用户名: 密码: 验证码:
枫香基因转化体系的研究以及枫香AGAMOUS基因的初步功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
枫香(Liquidambar formosana Hance.)是我国乡土树种,分布于淮河长江流域以南地区。由于其生长迅速,抗逆性强,秋叶红色鲜艳可爱,是我国亚热带地区的典型秋色叶树种,故而在长江流域以南地区被广泛用作公路、街道、庭院和工厂绿化树种。但是在城市园林应用过程中,枫香球果存在数量多、个体大、果实硬、不易降解等问题,球果掉落时易砸伤行人及车体,给市民出行带来不便,同时也给城市环境造成了一定的污染。针对这种情况,利用基因工程培育无球果枫香成为一种行之有效的解决方法。
     本研究首先建立了枫香的离体微繁及植株再生体系,对影响枫香叶片再生植株的不同因素进行了系统的探讨,并在此基础上对根癌农杆菌介导枫香的遗传转化条件作了初步探索,为枫香的基因工程改良奠定了一定的基础。同时,根据拟南芥花器官发育AGAMOUS(AG)基因控制雄蕊和心皮发育的功能,我们克隆了枫香的AG同源基因LfAG,并进行了初步功能研究,最终以通过转基因抑制枫香内源AG基因的表达,获得无球果枫香为研究目的。主要结果如下:
     1.以优良枫香无性系的带芽茎段为外植体,建立了枫香的离体微繁体系。结果表明:将带芽茎段消毒后接种在WPM+0.1mg/LNAA+0.75 mg/L BA培养基上,诱导腋芽萌发效果最好;将萌发的幼芽切下接种在WPM+0.01mg/L NAA+0.5 mg/LBA或者WPM+0.01mg/LNAA+0.5mg/L BA+0.3 mg/LGA_3培养基上,可分别获得5.25和4.17的增殖系数以及2.57cm和2.90cm的芽丛平均高度;对比了IAA和NAA对枫香试管苗不定根的诱导效果,NAA诱导的不定根为粗短型,数量多,无二级侧根;WPM+2.0mg/L IBA诱导的不定根为细长型,根系丰富,二级侧根发达,适合作为枫香试管苗不定根诱导的培养基;将根系发育良好的再生植株移栽后,成活率可达100%,植株生长和外观形态均表现正常;
     2.建立了枫香叶片的植株再生体系。以5个基因型试管苗叶片为外植体,研究了NAA和TDZ对不定芽分化的作用,确定了5个基因型再生频率都较高的通用培养基为WPM+0.05mg/L NAA+0.25 mg/LTDZ,最高的再生率可达90%,平均每叶片再生3.11个不定芽;基因型P13不定芽分化的能力较差,其最高的不定芽分化率仅为32.6%,与其它4种基因型存在显著性差异(平均再生率为53.2%—90%);光照条件对枫香叶片再生有很大的影响,最合适的光照条件为暗培养7d后转入弱光下培养;试管苗顶端第1—2片叶分化能力最强,第3—4片叶的再生能力有所下降,但仍有70%以上的再生率;
     3.以枫香叶片为材料,确定了其作为遗传转化受体系统的选择压力。结果表明,20mg/L的卡那霉素即可导致枫香叶片失去分化能力,15mg/L的卡那霉素即可导致枫香试管苗失去不定根分化能力。300mg/L的头孢霉素作为抑菌剂,对不定芽和不定根的分化能力均影响不大;
     4.以枫香叶片为受体,对根癌农杆菌介导的遗传转化条件进行了摸索。结果发现,卡那霉素对枫香侵染叶片的再生具有明显的抑制作用,共培养后直接转入选择培养外植体的再生能力急剧下降。但根据GFP基因瞬间表达的结果可知,预培养3天的叶片有利于农杆菌的附着和侵染;共培养基中AS的添加易导致叶片切口的褐化,因此在枫香遗传转化中不宜添加。对枫香叶片而言,以AB液体培养基作为侵染液,侵染10min,共培养4天的条件下进行转化,GFP表达状态最好,最有利于T-DNA的转移;
     5.利用同源克隆法,得到了枫香AG同源基因LfAG的全长CDS。根据GenBank中公布的美国枫香LAG基因cDNA序列设计引物,利用反转录PCR技术获得了枫香LfAG基因的全长CDS。该序列与美国枫香LAG基因核苷酸序列同源性高达98.6%,氨基酸序列同源性为96.0%,具有完整的MADS区和K区,C区具有2个AG基因的保守Motif;
     6.在载体pCAMBIA2300S、pART27、pHELLSGATE2的基础上,分别构建了LfAG基因的正义、反义重复和RNAi植物表达载体。利用上述3种构建转化烟草,获得的转化反义重复载体抗性植株59株和RNAi抗性植株60株均已经开花。转p2300s-LA载体的烟草抗性植株目前正在培养基中进行筛选。目前,重复反义载体转基因烟草植株已经获得了多种目的表型,包括花药花瓣化,雄蕊一端形成异域柱头和副雌蕊的形成等。此外,与野生型相比,多数转基因植株出现花药开裂推迟或者不裂的现象。各种表型的形成原因还有待于进一步分析。
Formosan sweetgum distributes in the majority of temperate and subtropical regions in China.Due to its many desirable traits,such as fast growth,wide adaptability,high resistance and red leaves in autumn,formosan sweetgum is becoming popularity in forestry and is used as a street and courtyard tree in China.But the spiny fruits of the tree disintegrate very slowly and cause a nuisance on lawns and walks.So breeding for sterility or fruitless would greatly improve the usefulness of formosan sweetgum.
     For the aim of fruitless formosan sweetgum,an efficient in vitro propagation system and a regeneration system via organogenesis were developed firstly.Factors affecting shoot regeneration from leaf explants,including different plant growth regulators, incubation conditions,and position of explants,were investigated in detail.Subsequently, conditions suitable for Agrobacterium tumefaciens-mediated transformation of the species were preliminarily studied.Meanwhile,we isolated AG homologue gene(LfAG) from formosan sweetgum flower buds and preliminarily analyzed its functions.The exact functions of LfAG should be studied for further researches.
     The major results are as follows:
     1.A protocol for in vitro micropropagation of formosan sweetgum was established. Effects of different PGRs on sprouting of axillary buds and shoot multiplication, elongation and rooting and survival of transplanted plantlets were investigated.The results showed that the best sprouting medium WPM+0.1mg/L NAA+0.75 mg/L BA promoted sprouting in all cultured axillary buds.Young shoots were cultured on medium for shoot multiplication,and average 5.25 and 4.17 shoots,2.57cm and 2.90cm in length were obtained,respectively.The adventitious root induced by NAA was greatly different from that by IBA.The numerous roots formed on NAA were short with big callus tissue at bottom and without secondary root.Whereas the roots formed on IBA were longer with abundant secondary roots.All the rooted plantlets were transplanted to soil and grew normally outdoors.
     2.Plant regeneration system from leaves of formosan sweetgum was established and optimized.The morphogenic potential of leaf explants from five genotypes was tested on the 16 media containing different concentrations of TDZ and NAA.The results indicated that among five genotypes,four genotypes(P2,P6,P9,P11) showed higher regeneration rates(53.2%-90%in average),whereas genotype J13 showed low capability of shoot regeneration on all media tested(32.6%).In general,preferable media for inducing adventitious shoots was WPM supplemented with 0.25mg/L TDZ and 0.05mg/L NAA,on which higher regeneration rate and more adventitious shoot clumps were obtained in all five tested genotypes.The organogenesis was greatly influenced by light and the optimum condition was leaves were cultured in dark for 7d and then transferred into 50-100 lx.The upper two leaves on the stem showed higher regeneration capability(100%) than the lower two leaves,which were still over 70%in regeneration capability.Transferred to WPM basal medium containing NAA,BA and GA_3,regenerated buds elongated into shoots.
     3.Effects of selection markers kanamycin(Kan) on shoot differentiation of leaf explants and rooting of in vitro shoots were investigated.The results indicated that formosan sweetgum was comparatively sensitive to Kan.Selection pressures were determined as:20 mg/L Kan for shoot regeneration of leaves,and 15 mg/L Kan for rooting of shoots.300 mg/L cefotaxime(Cef) were no great influences in organogenesis of adventitious shoot and root.
     4.Conditions suitable for Agrobacterium-mediated transformation of formosan sweetgum were studied.The results indicated that after co-cultivation with Agrobacterium,regeneration capability of the leaves decreased dramatically when cultured in selection medium.According to the transient GFP expression,three days of pre-culture with the abaxial side of leaves touched the medium promoted adhesion and invasion of Agrobacterium evidently.For formosan sweetgum,acetosyringone(AS) in the co-cultivation medium had no promoting effect on Agrobacterium mediated transformation.Based on the transient GFP expression,10-min infection in AB liquid medium and co-culture for 4d was favorable for T-DNA transfer to plant cell of formosan sweetgum.
     5.We have isolated the putative AG gene from formosan sweetgum,LfAG,whose deduced protein product shares 96.0%identical amino acid residues with LAG gene product from L.styraciflua,a count-part sweetgum grown in America.LfAG included full length MADS domain and K domain,and there were two consensus AG motifs in the C termination.
     6.Sense,repeated anti-sense and RNAi plant expression vectors of LfAG were construted.59 repeated anti-sense and 60 RNAi transgenic tobacco plants were obtained by the leaf discs method of Agrobacterium-mediate transforomation.Analysis of transgenic tobacco plants showed that LfAG gene was involved in the stamen and carpel of flower development.Repeated anti-sense of LfAG gene expression produced a variety of mutant phonotype with either anther transformating into petal,or stigma on anther,or secondary pistil.The reason of mutants needs further researches.
引文
1.包满珠编.园林植物育种学.北京:中国农业出版社,2004
    2.陈风毛,高捍东,施季森.枫香种子生物学特性的研究进展.种子,2001:33-34
    3.陈益泰,孟现东.枫香DNA提取方法与PCR扩增程序的优化.林业科学研究,2004,17:42-46
    4.陈银华,李汉霞,叶志彪.不同结构的外源ACO基因导入番茄对乙烯生成速率的影响.园艺学报,2007,34:644-648
    5.陈宗礼,齐向英,张向前,薛皓,延志莲.TDZ和6-BA对枣树继代培养的影响.西北农业学报,2006,15:162-165
    6.成铁龙,施季森.枫香半同胞子代遗传变异研究.南京林业大学学报,2005,29:29-32
    7.成铁龙,施季森.中国枫香嫩枝扦插繁殖技术.林业科技开发,2003,17:36-37
    8.达克东,李雅志,束怀瑞.苹果叶片愈伤组织植株再生研究.核农学报,1995,9:261-266
    9.杜丽.香樟体胚发生途径的植株再生体系的建立以及农杆菌介导遗传转化的初步研究.[博士学位论文].武汉:华中农业大学图书馆,2005
    10.杜希华,陆海,高述民,李凤兰.文冠果花药总RNA提取方法研究.北京林业大学学报,2003,25:10-13
    11.方乐金,施季森,李力,吴小龙,史廷先.枫香子代性状的遗传变异分析.林业科学,2003,39:148-152
    12.高志红,张玉明,王珊,章镇.植物花发育调控基因AGAMOUS的研究进展.西北植物学报,2008,28:638-644
    13.黄敏仁,诸葛强.林木细胞工程.见:王明庥主编,林木遗传育种学.北京:中国林业出版社,2001,278-309
    14.李东栋.根癌农杆菌介导愈伤组织遗传转化获得含pTA29-barnase基因的柑橘植株.[博士学位论文].武汉:华中农业大学图书馆,2005
    15.李贵生,孟征,孔宏智,陈之端,路安民.ABC模型与花进化研究.科学通报.200348:2415-2421
    16.李浚明编译.植物组织培养教程.北京:中国农业大学出版社,2002
    17.李玲,齐力旺,韩一凡,汪迎春,李文彬.TA29-barnase基因导致抗虫转基因欧洲黑杨雄性不育的研究.林业科学,2000,36:28-32
    18.李青,苏雪痕.金叶连翘试管苗生根及移栽成活率的研究.北京林业大学学报,2003,25:58-61
    19.刘国锋.二球悬铃木离体植株再生及倍性育种的研究.[博士学位论文].武汉: 华中农业大学图书馆,2002
    20.刘玉乐,田波.植物杂种优势利用基因工程.见:田波,许智宏编.植物基因工程.山东科学技术出版社,1995,264-279
    21.乔桂荣,栾维江,潘红伟,卓仁英.利用农杆菌介导法获得RNAi转基因枫香的研究.浙江林学院学报,2007,24:140-144
    22.师校欣,杜国强,高仪,王彦立,李秀巧.黑暗培养对苹果组培快繁及叶片再生的影响.河北农业大学学报,2004,27:18-21
    23.施季森,朱胜利.中国枫香多目标育种的研究(Ⅰ):中国枫香优树选择.林业科技通讯.1997,10:15-16
    24.施季森.迎接21世纪现代林木生物技术育种的挑战.南京林业大学学报,2000,24:1-6
    25.宋俊歧,邱并生,王荣,贺焰,赵长生,田波.通过表达ACC脱氨酶基因控制番茄果实的成熟.生物工程学报,1998,14:252-258
    26.苏梦云.美国枫香茎段组织培养与植株再生.林业科学研究,2005,18:98-101
    27.谭文澄,戴策刚编.观赏植物组织培养技术.北京:中国林业出版社,1995
    28.王从丽,陆柏方,张学成.农杆菌-植物间基因转移的分子基础.生命科学,2002,14:125
    29.王关林,方宏筠编.植物基因工程原理与技术(第二版).北京:科学出版社,2002
    30.王洪云,诸葛强,何祯祥,施季森.枫香下胚轴的离体培养和植株再生.植物生理学通讯,2001,37:136-137
    31.吴禄平,张志宏,林丽华.苹果品种试管苗叶片再生不定芽.沈阳农业大学学报,1995,26:131-135
    32.徐春晖,夏光敏,贺晨霞.农杆菌转化系统研究进展.生命科学,2002,14:223-225
    33.徐凌飞,马锋旺,王喆之,任小林,曹晓雁.梨叶片离体培养和植株再生.园艺学报,2002,29:367-372
    34.杨继芳,刘明,安利佳.T-DNA整合的研究进展.遗传,2004,26:991-996
    35.叶志彪,李汉霞.两个反义基因在番茄工程植株中的生理抑制效应分析.植物生理学报,1996,22:157-160
    36.余义勋,包满珠.不同结构的外源ACO基因导入香石竹对瓶插寿命的影响.生物工程学报,2004,20:704-707
    37.曾幼玲,邓爱华,曹文尧,张富春.一种快速提取盐桦叶片总RNA的方法建立.种子,2006,25:51-53
    38.赵瑞华,刘庆忠,孙清荣.抗生素对梨离体叶片不定芽再生的影响.山东农业 人学学报(自然科学版),2004,35:304-306
    39.郑继刚,李成梅,肖英华,李雅轩.激活标签法及其在植物基因工程上的应用.遗传,2003,25:471-474
    40.Afolabi A S,Worland B,Snape J W,Vain P.A large-scale study of rice plants different T-DNAs provides new insights into locus composition and transformed with T-DNA linkage configurations.Theor Appl Genet,2004,109:815-826
    41.Akashi H,Miyagishi M,Taira K.RNAi expression vectors in plant cells.Methods Mol Biol,2004,252:533-544
    42.Angenent G C,Colombo L.Molecular control of ovule development.Trends Plant Sci,1996,1:228-232
    43.Angenent G C,Franken J,Busscher M,Colombo L,Tunen A J.Petal and stamen formation in petunia is regulated by the homeotic gene FBP1.Plant J,1993,4:101-112
    44.Baker B S,Bhatia S K.Factors effecting adventitious shoot regeneration from leaf explants of quince(Cydonia oblonga).Plant Cell Tissue Organ Cult,1993,35:273-277
    45.Bao X Z,Franks R G,Levin J Z,Liu Z C.Repression of AGAMOUS by BELLRINGER in floral and inflorescence meristems.Plant Cell,2004,16:1478-1489
    46.Benedito V A,Visser P B.Ectopic expression of LLAG1,and AGAMOUS homologue from lily(Liliun longiflorum Thunb.) causes floral homeotic modifications in Arabidopsis.Journal Experimental Botany,2004,55:1391-1399.
    47.Bondt A D,Eggermont K,Druart R Agrobacterium mediated transformation of apple (Malus domestica Borkh.):an assessment factors affecting gene transfer efficiency during early transformation steps.Plant Cell Rep,1994,13:587-593
    48.Boss P K,Vivier M.A cDNA from grapevine(Vitis vinifera L.) shows homology to AGAMOUS and shatter proof,is not only expressed in flowers but also throughout berry development.Plant Molecular Biology,2001,45:541-553
    49.Bowman J L,Smyth D R,Meyerowitz E M.Expression of the Arabidopsis floral homeotic gene AGAMOUS in restricted to specific cell types late in flower development.Plant Cell,1991,3:749-758
    50.Brand M H,Lineberger R D.In vitro adventitious shoot formation on mature-phase leaves and petioles of Liquidambar styraciflua L.Plant Sci,1988,57:173-179
    51.Brummelkamp T R,Bernards R,Agami R.A system for stable expression of short interfering RNAs in mammalian cells.Science,2002,296:550-553
    52.Brunner A M,Rottmann W H,Sheppard L A,Krutovskii K,Difazio S P,Leonardi S, Strauss S H. Structure and expression of duplicate AGAMOUS orthologues in poplar. Plant Molecular Biology, 2000,44: 619-634
    
    53. Brunner, A M, Mohamed R, Meilan R, Sheppard L A, Pottman W H, Strauss S H. Genetic engineering of sexual sterility in shade trees. Arboricult, 1998, 24: 263-272
    
    54. Caboni E, Tonelli M G, Lauri P, Angeli S D, Damiano C. In vitro shoot regeneration from leaves of wild pear. Plant Cell Tissue Org Cult, 1999, 59: 1-7
    
    55. Cao X, Hammerschlag F A, Improved shoot organogenesis from leaf explants of highbush blueberry. 2000, 35: 827-832
    
    56. Capelle S C, Mok D W S, Kirchner S C. Effects of TDZ on cytokinin autonomy and the metabolism of N6-(DELTA2-isopentenyl) adenosine in callus tissues of Phaseolus lunatus L. Plant Physiol., 1983, 73: 796- 802
    
    57. Carolyn N C, Lemieux C, Jorgensen R. Introduction of a chimetic chalcone synthase gene into petunia results in reversible co-suppression of homologous gene in trans. Plant Cell, 1990,23:279-289
    
    58. Causier R B, Kieffer M, Davies B. MADS-box genes reach maturity. Science, 2002, 296: 275-276
    
    59. Chaidamsari T, Samanhudi I, Sugiarti H, Santoso D, Angenent G C, Maagd R A. Isolation and characterization of an AGAMOUS homologue from cocoa. Plant Sci, 2006, 170: 968-975
    
    60. Chang S J, Puryear J, Cainey J. A simple and efficient method for RNA isolating from pine trees. Plant Molecular Biology Reporter, 1993, 11:113-116
    
    61. Cho S, Jang S, Chae S. Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant Mol Biol, 1999, 40: 419-429
    
    62. Chuang C F, Meyerowitz E M. Specific and heritable genetics interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2000, 97: 4985-4990
    
    63. Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development. Science, 1991: 31-37
    
    64. Colombo L, Franken J, Koetje E. The petunia MADS box gene FBP11 determines ovule identity. Plant Cell, 1995, 7: 1859-1868
    
    65. Courtney-Gutterson N, Napoli C, Lemienx C. Modification of flower color in florist's chrysanthemum: Production of a white-flowering variety through molecular genetics. Biotechnology, 1994,12: 268-271
    
    66. Davies B, Egea-Cortines M, Andrade S E, Saedler H, Sommer H. Multiple interactions amongst floral homeotic MADS box proteins. EMBO J, 1996, 15: 4330-4343
    
    67. Davies B, Motte P, Keck E, Saedler H, Sommer H. PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. EMBO J, 1999, 18: 4023-4034
    
    68. Day C D, Irish V F. Cell ablation and the analysis of plant development. Trends Plant Sci, 2: 106-111
    
    69. Deyholos M K, Sieburth L E. Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron. Plant Cell, 2000,12:1799-1810
    
    70. Dezar C A, Tioni M F, Gonzalez D H, Chan R L. Identification of three MADS-box genes expressed in sunflower capitulum. Journal of Experimental Botany, 2003, 54: 1637-1639
    
    71. Durkovic J, Pichler V, Lux A. Micropropagetion with a novel pattern of adventitious rooting in Formosan sweetgum. Can J For Res, 2005, 35: 2775-2780
    
    72. Elena M, Kramer M, Alejandra J, Veronica S, Stilio D. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in Angiosperms. Genetics, 2004, 166: 1011-1023
    
    73. Feuillet C, Lauvergeat V, Deswarte C. Tissue- and cell-specific expression of a cinnamyl alcohol dehydrogenase promoter in transgenic poplar plants. Plant Mol Biol, 1995, 27: 651-667
    
    74. Fillatti J J, Sellmer J, McCown B, Haissig B, Comai L. Agrobacterium-mediated transformation and regeneration of Populus. Mol Gen Genet, 1987,206: 192-199
    
    75. Gao X M, Xia Y M, Li Q J. Isolation of two putative homologues of PISTILLATA and AGAMOUS from Alpinia oblongifolia (Zingiberaceae) and characterization of their expression. Plant Sci, 2006, 170: 674-684
    
    76. Gelvin S B. Agrobacterium and plant genes involved in T-DNA transfer and integration. Annual Review of Plant Physiology and Plant Molecular Biology, 2000, 51:233-256
    
    77. Gill R, Saxena P K. Somatic embryogenesis in Nicotiana tabacum L: induction by TDZ of direct embryo differentiation from cultured leaf discs. Plant Cell Rep, 1993, 12: 154-159
    
    78. Hamilton A J, Brown S, Yuanhai H. A transgene with repeated DNA causes high frequency, post-transcriptional suppression of ACC-oxidase gene expression in tomato. Plant J, 1998, 15: 737-746
    
    79. Hamilton A J, Lycett G W, Grierson D. Antisense gene that inhibits of synthese of the hormone ethylene in transgenic plant. Nature, 1990, 346: 284-287
    
    80. Hasebe M. Evolution of reproductive organs in land plants. Journal of Plant Research, 1999,112:463-474
    
    81. He S, Abad A R, Gelvin S T, Mackenzie S A. A cytoplasmid male sterility-associated mitochondrial protein causes pollen disruption in transgenic tobacco. Proc Nat Acad Sci USA, 1996,93:11763-11768
    
    82. Hernould M, Suharsono, Zabaleta E, Carde J P, Litvak S, Araya A, Mouras A. Impairment of tapetum and mitochondria in engineered male-sterile tobacco plants. Plant Mol Biol, 1998, 36: 499-508
    
    83. Holford P, Hernandez N, Newbury H J. Factors influencing the efficiency of T-DNA transfer during co-cultivation of Antirrhinum majus with Agrobacterium tumefaciens. Plant Cell Rep, 1992,1:196-199
    
    84. Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 2001,409: 525-529
    
    85. Horsch R B, Fry J E, Hoffmann N L, Eichholtz D, Rogers S G, Fraley R T. A simple and general method for transferring gene into plant. Science, 1985, 227: 1229-1231
    
    86. Huetteman C A, Preece J E. Thidiazuron: a potent cytokinin for woody plant cell tissue culture. Plant Cell Tissue Organ Cult, 1993, 33: 105-121
    
    87. Huetteman C A, Preece J E. Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Org Cult, 1993, 33: 105-119
    
    88. Hutchinson M J, Saxena P K. Role of purine metabolism in TDZ-induced somatic embryogenesis of geranium ( Pelargonium ×horturum) hypocotyls cultures. Physiol Plant, 1996,98:517-522
    
    89. Jack T, Broekman L L, Meyerowitz E M. The homeotic gene APETALA3 of Arablidopis thaliana eneodes a MADS box and is expressed in petals and stamens. Cell, 1992, 68:683-697
    
    90. Jager M, Hassanin A , Manuel M, Guyader H L, Deutsch J. MADS-box genes in Ginkgo biloba and evolution of the AGAMOUS family. Molecular Biology and Evolution, 2003, 20: 842-854
    
    91. Joersbo M, Donaldson I, Kreiberg J. Analysis of mannose selection used for transformation of sugar beet. Mol Breeding, 1998: 111-117
    
    92. Kater M M, Colomb L, Franken J, Busscher M, Masier O S, Campagne M M, Angenent G C. Multiple AGAMOUS homologous from cucumber and petunia differ in their ability to induce reproductive organ fate. Plant Cell, 1998, 10: 171-182
    
    93. Kempin S A, Mandel M A, Yan M F. Conversion of perianth into reproductive organs by ectopic expression of tobacco floral homeotic gene NAG1. Plant Physiology, 1993, 103: 1041-1046
    
    94. Kim M K, Sommer H E, Dean J F D, Merkle S A. Transformation of sweetgum via microprojectile bombardment of nodule cultures. In Vitro Cell Dev Biol Plant, 1999, 35: 37-42
    
    95. Kim, M K, Sommer H E, Bongarten B C, Merkle S A. High-frequency induction of adventitious shoots from hypocotyl segments of Liquidambar styraciflua L. by thidiazuron. Plant Cell Rep, 1997, 16: 536-540
    
    96. Kitahara K, Mataunoto S. Rose MADS-box genes 'MASAKO CI and DI' homologous to class C floral identity genes. Plant Sci, 2000,151: 121-134
    
    97. Klee H J, Hayford M B, Kretzmer K A, Barry G F, Kishore G M. Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell, 1991,11: 1187-1193
    
    98. Klimaszewska K, Smith D R. Maturation of somatic embryos of Pinus strobus is promoted by a high concentration of gellan gum. Physiologia Plantarum, 1997, 100: 949-957
    
    99. Kluchcr K M, Chow H, Reiser L, Fischer R L. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell, 1996, 8: 137-153
    
    100.Kramer E M, Jaramillo M A, Dtilio V. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in Angiosperms. Genetics, 2004,166: 1011-1023
    101 .Kyozu K A J, Koba Y T, Morita M, Shimamoto K. Spatially and temporally regulated expression of rice MADS-box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiology, 2000, 41:710-718
    102.Lamb R S, Irish V F. Functional divergence within the APETALA3/ PISTILLATA floral homeotic gene lineages. Proc Natl Acad Sci USA, 2003, 100: 6558-6563
    103.Leblay C, Chevreau E, Raboin L M. Adventitious shoot regeneration from in vitro leaves of several pear cultivars. Plant Cell Tissue Org Cult, 1991, 25: 99-105
    104.Lee H, Xiong L M, Gong Z, Ishitani M, Stevenson B, Zhu J K. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev, 2001,15:912-924
    105.Lelu M A, Astien C B, Rugeault A D, Gouez M L, Klimaszewska K. Somatic embryogenesis and plantlet development in Pinus sylvestris and Pinus pinaster on medium with and without growth regulators. Physiologia Plantarum, 1999, 105: 719-728
    106.Li X Y, Huang F H, Murphy J B, Gbur E E. Polyethylene glycol and maltose enhance somatic embryo maturation in loblolly pine (Pinus taeda L.). In Vitro Cell Dev Biol Plant, 1998, 34: 22-26
    107.Li Z N, Fang F, Liu G F, Bao M Z. Stable Afrobacterium-mediated genetic transformation of London plane tree (Platanus acerifolia Willd.) Plant Cell Rep, 2007,26:641-650
    108.Linden C G, Vosman B, Smulders M J M. Cloning and characterization of four apple MADS-box genes isolation from vegetative tissue. Journal of Experimental Botany, 2002,53:1025-1036
    109.Liu G F, Bao M Z. Adventitious shoot regeneration from in vitro cultured leaves of London plane tree (Platanus acerifolia Willd). Plant Cell Rep, 2003, 21: 640-644
    
    110.Liu J Y, Huang Y H, Ding B, Tauer C G. cDNA cloning and expression of a sweetgum gene that shows homology with Arabidopsis AGAMOUS. Plant Sci, 1999, 142: 73-82
    
    111.Lloyd G B, McCown B H. Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Proc Int Plant Prop Soc, 1980, 30: 421-427
    
    112.Lu C Y. The use of thidiazuron in tissue culture. In Vitro Cell Dev Biol Plant, 1993, 29: 92-96
    113.Malik K A, Saxena P K. TDZ induces high-frequency shoot regeneration in intact seelings of pea (Pisum sativum), chickpea (Cicer arietinum), and lentil (Lens culinaris). Aust J Plant Physiol, 1992, 19: 731-740
    114.Mandel M A, Gustafson-Brown C, Savidge B, Yanofsky M F. Molecular characterization of the Arabidopsis floral homeotic gene APETALAI. Nature, 1992, 360: 273-277
    115.Mariani C, Beuckeleer M D, Truettner J, Leemans J, Goldberg R B. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature, 1990, 347: 737-741
    116.Martin T, Hu M, Labbe H, Mchu G H S, Svircev A, Miki B. PpAG1, a homolog of a AGAMOUS, expressed in developing peach flowers and fruit. Canadian Journal of Botany, 2006, 84: 767-776
    117.Mary K, Montgomery, Xu S Q, Andrew F. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci USA, 1998,95: 15502-15507
    118.Maximova S N, Dandekar AM, Guiltinan M J. Investigation of Agrobacterium- mediated transformation of apple using green fluorescent protein: high transient expression and low stable transformation suggest that factors other than T-DNA transfer are rate-limiting. Plant Mol Bio, 1998, 37: 549-559
    119.Men S, Ming X, Wang Y, Liu R, Wei C, Li Y. Genetic transformation of two species of orchid by biolistic bombardment. Plant Cell Rep, 2003, 21: 592-598
    120.Merkle S A, Battle P J. Enhancement of embryogenic culture initiation from tissues of mature sweetgum trees. Plant Cell Rep, 2000, 19: 268-273
    121.Merkle S A, Neu K A, Battle P J, Bailey R L. Somatic embryogenesis from immature and mature tissues of sweetgum (Liquidambar styraciflua). Plant Sci, 1998, 132: 169-178
    122.Miguel C M, Oliveir M M. Transgenic almond (Prunus dulcis Mill.) plants obtained by Agrobacterium-mediated transformation of leaf explants. Plant Cell Rep, 1999, 18: 387-393
    123.Mizukami Y, Ma H. Determination of Arabidopsis floral meristem identity by AGAMOUS. Plant Cell, 1997, 9: 393-408
    124.Mizukami Y, Ma H. Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell, 1992, 71: 119-131
    125.Mizukami Y, Ma H. Separation of AG function in floral meristem determinacy from that in reproductive organ identity by expressing antisense AG RNA. Plant Molr Biol, 1995, 28:767-784
    126.Mok M C, Mok D W S, Tumer J E. Biological and biochemical effects of cytokinin-active phenylurea derivatives in tissue culture systems .HortScience, 1987, 22:1194-1197
    127.Moon Y H, Kang H G, Jung J Y. Determination of the motif responsible for interaction between the rice APETALA1/AGMOUS-LIKE9 family proteins using a yeast two-hybrid system. Plant Physiology, 1999, 120: 1193-1203
    128.Mukhopadhyay A, Arumugam N, Nandakumar P B A. Agrobacterium-mediated transformation of oilseed Brassica campestris: Transformation frequency is strongly influenced by the mode of shoot regneration. Plant Cell Rep, 1992, 11: 506-513
    129.Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 1962, 15: 473-497.
    130.Murthy B N S, Murch S J, Saxena P K. Thidiazuron: A potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant, 1998, 34: 267-275
    131.Murthy B N S, Murch S J, Saxena P K. Thidiazuron: A potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant, 1998, 34: 267-275
    132.Nieuwkerk V J P, Zimmerman R H. Thidiazuron stimulation of apple shoot proliferation in vitro. HortScience, 1986, 21: 516-518
    133.Norreel B S. Role of the host cell cycle in the Agrobacterium-mediated genetic transformation of Petunia: evidence of an S-phase control mechanism for T-DNA transfer. Planta, 1997, 201: 160-172
    134.Pnueli L, Hareven D, Rounsley S D, Yanofsky M F, Lifschitz E. Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. Plant Cell, 1994,6:163-173
    135.Preece J E, Huetteman C A, Ashby W C, Roth P L. Micro- and cutting propagation of silver maple. I. Results with adult and juvenile propagules. J Am Soc Hortic Sci, 1991,116:142-148
    136.Raemakers C, Jacobsen E, Visser R G F. Histology of somatic embryogenesis and evaluation of somaclonal variation in cassava. Proc of the Second Inter Sci Meet of the Cassava Biotechnology Network. CIAT Working Document, 1994,150: 336-346
    137.Rios G, Lsow A, Hertel B, Breuer F, Schaefer S, Broich M, Kleinow T, Jasik J, Winter J, Ferrando A, Farras R S, Koncz C. Rapid identification Aabidopsis insertion mutants by non-radioactive detection of T-DNA tagged genes. Plant J, 2002, 32: 243-253
    138.Ru T L, Edge R, Regan S, Nicolas O. Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. Plant J, 1998, 15: 625-634
    139.Sallaud C, Gay C, Larmande P, Bes M, Piffanelli P, Piegu B, Droc G, Regad F, Bourgeois E, Meynard D, Perin C, Sabau X, Ghesquiere A, Glaszmann J C, Delseny M, Guiderdoni E. High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J, 2004, 39: 450-464
    140.Sambrook J, Russell D W. Molecular Cloning: A Laboratory Mannal, 3rd ed. Cold Spring Harbor Lab Press, 2001. 黄培堂等译.分子克隆试验指南.北京:科学出版社,2002
    141.Savidge B, Rounsley S D, Yanofsky M F. Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell, 1995,7:721-733
    142.Savin K W, Baudinette S C, Graham M W. Antisense ACC oxidase RNA delays carnation petal senescence. HortScience, 1995, 30: 970-972
    143.Saxena P K, Malik K A, Gill R. Induction by TDZ of somatic embryogenesis in intact seedlings of peanut. Planta, 1992, 187: 421-424
    144.Schlappi M, Holn B. Competence of immature maize embryos for Agrobacierium-mediated gene transfer. Plant Cell, 1992, 4: 7-16
    145.Schwarz Z S, Huijser P, Nacken W. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science, 1990, 250: 931-936
    146. Shore P, Sharrocks A. The MADS-box family of transcription factors. Eur J Biochem, 1995,229:1-13
    147.Sijen T, Wellink J, Hiriart J B, and Kammen A V. RNA-mediated virus resistance: role of repeated transgenes and delineation of targeted regions. Plant Cell, 1996, 8: 2277-2294
    148.Skinner J S, Meilan R, Brunner A M, Strauss S H. Options for genetic engineering of floral sterility in forest trees. In: Jain S M, Minocha S C (Eds). Molecular Biology of Woody Plants, Volume 1. Kluwer Academic Publishers, Dordrecht, Netherlands, 1999, 135-153
    149.Skipper M, Johansen L B, Pedersen K B, Frederiksen S, Johansen B B. Cloning and transcription analysis of an AGAMOUS and SEEDSTICK ortholog in the orchid Dendrobium thyrsiflorum (Reichb.f.).Gene, 2006, 366: 266-276
    150.Smith N A, Singh S P, Wang M, Stoutjesdijk P, Green A, Waterhouse P M. Total silencing by intron-spliced hairpin RNAs. Nature, 2000, 407: 319-320
    151.Sommer H E, Brown C L. Embryogenesis in tissue' cultures of sweetgum. For Sci, 1980, 26: 257-260
    152.Song I J, Na Kamura T, Fu Kuda T, Yokoyama J. Spatiotemporal expression of duplicate AGAMOUS orthologues during floral development in Phalaenopsis. Development Genes Evolution, 2006, 216: 301-313
    153.Sotak R J, Sommer H E, Merkle S A. Relation of the developmental stage of zygotic embryos of yellow-poplar to their somatic embryogenic potential. Plant Cell Rep, 1991,10: 175-178
    154.Spena A, Saedler H, Sommer H, Rotino G L. Methods for producing parthenocarpic or female sterile transgenic plant. EP Patent, 0951558, 2005-3-16
    155.Stefan F, Richard G H I, Martin K, Lucie P, Stefan R H, Detlef W, Marco B, Maarten K, Lucia C, Martin M K, Brendan D, Angenent G C. Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell, 2005, 17: 1424-1433
    156.Strauss S H, Rottmann W H, Brunner A M, Sheppard L A. Genetic engineering of reproductive sterility in forest trees. Mol Breeding, 1995, 1: 5-26
    157.Sullivan J, Lagrimini L M. Transformation of Liquidambar styraciflua using Agrobacterium tumefaciens. Plant Cell Rep, 1993, 12: 303-306
    158.Szweykowska-Kulinska Z, Jarmolowski A, Figlerowicz M. RNA interference and its role in the regulation of eucaryotic gene expression. Acta Biochim, 2003, 50: 217-229
    159.Tandre K, Svenson M, Svensson M E, Engstrom P. Conservation of gene structure and activity in the regulation of reproductive organ development of conifers and angiosperms. Plant J, 1998, 374: 615-623
    160.Tang G, Zamore P D. Biochemical dissection of RNA silencing in plants. Methods Mol Biol, 2004, 257: 223-244
    161.Taylor L P, Jorgensen R. Conditional male fertility in chalcone synthase-deficient petunia. J Hered, 1992, 83: 11-17
    162.Theissen C, Becker A, Di Rosa A. A short history of MADS-box genes in plants. Mol Biol, 2000, 42: 115-119
    
    163.Theissen G, Saedler H. Floral quartets. Nature, 2001, 409: 469-471
    164.Theissen G, Saedler H. MADS box genes in plant ontogeny and phylogeny: Haeckel's 'biogenetic law' revisited. Curr Opin Genet Dev, 1995, 5: 628-639
    165.Theissen G, Strater T, Fischer A, Saedler H. Structural characterization, chromosomal localization and phylogenetic evaluation of two pairs of AGAMOUS-like MADS-box genes from maize. Gene, 1995, 156: 155-166
    166.Theissen G. Development of floral organ identity: Stories from the MADS house. Curr Opin Plant Biol, 2001,4: 75-85
    167.Thorsness M K, Kandasamy M K, Nasrallah M E, Nasrallah J B. A brassica S-locus gene promoter targets toxic gene expression and cell death to the pistil and pollen of transgenic Nicotiana. Devel Biol, 1991, 143: 173-184
    168.Tinland B. The integration of T-DNA into plant genomes. Trends Plant Sci, 1996, 1: 178-184
    169.Treves R P, Kahana A, Rosenman N, Xiang Y, Silberstein L. Expression of multiple AGAMOUS-like genes in male and female flowers of cucumber (Cucunis sativus L.). Plant Cell Physiology, 1998, 39: 701-710
    170.Turk B A, Swartz H J, Zimmerman R H. Adventitious shoot regeneration from in vitro-cultured leaves of Rubus genotypes. Plant Cell Tissue Organ Cult, 1994, 38: 11-17
    171.Vendrame W A, Holliday C P, Merkle S A. Clonal propagation of hybrid sweetgum (Liquidambar styraciflua×L. formosana) by somatic embryogenesis. Plant Cell Rep, 2001,20:691-695
    172.Villemont E,Dubois F,Sangwan R S,Vasseur G,Bourgeois Y,Sangwan-Norreel B S.Role of the host cell cycle in the Agrobacterium-mediated genetic transformation of Petunia:evidence of an S-phase control mechanism for T-DNA transfer.Planta,1997,201,160-172
    173.Visser C,Quresni J A,Gill R.Morphoregulatory role of TDZ.Substitution of auxin of cytokinin requireanent for the induction of somatic embryogenesis in Geranium hypocotyls cultures.Plant Physiol,1992,99:1704-1707
    174.Wang M B,Waterhouse P M.Application of gene silencing in plants.Curr Opin Plant Biol,2002,5:146-150
    175.Wang M B,Waterhouse P M.High-efficiency silencing of a β-glucuronidase gene in rice is correlated with repetitive transgene structure but is independent of DNA methylation.Plant Mol Biology,2000,43:67-82
    176.Waterhouse P M,Graham M W,Wang M B.Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA.Proc Natl Acad Sci USA,1998,95:13959-13964
    177.Waterhouse P M,Helliwell C A.Exploring plant genomes by RNA-induced gene silencing.Nat Rev Genet,2003,4:29-38
    178.Weigel D,Meyerowitz E M.The ABCs of floral homeotic genes.Cell,1994,78:203-209
    179.Wesley S V,Helliwell C A.,Smith N A,Wang M B,Rouse D T,Liu Q,Gooding P S,Singh S P,Abbott D,Stoutjesdijk P A,Robinson S P,Gleave A P,Green A G,Waterhouse P M.Construct design for efficient,effective and high-throughput gene silencing in plants.Plant J,2001,27:581-590
    180.Worrall D,Hird D L,Hodge R,Paul W,Draper J,Scott R.Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco.Plant Cell,1992,4:759-771
    181.Wu F,Xu Y,Chang F Q,Li X D,Ma R C.Cloning and characterization of two MADS-box genes from peach(Prunus persica).Acta Genetica Sinica,2004,31:908-918
    182.Xie Q,Frugis G,Colgan D,Chua N H.Arabidopsis NACL transduces auxin signal downstream of TIRI to promote lateral root development.Genes Dev,2000,14:3024-3036
    183.Yamaguchi T,Lee D Y,Miyao A,Hirochika H,An G,Hirano H Y.Functional diversification of the two C-Class MADS-box genes OSMADS3 and OSMADS58 in Oryza sativa.Plant Cell,2006,18:15-28
    184.Yanofsky M F, Ma H, Bowman J L, Drews G N, Feldmann K A, Meyerowitz E M. The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. Nature,1990, 346: 35-39
    185.Yepes L M, Aldwinckle H S. Factors that affect leaf regeneration efficiency in apple, and effect of antibiotics in morphogenesis. Plant Cell Tissue Organ Cult, 1994, 37: 257-269
    186.Yu D, Kotilainen M, Pollanen E, Mehto M, Elomaa P, Helariutta Y, Albert V A, Teeri T H. Organ identity genes and modified patterns of flower development in Gerbera hybrida. Plant J, 1999, 17: 51-62
    187.Zahn L M, Kong H Z, Lee B, Ensmack J H. The evolution of the SEPALLATA subfamily of MADS-box genes: A preangiosperm origin with multiple duplications throughout angiosperm history. Genetics, 2005,169: 2209-2223
    188.Zambryski P, Joos H, Genetello C, Leemans J, Van Montagu M, Schell J. Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J, 1983, 2: 2143-2150
    189.Zhao R, Dielen V, Kinet J M, Boutry M. Cosuppression of a plasma membrane H~+-ATPase isoform impairs sucrose translocation, stomatal opening, plant growth, and male fertility. Plant Cell, 2000, 12: 535-546

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700