.V.R.,Matsuo,T.,1987.Activated sludge model No.1.Scientific and Technical Report No.1,IAWPRC,London.
    [17]Gujer W,Henze M.,Mino T.,van Loosdrecht M.C.M.Activated sludge model No.3.Water Sci.Technol.1999,39,183-193.
    [18]Gujer,W.,Larsen,T.A.The implementation of biokinetics and conservation principles in ASIM.Water Sci.Technol.1995,31,257-266.
    [19]Henze,M.,Gujer,W.,Mino,T.,van Loosdrecht,M.C.M.,2000.Activated Sludge Models ASM1,ASM2,ASM2d,and ASM3.IWA Scientific and Technical Report No.9.IWA Publishing,London,UK.
    [20]Horn,H.,Hempel,D.Growth and decay in an auto-/heterotrophic biofilm.Water Res.1997,31,2243-2252.
    [21]van Loosdrecht,M.C.M.,Henze,M.Maintenance,endogeneous respiration,lysis,decay and predation.Water Sci.Technol.1999,39,107-117.
    [22]Laspidou,C.S.,Rittmann,B.E.A unified theory for extracellular polymeric substances,soluble microbial products,and active and inert biomass.Water Res.2002,36,2711-2720.
    [23]Laspidou,C.S.,Rittmann,B.E.Non-steady state modeling of extracellular polymeric substances,soluble microbial products,and active and inert biomass.Water Res.2002,36,1983-1992.
    [24]Petersen,B.,Gernaey,K.,Devisscher,M.,Dochain,D.,Vanrolleghem,P.A simplified method to assess structurally identifiable parameters in Monod-based activated sludge models.Water Res.2003,37,2893-2904.
    [25]Koch,G.,Kuhni,M.,Siegrist,H.Calibration and validation of an ASM3-based steady-state model for activated sludge system - Part Ⅰ:Prediction of nitrogen removal and sludge production.Water Res.2001,35,2235-2245.
    [26]Jubany,I.,Baeza,A.J.,Carrera,J.,Lafuente,J.Respirometric calibration and validation of a biological nitrite oxidation model including biomass growth and substrate inhibition.Water Res.2005,39,4574-4584.
    [27]Xu,S.L.,Hultman,B.Experiences in wastewater characterization and model calibration for the activated sludge process.Water Sci.Technol.1996,33,89-98.
    [28]Moussa,M.S.,Hooijmans,C.M.,Lubberding,H.J.,Gijzen,H.J.,van Loosdrecht,M.C.M.Modelling nitrification,heterotrophic growth and predation in activated sludge.Water Res.2005,39,5080-5098.
    [1]de Bruin,L.M.M.,de Kreuk,M.K.,van Der Roest,H.F.R.,van Loosdrecht,M.C.M.,Uijterlinde,C.Aerobic granular sludge technology,alternative for activated sludge technology.Water Sci.Technol.2004,49,1-9.
    [2]Moy,B.Y.P.,Tay,J.H.,Toh,S.K.,Liu,Y.,Tay,S.T.L.High organic loading influences the physical characteristics of aerobic sludge granules.Lett.Appl.Microbiol.2002,34,407-412.
    [3]Arrojo,B.,Mosquera-Corral,A.,Garrido,J.M.,Mendez,R.Aerobic granulation with industrial wastewater in sequencing batch reactors.Water Res.2004,38,3389-3399.
    [4]Beun,J.J.,Hendriks,A.,van Loosdrecht,M.C.M.,Morgenroth,M.,Wilderer,P.A.,Heijnen,J.J.Aerobic granulation in a sequencing batch reactor.Water Res.1999,33,2283-2290.
    [5]Beun,J.J.,van Loosdrecht,M.C.M.,Heijnen,J.J.Aerobic granulation in a sequencing batch airlift reactor.Water Res.2002,36,702-712.
    [6]de Kreuk,M.K.,van Loosdrecht,M.C.M.Selection of slow growing organisms as a means for improving aerobic granular sludge stability.Water Sci.Technol.2004,49,9-19.
    [7]Jiang,H.L.,Tay,J.H.,Tay,S.T.L.Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol.Lett.Appl.Microbiol.2002,35,439-445.
    [8]Liu,Y.,Tay,J.H.State of the art of biogranulation technology for wastewater treatment.Biotechnol.Adv.2004,22,533-563.
    [9]Liu,Y,Yang,S.F.,Tay,J.H.Elemental compositions and characteristics of aerobic granules cultivated at different substrate N/C ratios.Appl.Microbiol.Biotechnol.2003,61,556-561.
    [10]McSwain,B.S.,Irvine,R.L.,Wilderer,P.A.The effect of intermittent feeding on aerobic granule structure.Water Sci.Technol.2004,49,19-25.
    [11]Morgenroth,E.,Sherden,T,van Loosdrecht,M.C.M,Heijnen,J.J.,Wilderer,P.A.Aerobic granular sludge in a sequencing batch reactor.Water Res.1997,31,3191-3194.
    [12]Peng,D.,Bernet,N.,Delgenes,J.P.,Moletta,R.Aerobic granular sludge-a case study.Water Res.1999,33,890-893.
    [13]Schwarzenbeck,N.,Erley,R.,Mc Swain,B.S.,Wilderer,P.A.,Irvine,R.L.Treatment of malting wastewater in a granular sludge sequencing batch reactor(SBR).Acta Hydrochim.Hydrobiol.2004,32,16-24.
    [14]Su,K.Z,Yu,H.Q.Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater.Environ.Sci.Technol.2005,39,2818-2827.
    [15]Yang,S.F.,Tay,J.H.,Liu,Y.Effect of substrate nitrogen/chemical oxygen demand ratio on the formation of aerobic granules.J.Environ.Eng.-ASCE 2005,131,86-92.
    [16]Zheng,Y.M.,Yu,H.Q.,Sheng,GP.Physical and chemical characteristics of granular activated sludge from a sequencing batch airlift reactor.Process Biochem.2005,40,645-650.
    [17]de Kreuk,M.K.,van Loosdrecht,M.C.M.Formation of aerobic granules with domestic sewage.J.Environ.Eng.2006,132,694-697.
    [18]APHA,Standard Methods for the Examination of Water and Wastewater.19~(th) ed.1995.American Public Health Association,Washington,DC.
    [19]Roeleveld,P.J.,Van Loosdrecht,M.C.M.Experience with guidelines for wastewater characterisation in The Netherlands.Water Sci.Technol.2002,45,77-87.
    [20]Grady Jr.,C.P.L.,Daigger,G.T.,Lim,H.C.1999.Biological Wastewater Treatment.Revised and Expanded,2nd.Marcel Dekker,New York.
    [21]Sahlstedt,K.E.,Aurola,A.M.,Fred,T.Practical modelling of a large activated sludge DN-process with ASM3.Proceedings of the Ninth IWA Specialized Conference on Design,Operation and Economics of Large Wastewater Treatment Plants,1-4 September 2003,Praha,Czech Republic,2003,141-148.
    [22]Bos,R.,van der Mei,H.C,Busscher,H.J.Physico-chemistry of initial microbial adhesive interactions-its mechanisms and methods for study.FEMS Microbiol.Rev.1999,23,179-230.
    [23]Thaveesri,J.,Daffonchio,D.,Liessens,B.,Vandemeren,P.,Verstraete,W.G.Granulation and sludge bed stability in upflow anaerobic sludge bed reactors in relation to surface thermodynamics.Appl.Environ.Microbiol.1995,61,3681-3686.
    [24]de Kreuk,M.K.2006.Aerobic granular sludge scaling up a new technology.PhD Thesis,Delft University of Technology,Delft,the Netherland.
    [25]Irvine,R.L.,Ketchum Jr,L.H.Sequencing batch reactors for biological wastewater treatment.Critical Rev.Environ.Control 1988,18,255-294.
    [1]Imajo,U.,Tokutomi,T.,Furukawa,K.Granulation of anammox microorganisms in up-flow reactors.Water Sci.Technol.2004,49,155-163.
    [2]Guven,D.,Dapena,A.,Kartal,B.,Schmid,M.C.,Maas,B.A.,Pas-Schoonen,K.,van de Sozen,S.,Mendez,R.,Op den Camp,H.J.M.,Jetten,M.S.M.,Strous,M.,Schmidt,I.Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria.Appl.Environ.Microbiol.2005,71,1066-1071.
    [3]Sliekers,A.O.,Haaijer,S.,Stafsnes,M.H.,Kuenen,J.G.,Jetten,M.S.M.Competition and coexistence of aerobic ammonium-and nitrite-oxidizing bacteria at low oxygen concentrations.Appl.Microbiol.Biotechnol.2005,68,808-817.
    [4]Third,K.A.,Paxman,J.,Schmid,M.,Strous,M.,Jetten,M.S.M.,Cord-Ruwisch,R.Enrichment of anammox from activated sludge and its application in the CANON process.Microbial Ecol.2005,49,236-244.
    [5]Zhang,Y.,Ruan,X.H.,Op den Camp,H.J.M.,Smits,T.J.M.,Jetten,M.S.M.,Schmid,M.C.Diversity and abundance of aerobic and anaerobic ammonium-oxidizing bacteria in freshwater sediments of the Xinyi River (China).Environ.Microbiol.2007,9,2375-2382.
    [6]Jetten,M.S.M.,Schmid,M.C,Pas-Schoonen,K.,van de Sinninghe,Damste,J.S.,Strous,M.Anammox Organisms:Enrichment,Cultivation and Environmental Analysis.Methods Enzymol.2005,397,34-57.
    [7]Schmid,M.C,Risgaard-Petersen,N.,van de Vossenberg,J.,Kuypers,M.M.M.,Lavik,G.,Petersen,J.,Hulth,S.,Thamdrup,B.,Canfield,D.,Dalsgaard,T.,Rysgaard,S.,Sejr,M.K.,Strous,M.,Op den Camp,H.J.M.,Jetten,M.S.M.Anaerobic ammonium-oxidizing bacteria in marine environments:widespread occurrence but low diversity.Environ.Microbiol.2007,9,1476-1484.
    [8]Strous,M.,Fuerst,J.A.,Kramer,E.H.,Logemann,S.,Muyzer,G.,van de Pas-Schoonen,K.T.,Webb,R.,Kuenen,J.G.,Jetten,M.S.Missing lithotroph identified as new planctomycete.Nature.1999,400,446-449.
    [9]Jetten,M.S.M.,Wagner,M.,Fuerst,J.,van Loosdrecht,M.,Kuenen,G.,Strous,M.Microbiology and application of the anaerobic ammonium oxidation ('anammox') process.Curr.Opin.Biotechnol.2001,12,283-288.
    [10]Dapena-Mora,A.,Van Hulle,S.W.H.,Campos,J.L.,Mendez,R.,Vanrolleghem,P.A.,Jetten,M.Enrichment of Anammox biomass from municipal activated sludge:experimental and modelling results.J.Chem.Technol.Biotechnol.2004,79,1421-1428.
    [11]van der Star,W.R.L.,Abma,W.R.,Blommers,D.,Mulder,J.W.,Tokutomi,T.,Strous,M.,Picioreanu,C,van Loosdrecht,M.C.M.Startup of reactors for anoxic ammonium oxidation Experiences from the first full-scale anammox reactor in Rotterdam.Water Res.2007,41,4149-4163.
    [12]Weber,S.D.,Ludwig,W,Schleifer,K.H.,Fried,J.Microbial Composition and Structure of Aerobic Granular Sewage Biofilms.Appl.Environ.Microbiol.2007,73,6233-6240
    [13]Kishida,N.,Kim,J.,Tsuneda,S.,Sudo,R.Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms.Water Res.2006,40,2303-2310.
    [14]Arrojo,B.,Mosquera-Corral,A.,Garrido,J.M.,Mendez,R.Aerobic granulation with industrial wastewater in sequencing batch reactors.Water Res.2004,38,3389-3399.
    [15]Jiang,H.L.,Tay,J.H.,Maszenana,M.,Tay,S.T.L.Bacterial Diversity and Function of Aerobic Granules Engineered in a Sequencing Batch Reactor for Phenol Degradation.Appl.Environ.Microbiol.2004,70,6767-6775.
    [16]Lemaire,R.,Yuan,Z.,Blackall,L.L.,Crocetti,GR.Microbial distribution of Accumulibacter spp.and Competibacter spp.in aerobic granules from a lab-scale biological nutrient removal system.Environm.Microbiol.2008,10,354-363.
    [17]Su,K.Z,Yu,H.Q.2005.Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater.Environ.Sci.Technol.39:2818-2827.
    [18]APHA,Standard Methods for the Examination of Water and Wastewater.19~(th) ed.1995.American Public Health Association,Washington,DC.
    [19]van de Graaf,A.A.,de Bruijn,P.,Robertson,L.A.,Jetten,M.S.M.,Kuenen,J.G.Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor.Microbiology 1996,142,2187-2196.
    [20]Bos,R.,van der Mei,H.C.,Busscher,H.J.Physico-chemistry of initial microbial adhesive interactions-its mechanisms and methods for study.FEMS Microbiol.Rev.1999,23,179-230.
    [21]Thaveesri,J.,Daffonchio,D.,Liessens,B.,Vandemeren,P.,Verstraete,W.G.Granulation and sludge bed stability in upflow anaerobic sludge bed reactors in relation to surface thermodynamics.Appl.Environ.Microbiol.1995,61,3681-3686.
    [22]Egli,K.,Fanger,U.,Alvarez,P.J.J.,Siegrist,H.,van der Meer,J.R.,Zehnder,A.J.B.Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate.Arch.Microbiol.2001,175,198-207.
    [23]Kartal,B.,Rattray,J.,van Niftrik,L.A.,van de Vossenberg,J.,Schmid,M.C.,Webb,R.I.,Schouten,S.,Fuerst,J.A.,Damste,J.S.,Jetten,M.S.,Strous,M.Candidatus 'Anammoxoglobus propionicus' a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria.Syst.Appl.Microbiol.2007,30,39-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700