用户名: 密码: 验证码:
斯钙素1在初生奶牛胃肠道的表达及其对氧化应激和新型钙离子通道的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斯钙素1(Stanniocalcin1, STC-1)是一种最初在硬骨鱼类发现的低钙性激素,在鱼类它是由紧邻肾脏而且在整个肾脏中均有分布的特殊器官—斯坦尼氏小体所分泌,该激素主要通过调节腮、小肠和肾脏Ca2+和无机磷酸盐(Inorganic phosphate, Pi)的转运来发挥其抗高钙效应。哺乳动物体内,STC-1在多种器官中均有表达,包括Ca2+吸收上皮如小肠、回肠、肾脏、胎盘以及其它血管化组织。哺乳动物STC-1是一多功能效应蛋白,如它能调节肾脏和肠道Ca2+/Pi吸收,小鼠中其超表达可致高血Pi、侏儒症、代谢率增加等效应,近来发现它和癌症也有一定的联系。STC-1的表达受1,25(OH)2D3等理化因素调节。然而,STC-1在哺乳动物中的多种生理作用还未完全清楚,还有待进一步研究。
     1.原核表达牛源STC-1重组蛋白
     本试验以奶牛肾脏组织提取的总RNA合成cDNA,然后使用PCR技术扩增出除信号肽序列外的奶牛STC-1全长结构基因。利用T-A克隆原理将扩增产物克隆到pMD-18T载体,转化至DH5α感受态细胞,经过夜培养后挑取单菌落进行扩大培养,然后将菌液进行测序。结果表明该扩增产物和GenBank登录号BC105435.1奶牛斯STC-1基因序列完全符合。然后将测序正确的扩增产物进行双酶切并亚克隆到pET-32a+表达载体,转化到感受态细胞Rosetta(DE3)中,经0.6mM IPTG诱导3h后,成功表达出奶牛STC-1融合蛋白。
     2.STC-1蛋白在奶牛胃肠道差异性表达情况
     本实验分别采用半定量实时荧光PCR和western blotting技术来分析STC-1基因和蛋白相对表达量。STC-1基因表达情况以表达率形式予以展示:胃和肠道的相对表达值除以肾脏的相对表达值的百分数。结果显示,在胃中STC-1基因和蛋白表达量最高是在皱胃;而在肠道中十二指肠和结肠的基因表达量最高,蛋白表达量最高却是在十二指肠和空肠。肾脏中STC-1基因和蛋白的表达量均高于胃肠道中的表达量。另外,本实验发现肠道斯钙素1在30bp处出现免疫条带,说明该STC-1可能分子量约为50kD (STC50),而非更大分子量(bigSTC)。从结果可以看出STC-1表达最丰富的部位正好是胃肠道消化和吸收最活跃的部位,表明STC-1可能参与了奶牛消化与吸收过程。
     3.新生牛小肠上皮细胞培养方法的建立
     本实验建立了一种从新生犊牛小肠组织获取小肠上皮细胞的方法。0.25%胰蛋白酶、0.1%胶原酶Ⅰ以及胶原酶Ⅺ/中性蛋白Ⅰ混合物等方法用于从小肠组织分离小肠绒毛和隐窝。然后利用小肠上皮细胞和成纤维细胞的贴壁能力和对胰蛋白酶消化耐受性之间的差异来纯化小肠上皮细胞。使用上皮细胞特异性角蛋白抗体进行免疫细胞化学染色的方法来区别培养物中上皮细胞和成纤维细胞。光学和电子显微镜用于细胞形态学观察。结果表明所有分离方法均能分离一定量隐窝和/或肠绒毛,但胶原酶Ⅰ分离效率更高、所得消化物结构更完整,但需要消化很长时间。原代培养物能在孵育3-7d内贴壁,其间夹杂着一定量成纤维细胞和平滑肌样细胞。经多种方法纯化后,能得到较高纯度的上皮样细胞,该培养物能存活1.5月并传代5-7次。从培养细胞中能克隆到蔗糖酶、钙结合蛋白和上皮钙离子通道,说明该培养物保留了部分小肠上皮细胞生物活性。根据以上特点说明该培养物能用于小肠上皮细胞功能的研究。
     4.STC-1对过氧化氢诱导的奶牛肠道上皮细胞损伤的作用研究
     该研究利用H_2O_2处理原代小肠上皮细胞以模拟慢性肠炎造成的细胞损伤。上皮细胞经重组质粒超表达STC-1后,再由200μM H2O2处理不同时间,以研究STC-1对氧化损伤的作用。AO/EB双染色和台盼蓝排除法用于鉴定细胞的损伤情况,STC-1和凋亡相关蛋白表达情况由Real-time PCR和western blotting方法检测。结果表明STC-1基因和蛋白表达均随H2O2诱导时间延长而增加,H_2O_2诱导的细胞损伤也具有时间依赖而加剧的趋势,该趋势能为STC-1过表达而逆转。此外,细胞过表达STC-1也能上调凋亡相关蛋白Bcl-2的表达,同时轻微下调caspase-3的表达。本实验表明STC-1保护细胞免受氧化损伤的可能机制之一是它具有抗氧化和抗凋亡作用,因此,STC-1是奶牛慢性肠炎的一个潜在诊断或治疗指标。
     5.STC-1对Caco2细胞钙离子转运蛋白调节作用研究
     本实验的目的是初步探索STC-1影响Ca2+吸收的可能分子机制,多种新型Ca2+通道和维生素D受体是本研究的对象。该实验采用外源导入真核表达载体的方式增强Caco2细胞STC-1的表达,导入特异性siRNA的方式抑制该激素的表达,两方面分别观察TRPV5、TRPV6、PMCA1b、NCX1和VDR等钙离子转运蛋白表达水平结果表明,增强STC-1表达后TRPV5、TRPV6和VDR mRNA和蛋白的表达水平均有所下调,而抑制了该激素的表达后TRPV5和TRPV6的表达有所上升,尤以TRPV6表达明显,当添加外源重组STC-1后,其表达又下调了。但增强和抑制该激素的表达都对PMCA1b和NCX1表达没有显著影响。因此,斯钙素1影响上皮细胞Ca2+摄取可能是通过抑制了Ca2+进入细胞的通道而实现的。
Stanniocalcin1(STC-1) is hypocalcemic hormone that is originally identified in fish where it is released by specialized organs, the corpuscles of Stannius that are located adjacent to the kidney and scattered throughout the kidney and exerts antihypercalcemic effect by regulating Ca2+and inorganic phosphate (Pi) transport in the gill, intestine, and kidney. This hormone has also been recently identified in mammals where it is expressed in multiple organs including Ca2+-transporting epithelia like intestine, colon, kidney, placenta and other vascularized tissues. STC-1acts as local mediator, such as modulating gut/renal Ca2+/Pi excretion, over-expressing in mice results in high serum phosphate, dwarfism, and increased metabolic rate, and being liked to cancer in recent reports. STC-1was modulated by1,25(OH)2D3and other physical and chemical factors treatment. Nevertheless, the exact physiological effects of STC-1in mammals are less defined, and further studies are needed to establish its functional importance.
     1. The prokaryotic expression of cow's STC-1fusion protein
     The cDNA was synthesized from the total RNA obtained from calf kidney tissue, and the full-length of CDS of STC-1was then amplified using PCR. The PCR amplicon was cloned into a pMD-18T vector, transformed into DH5a, cultured in large scale and then sequenced. The amplicon with completely correct sequence was subcloned into the pET-32a+vector and transformed into Rosetta (DE3) competent cells. After a3-h induction by0.6mM IPTG, we successfully expressed the fusion protein of STC-1.
     2. The differential expression of STC-1in bovine gastrointestinal tract
     Real-time PCR and western blotting assays were used to analyze the relative expression levels of STC-1gene and protein, respectively. The data of relative gene expression levels were shown as the expression ratio:the relative value of stomach and intestinal tract to the standard sample in kidney. Quantitative analyses indicated that the highest levels of both STC-1mRNA and protein are expressed in the kidney. In contrast, the highest STC-1mRNA and protein levels in the stomach are expressed in the abomasum. In addition, the duodenum and colon exhibited the highest STC-1mRNA relative expression ratios among the intestines, whereas the highest protein expression levels were found in the duodenum and jejunum. Furthermore, the result showed that the STC-1detected in this experiment may be a STC50rather than a big STC. Thus, STC-1
     3. The development of a method for preparation of bovine intestinal epithelial cell (IEC) primary cultures
     0.25%trypsin,0.1%(w/v) collagenase I, and collagenaseXI/dispase I digestion were used to isolate the villi and crypts, Purification of the IEC was achieved using the difference of adherence and tolerance of trypsin digestion between epithelial cells and fibroblast. The characterization test for IEC was performed by an immunocytochemistry staining for cytokeratins that unique to epithelium. Optical and electron microscopy assay were used to investigate the cellular morphology. The results showed that the optimal primary cultures were achieved by using a collagenase I digestion singly.7-12days post-incubation, the primary cultures reached confluence and consisted of epithelial colonies together with varying amounts of fibroblasts and smooth-muscle-like cells. Combination of various strategies for purification could obtain the epithelial cells with a higher percentage of purification. In addition, the sucrase, Calbindin D9k and Ca2+channels genes were cloned from the cultures also suggests that the physiological potential of IEC is still maintained in vitro. The primary cultures could be maintained for a maximum period of1.5month and be sub-cultured5-7times. Thus, these cultured cells displayed important functional properties that could be utilized in future studies of primary IEC.
     4. STC-1protects bovine intestinal epithelial cells from hydrogen peroxide-induced damage
     This study utilized the primary intestinal epithelial cells (IEC) exposed to hydrogen peroxide (H2O2) for different time intervals to mimic the chronic enteritis induced cellular damage. Prior to treatment with200μM H2O2, the cells were transfected with recombinant plasmid for48h to over-express STC-1. AO/EB double staining and trypan blue exclusion assays were then utilized to detect the viability and death rate of the cells, respectively. The expressions of STC-1and apoptosis-related proteins in the cells were detected by real-time PCR and western blotting. The results indicated that both of the STC-1mRNA and protein expression levels positively correlated with the duration of H2O2treatment. The cellular damage induced by H2O2in bovine IEC in a time-dependent manner, and this effect could be attenuated by the over-expression of STC-1. Furthermore, the over-expression of STC-1can up-regulate Bcl-2protein expression, and down-regulate caspase-3expression slightly in damaged cells. This study suggested that STC-1may play a protective role in intestinal cells through its activity of anti-oxidative stress. Thus, STC-1may be a therapeutic target for chronic enteritis.
     5. Regulation of intestinal epithelial calcium transport proteins by STC-1in Caco2cells
     This study has examined the expression levels of the calcium transport proteins involved in transcellular transport across intestinal epithelia in Caco2cells following over-expression or inhibition of STC-1. These proteins include the transient receptor potential vanilloid members (TRPV)5and6, the plasma membrane calcium ATPase lb (PMCAlb), the sodium/calcium exchanger (NCX1), and the vita min D receptor (VDR). Both gene and protein expressions of TRPV5and6were attenuated in response to over-expression of STC-1, and the opposite trend was observed in cells treated with siRNASTC-1. To further investigate the ability of STC-1to influence TRPV6expression, cells were treated with100ng/mL recombinant human STC-1(rhSTC-1) for4h following pre-transfection with siRNASTC-1for48h. Intriguingly, the increase in the expression of TRPV6resulting from siRNASTC-1was reversed by treatment with rhSTC-1. No significant effect of STC-1on the expression of PMCAlb, NCX1or VDR was observed in this study. We therefore conclude that the inhibition of STC-1on calcium transport in intestinal epithelia is due at least in part to its negative regulation of expression of the epithelial channels TRPV5/6that mediate calcium influx.
引文
1. Abel Mv. Insight into the hormonal regulation of the epithelial calcium channels TRPV5 & TRPV6. Sl:sn,2006.
    2. Arigami T, Uenosono Y, Ishigami S, Hagihara T, Haraguchi N, Matsushita D, Yanagita S, Nakajo A, Okumura H, Hokita S, and Natsugoe S. Expression of stanniocalcin 1 as a potential biomarker of gastric cancer. Oncology. 2012, 83: 158-164.
    3. Bartsch H, and Nair J. Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch Surg.2006,391:499-510.
    4. Baten A, Sakamoto K, and Shamsuddin A. Long-term culture of normal human colonic epithelial cells in vitro. The FASEB journal.1992,6: 2726-2734.
    5. Belkacemi L, Gariepy G, Mounier C, Simoneau L, and Lafond J. Calbindin-D9k (CaBP9k) localization and levels of expression in trophoblast cells from human term placenta. Cell Tissue Res.2004,315:107-117.
    6. Bell SE, Mavila A, Salazar R, Bayless KJ, Kanagala S, Maxwell SA, and Davis GE. Differential gene expression during capillary morphogenesis in 3D collagen matrices regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. J Cell Sci 2001, 114:2755-2773.
    7. Bernucci L, Henriquez M, Diaz P, and Riquelme G. Diverse calcium channel types are present in the human placental syncytiotrophoblast basal membrane. Placenta. 2006,27:1082-1095.
    8. Bindels R, Hartog A, Abrahamse S, and Van Os C. Effects of pH on apical calcium entry and active calcium transport in rabbit cortical collecting system. Am J Physiol Renal Physiol.1994,266:F620-F627.
    9. Block GJ, Ohkouchi S, Fung F, Frenkel J, Gregory C, Pochampally R, DiMattia G, Sullivan DE, and Prockop DJ. Multipotent stromal cells are activated to reduce apoptosis in part by upregulation and secretion of Stanniocalcin 1. Stem Cells.2009, 27:670-681.
    10. Booth C, O'Shea JA, and Potten CS. Maintenance of functional stem cells in isolated and cultured adult intestinal epithelium. Exp Cell Res.1999, 249:359-366.
    11. Bornstein MB. Reconstituted rat-tail collagen used as substrate for tissue cultures on coverslips in Maximow slides and roller tubes. Lab Invest.1958,7:134-137.
    12. Bronner F. Mechanisms and functional aspects of intestinal calcium absorption. J Exp Zool A Ecol Genet Physiol.2003,300:47-52.
    13. Brown EM. Physiology of calcium homeostasis. The parathyroids. 2001,2:167-181.
    14. Butkus A, Roche PJ, Fernley RT, Haralambidis J, Penschow JD, Ryan GB, Trahair JF, Tregear GW, and Coghlan JP. Purification and cloning of a corpuscles of Stannius protein from Anguilla australis. Mol cel endocrinol.1987,54:123-133.
    15. Butler D, and Cadinouche MA. Fractional reabsorption of calcium, magnesium and phosphate in the kidneys of freshwater North American eels (Anguilla rostrata LeSueur) following removal of the corpuscles of Stannius. J Comp Physiol B.1995, 165:348-358.
    16. Butler D, Zhang D, Villadiego R, Oudit G, Youson JH, and Cadinouche M. Response by the corpuscles of Stannius to hypotensive stimuli in three divergent ray-finned fishes (Amia calva, Anguilla rostrata, and Catastomus commersoni):cardiovascular and morphological changes. Gen Comp Endocrinol.2003,132:198-208.
    17. Butler DG, and Zhang DH. Corpuscles of Stannius Secrete Renin or an Isorenin That Regulates Cardiovascular Function in Freshwater North American Eels, Anguilla rostrata LeSueur. Gen Comp Endocrinol.2001,124:199-217.
    18. Caro I, Boulenc X, Rousset M, Meunier V, Bourrie M, Julian B, Joyeux H, Roques C, Berger Y, and Zweibaum A. Characterisation of a newly isolated Caco-2 clone (TC-7), as a model of transport processes and bio transformation of drugs, Int J Pharm.1995,116:147-158.
    19. Chan D, Jones IC, Henderson I, and Rankin J. Studies on the experimental alteration of water and electrolyte composition of the eel (Anguilla anguilla L.). J Endocrinol. 1967,37:297-317.
    20. Chang A-M, and Reddel RR. Identification of a second stanniocalcin cDNA in mouse and human: stanniocalcin 2. Mol cel endocrinol.1998a,141:95-99.
    21. Chang AC, Cha J, Koentgen F, and Reddel RR. The murine stanniocalcin 1 gene is not essential for growth and development. Mol Cell Biol.2005,25:10604-10610.
    22. Chang AC, Dunham MA, Jeffrey KJ, and Reddel RR. Molecular cloning and characterization of mouse stanniocalcin cDNA. Mol Cell Endocrinol.1996,124: 185-187.
    23. Chang AC, Janosi J, Hulsbeek M, de Jong D, Jeffrey KJ, Noble JR, and Reddel RR. A novel human cDNA highly homologous to the fish hormone stanniocalcin. Mol Cell Endocrinol.1995,112:241-247.
    24. Chang AC, Jellinek D, and Reddel R. Mammalian stanniocalcins and cancer. Endocr Relat Cancer.2003,10: 359-373.
    25. Chantret I, Barbat A, Dussaulx E, Brattain MG, and Zweibaum A. Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells:a survey of twenty cell lines. Cancer Res.1988,48:1936-1942.
    26. Choi J, and Lee S. Secretory and extracellular production of recombinant proteins using Escherichia coli. Applied Microbiology and Biotechnology.2004,64:625-635.
    27. Chopra DP, and Yeh K-Y. Long-term culture of epithelial cells from the normal rat colon. In vitro.1981,17: 441-449.
    28. Coulombe PA, and Wong P. Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds. Nat Cell Biol.2004,6:699-706.
    29. Daniel AR, and Lange CA. Protein kinases mediate ligand-independent derepression of sumoylated progesterone receptors in breast cancer cells. Proceedings of the National Academy of Sciences.2009,106:14287-14292.
    30. De Niu P, Olsen HS, Gentz R, and Wagner GF. Immunolocalization of stanniocalcin in human kidney. Mol Cell Endocrinol.1998,137:155-159.
    31. De Niu P, Radman DP, Jaworski EM, Deol H, Gentz R, Su J, Olsen HS, and Wagner GF. Development of a human stanniocalcin radioimmunoassay: serum and tissue hormone levels and pharmacokinetics in the rat. Mol Cell Endocrinol.2000, 162: 131-144.
    32. Delbecchi L, Miller N, Prud'homme C, Petitclerc D, Wagner G, and Lacasse P. 17β-estradiol reduces milk synthesis and increases stanniocalcin gene expression in the mammary gland of lactating cows. Livest Prod Sci.2005,98:57-66.
    33. den Dekker E, Hoenderop JG, Nilius B, and Bindels RJ. The epithelial calcium channels, TRPV5 & TRPV6: from identification towards regulation. Cell calcium. 2003,33:497-507.
    34. Deol HK, Varghese R, Wagner GF, and Dimattia GE. Dynamic regulation of mouse ovarian stanniocalcin expression during gestation and lactation. Endocrinology. 2000, 141:3412-3421.
    35. Dibb-Fuller M, Best A, Stagg D, Cooley W, and Woodward M. An in-vitro model for studying the interaction of Escherichia coli 0157:H7 and other enteropathogens with bovine primary cell cultures. JMed Microbiol.2001,50:759-769.
    36. DiMattia GE, Varghese R, and Wagner GF. Molecular cloning and characterization of stanniocalcin-related protein. Mol Cell Endocrinol.1998,146:137-140.
    37. Dimitrov DS, and Marks JD.2009. Therapeutic antibodies:current state and future trends-is a paradigm change coming soon? Therapeutic Antibodies, p 1-27. Springer.
    38. Du YZ, Gu XH, Li L, and Gao F. The diagnostic value of circulating Stanniocalcin 1 mRNA in non-small cell lung cancer. J Surg Oncol.2011,104:836-840.
    39. Eckermann-Ross C. Hormonal regulation and calcium metabolism in the rabbit. Veterinaiy Clinics of North America:Exotic Animal Practice.2008,11:139-152.
    40. Ellard JP, McCudden CR, Tanega C, James KA, Ratkovic S, Staples JF, and Wagner GF. The respiratory effects of Stanniocalcin 1 (STC-1) on intact mitochondria and cells:STC-1 uncouples oxidative phosphorylation and its actions are modulated by nucleotide triphosphates. Mol Cell Endocrinol.2007,264:90-101.
    41. Ellis TJ, and Wagner GF. Post-transcriptional regulation of the stanniocalcin gene by calcium. JBiol Chem.1995,270:1960-1965.
    42. Evans GS, Flint N, Somers A, Eyden B, and Potten CS. The development of a method for the preparation of rat intestinal epithelial cell primary cultures. Journal of Cell Science.1992,101:219-231.
    43. Follmann W, Weber S, and Birkner S. Primary cell cultures of bovine colon epithelium:isolation and cell culture of colonocytes. Toxicology in vitro.2000,14: 435-445.
    44. Feghali CA, and Wright TM. Cytokines in acute and chronic inflammation. Front Biosci.1997,2:d12-26.
    45. Fenwick JC, and So YP. A perfusion study of the effect of stanniectomy on the net influx of calcium 45 across an isolated eel gill. Journal of Experimental Zoology. 1974,188:125-131.
    46. Filvaroff EH, Guillet S, Zlot C, Bao M, Ingle G, Steinmetz H, Hoeffel J, Bunting S, Ross J, and Carano RA. Stanniocalcin 1 alters muscle and bone structure and function in transgenic mice. Endocrinology.2002,143:3681-3690.
    47. Flik G, Labedz T, Neelissen JA, Hanssen RG, Wendelaar Bonga SE, and Pang PK. Rainbow trout corpuscles of Stannius:stanniocalcin synthesis in vitro. Am J Physiol. 1990,258:R1157-1164.
    48. Flik G, and Verbost P. Calcium transport in fish gills and intestine. Journal of experimental biology.1993,184:17-29.
    49. Flint N, Cove FL, and Evans GS. A low-temperature method for the isolation of small-intestinal epithelium along the crypt-villus axis. Biochem. J. 1991,280: 331-334.
    50. Fontaine M. stanniu'corpuscles and ionic Ca, K, Na) of the interior environment of the ee1(Anguilla anguilla L). C R Acad Sci Hebd Seances Acad Sci.1964,259:875.
    51. Freshney RI, and Freshney MG. Culture of epithelial cells:Wiley, com, 2004.
    52. Friedman PA, and Gesek FA. Cellular calcium transport in renal epithelia: measurement, mechanisms, and regulation. Physiol Rev.1995,75:429-471.
    53. Fujiwara Y, Sugita Y, Nakamori S, Miyamoto A, Shiozaki K, Nagano H, Sakon M, and Monden M. Assessment of Stanniocalcin 1 mRNA as a molecular marker for micrometastases of various human cancers. Int J Oncol.2000,16:799-804.
    54. Fukamachi H. Proliferation and differentiation of fetal rat intestinal epithelial cells in primary serum-free culture. Journal of Cell Science.1992, 103:511-519.
    55. Garrett FD. The development and phytogeny of the corpuscle of Stannius in ganoid and teleostean fishes. J Morphol.1942,70:41-67.
    56. Gerritsen ME, Soriano R, Yang S, Ingle G, Zlot C, Toy K, Winer J, Draksharapu A, Peale F, and Wu TD. In silico data filtering to identify new angiogenesis targets from a large in vitro gene profiling data set. Physiol genomics.2002,10: 13-20.
    57. Gibson P, Hermanowicz A, Verhaar H, Ferguson D, Bernal AL, and Jewell D. Isolation of intestinal mononuclear cells:factors released which affect lymphocyte viability and function. Gut.1985,26:60-68.
    58. Gibson PR, van de Pol E, Maxwell LE, Gabriel A, and Doe WF. Isolation of colonic crypts that maintain structural and metabolic viability in vitro. Gastroenterology. 1989,96:283-291.
    59. Greenwood MP, Flik G, Wagner GF, and Balment RJ. The corpuscles of Stannius, calcium-sensing receptor, and stanniocalcin: responses to calcimimetics and physiological challenges. Endocrinology.2009, 150:3002-3010.
    60. Grossmann J, Walther K, Artinger M, Kiessling S, Steinkamp M, Schmautz W-K, Stadler F, Bataille F, Schultz M, and Scholmerich J. Progress on isolation and short-term ex-vivo culture of highly purified non-apoptotic human intestinal epithelial cells (IEC). Eur J Cell Biol.2003,82:262-270.
    61. Haddad M, Roder S, Olsen HS, and Wagner GF. Immunocytochemical localization of stanniocalcin cells in the rat kidney. Endocrinology.1996, 137:2113-2117.
    62. Hasilo CP, McCudden CR, Gillespie JR, James KA, Hirvi ER, Zaidi D, and Wagner GF. Nuclear targeting of stanniocalcin to mammary gland alveolar cells during pregnancy and lactation. Am JPhysiol Endocrinol Metab.2005,289:E634-642.
    63. Hata Y, Ota S, Nagata T, Uehara Y, Terano A, and Sugimoto T. Primary colonic epithelial cell culture of the rabbit producing prostaglandins. Prostaglandins.1993, 45:129-141.
    64. Hoenderop J, Voets T, Hoefs S, Weidema F, Prenen J, Nilius B, and Bindels R. Homo-and heterotetrameric architecture of the epithelial Ca2+channels TRPV5 and TRPV6. EMBO J.2003,22:776-785.
    65. Hoenderop JG, Nilius B, and Bindels RJ. Calcium absorption across epithelia. Physiol Rev.2005,85:373-422.
    66. Holmes DI, and Zachary IC. Vascular endothelial growth factor regulates Stanniocalcin 1 expression via neuropilin-1-dependent regulation of KDR and synergism with fibroblast growth factor-2. Cell Signal. 2008,20:569-579.
    67. Holt LJ, Herring C, Jespers LS, Woolven BP, and Tomlinson IM. Domain antibodies: proteins for therapy. Trends Biotechnol.2003,21:484-490.
    68. Huang L, Belousova T, Chen M, DiMattia G, Liu D, and Sheikh-Hamad D. Overexpression of Stanniocalcin 1 inhibits reactive oxygen species and renal ischemia/reperfusion injury in mice. Kidney Int.2012,82: 867-877.
    69. Huang L, Garcia G, Lou Y, Zhou Q, Truong LD, DiMattia G, Lan XR, Lan HY, Wang Y, and Sheikh-Hamad D. Anti-inflammatory and renal protective actions of Stanniocalcin 1 in a model of anti-glomerular basement membrane glomerulonephritis, Am J Pathol. 2009a, 174:1368-1378.
    70. Huang L, Garcia G, Lou Y, Zhou Q, Truong LD, DiMattia G, Lan XR, Lan HY, Wang Y, and Sheikh-Hamad D. Anti-inflammatory and renal protective actions of Stanniocalcin 1 in a model of anti-glomerular basement membrane glomerulonephritis.Am J Pathol. 2009b, 174:1368-1378.
    71. Hulova I, and Kawauchi H. Assignment of Disulfide Linkages in Chum Salmon Stanniocalcin. Biochem Biophys Res Commun.1999, 257:295-299.
    72. Hung NT, Yamamoto H, Takei Y, Masuda M, Otani A, Kozai M, Ikeda S, Nakahashi O, Tanaka S, Taketani Y, and Takeda E. Up-regulation of stanniocalcin 1 expression by 1,25-dihydroxy vita min D(3) and parathyroid hormone in renal proximal tubular cells. J Clin Biochem Nutr.2012,50:227-233.
    73. Ishibashi K, and Imai M. Prospect of a stanniocalcin endocrine/paracrine system in mammals. Am J Physiol Renal Physiol.2002,282:F367-375.
    74. Ishibashi K, Miyamoto K, Taketani Y, Morita K, Takeda E, Sasaki S, and Imai M. Molecular cloning of a second human stanniocalcin homologue (STC2). Biochem Biophys Res Commun.1998,250:252-258.
    75. Ito D, Walker JR, Thompson CS, Moroz I, Lin W, Veselits ML, Hakim AM, Fienberg AA, and Thinakaran G. Characterization of stanniocalcin 2, a novel target of the mammalian unfolded protein response with cytoprotective properties. Mol Cell Biol.2004,24:9456-9469.
    76. Jackson-Grusby LL, Swiergiel J, and Linzer DI. A growth-related mRNA in cultured mouse cells encodes a placental calcium binding protein. Nucleic Acids Res.1987,15: 6677-6690.
    77. Jauhiainen S, Hakkinen SK, Toivanen PI, Heinonen SE, Jyrkkanen HK, Kansanen E, Leinonen H, Levonen AL, and Yla-Herttuala S. Vascular endothelial growth factor (VEGF)-D stimulates VEGF-A, Stanniocalcin 1, and neuropilin-2 and has potent angiogenic effects. Arterioscler Thromb Vase Biol.2011,31:1617-1624.
    78. Jiang WQ, Chang AC, Satoh M, Furuichi Y, Tam PP, and Reddel RR. The distribution of stanniocalcin 1 protein in fetal mouse tissues suggests a role in bone and muscle development. JEndocrinol.2000,165:457-466.
    79. Joensuu K, Heikkila P, and Andersson LC. Tumor dormancy: elevated expression of stanniocalcins in late relapsing breast cancer. Cancer letters.2008,265:76-83.
    80. Johnston J, Ramos-Valdes Y, Stanton LA, Ladhani S, Beier F, and Dimattia GE. Human Stanniocalcin 1 or -2 expressed in mice reduces bone size and severely inhibits cranial intramembranous bone growth. Transgenic Res.2010,19:1017-1039.
    81. Jones IC, Henderson I, Chan D, Rankin J, Mosley W, Brown J, Lever A, Robertson J, and Tree M. Pressor activity in extracts of the corpuscles of Stannius from the European eel (Anguilla anguilla L.). JEndocrinol.1966,34:393-408.
    82. Kahn J, Mehraban F, Ingle G, Xin X, Bryant JE, Vehar G, Schoenfeld J, Grimaldi CJ, Peale F, and Draksharapu A. Gene Expression Profiling in an in Vitro Model of Angiogenesis. Am J Pathol.2000,156:1887-1900.
    83. Kaneko T, Hasegawa S, and Hirano T. Embryonic origin and development of the corpuscles of Stannius in chum salmon (Oncorhynchus keta). Cell Tissue Res.1992, 268:65-70.
    84. Kedinger M, Haffen K, and Simon-Assmann P. Intestinal tissue and cell cultures. Differentiation.1987,36:71-85.
    85. Khanal RC, and Nemere I. Endocrine regulation of calcium transport in epithelia. Clin Exp Pharmacol Physiol. 2008a,35:1277-1287.
    86. Khanal RC, and Nemere I. Regulation of intestinal calcium transport. Annu. Rev. Nutr.2008b,28:179-196.
    87. Kilikian B, Suarez I, Liria C, and Gombert AK. Process strategies to improve heterologous protein production in Escherichia coli under lactose or IPTG induction. Process Biochemistry.2000,35:1019-1025.
    88. Kimmich GA. Preparation and properties of mucosal epithelial cells isolated from small intestine of the chicken. Biochemistry.1970,9:3659-3668.
    89. Kip SN, Gray NW, Burette A, Canbay A, Weinberg RJ, and Strehler EE. Changes in the expression of plasma membrane calcium extrusion systems during the maturation of hippocampal neurons. Hippocampus.2006,16:20-34.
    90. Klein D, Demory A, Peyre F, Kroll J, Geraud C, Ohnesorge N, Schledzewski K, Arnold B, and Goerdt S. Wnt2 acts as an angiogenic growth factor for non-sinusoidal endothelial cells and inhibits expression of Stanniocalcin 1. Angiogenesis.2009,12: 251-265.
    91. Ko S-H, Choi K-C, Oh GT, and Jeung E-B. Effect of dietary calcium and 1,25-(OH) 2D3 on the expression of calcium transport genes in calbindin-D9k and-D28k double knockout mice. Biochem Biophys Res Commun.2009,379:227-232.
    92. Kobayashi R, Nakagomi Y, Shimura Y, Mochizuki M, Kobayashi K, Sugita K, and Ohyama K. Expression of Stanniocalcin 1 in gastrointestinal tracts of neonatal and mature rats. Biochem Biophys Res Commun.2009, 389:478-483.
    93. Koizumi K, Hoshiai M, Ishida H, Ohyama K, Sugiyama H, Naito A, Toda T, Nakazawa H, and Nakazawa S. Stanniocalcin 1 prevents cytosolic Ca2+ overload and cell hypercontracture in cardiomyocytes. Circ J.2007,71:796-801.
    94. Kopa Z, Wenzel J, Papp G, and Haidl G. Role of granulocyte elastase and inter leukin-6 in the diagnosis of male genital tract inflammation. Andrologia.2005,37: 188-194.
    95. Krishnamurthy V. Cytophysiology of corpuscles of Stannius. Int. Rev. Cytol.1976, 46: 177-249.
    96. Ku N-O, Wright TL, Terrault NA, Gish R, and Omary MB. Mutation of human keratin 18 in association with cryptogenic cirrhosis. J Clin Invest.1997,99:19.
    97. Lafeber F, Flik G, Wendelaar Bonga S, and Perry S. Hypocalcin from Stannius corpuscles inhibits gill calcium uptake in trout. Am J Physiol Regul Integr Comp Physiol.1988,254: R891-R896.
    98. Lafeber F, Herrmann-Erlee M, Flik G, and Bonga SW. Rainbow trout hypocalcin stimulates bone resorption in embryonic mouse calvaria in vitro in a PTH-like fashion. JExp Biol.1989,143:165-175.
    99. Lai KP, Law AY, Yeung HY, Lee LS, Wagner GF, and Wong CK. Induction of Stanniocalcin 1 expression in apoptotic human nasopharyngeal cancer cells by p53. Biochem Biophys Res Commun.2007,356:968-975.
    100. Lambers T, Bindels R, and Hoenderop J. Coordinated control of renal Ca2+ handling. Kidney Int.2006,69:650-654.
    101. Lavallie ER, DiBlasio EA, Kovacic S, Grant KL, Schendel PF, and McCoy JM. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Nat Biotechnol.1993,11:187-193.
    102. LaVallie ER, and McCoy JM. Gene fusion expression systems in Escherichia coli. Curr opin biotechnol.1995,6:501-506.
    103. Law AY, Ching LY, Lai KP, and Wong CK. Identification and characterization of the hypoxia-responsive element in human Stanniocalcin 1 gene. Mol Cell Endocrinol.2010,314:118-127.
    104. Law AY, Lai KP, Lui WC, Wan HT, and Wong CK. Histone deacetylase inhibitor-induced cellular apoptosis involves Stanniocalcin 1 activation. Exp Cell Res.2008,314:2975-2984.
    105. Law AY, and Wong CK. Stanniocalcin-2 is a HIF-1 target gene that promotes cell proliferation in hypoxia. Exp Cell Res. 2010,316:466-476.
    106. Law AY, Wong CK, Turner J, Gonzalez AA, Prieto MC, and Wagner GF. Vasopressin controls Stanniocalcin 1 gene expression in rat and mouse kidney. Mol Cell Endoerinol.2012,348:183-188.
    107. Law AY, Yeung BH, Ching LY, and Wong CK. Spl is a transcription repressor to Stanniocalcin 1 expression in TSA-treated human colon cancer cells, HT29. J Cell Biochem.2011,112:2089-2096.
    108. Layden TJ, and Rao MC. Isolation, characterization, and attachment of rabbit distal colon epithelial cells. Gastroenterology.1991,101:692-702.
    109. Lee H, Stabel J, and Kehrli Jr M. Cytokine gene expression in ileal tissues of cattle infected with Mycobacterium paratuberculosis. Vet Immunol Immunopathol.2001, 82:73-85.
    110. Levine P, and Weintraub L. Preparation of suspensions of small bowel mucosal epithelial cells. The Journal of laboratory and clinical medicine.1970,75:1026.
    111. Liu D, Jia H, Holmes DIR, Stannard A, and Zachary I. Vascular Endothelial Growth Factor-Regulated Gene Expression in Endothelial Cells KDR-Mediated Induction of Egr3 and the Related Nuclear Receptors Nur77, Nurrl, and Norl. Arterioscler Thromb Vase Biol.2003,23:2002-2007.
    112. Liu DY, Yang SJ, Wu LM, Xi ZF, Chen S, Dong SQ, Wang JL, and Guo DZ. Expression and localization of Stanniocalcin 1 in bovine osteoblasts. Pak Vet J. 2012,32:242-246.
    113. Liu G, Yang G, Chang B, Mercado-Uribe I, Huang M, Zheng J, Bast RC, Lin S-H, and Liu J. Stanniocalcin 1 and ovarian tumorigenesis. J Natl Cancer Inst. 2010a, 102:812-827.
    114. Liu G, Yang G, Chang B, Mercado-Uribe I, Huang M, Zheng J, Bast RC, Lin SH, and Liu J. Stanniocalcin 1 and ovarian tumorigenesis. J Natl Cancer Inst. 2010b, 102:812-827.
    115. Lu M, Wagner GF, and Renfro JL. Stanniocalcin stimulates phosphate reabsorption by flounder renal proximal tubule in primary culture. Am J Physiol. 1994, 267: R1356-1362.
    116. Luo CW, Kawamura K, Klein C, and Hsueh AJ. Paracrine regulation of ovarian granulosa cell differentiation by stanniocalcin (STC) 1:mediation through specific STC1 receptors. Mol Endocrinol.2004, 18:2085-2096.
    117. Luo CW, Pisarska MD, and Hsueh AJ. Identification of a stanniocalcin paralog, stanniocalcin-2, in fish and the paracrine actions of stanniocalcin-2 in the mammalian ovary. Endocrinology.2005,146:469-476.
    118. Madsen KL, Tavemini MM, Yachimec C, Mendrick DL, Alfonso PJ, Buergin M, Olsen HS, Antonaccio MJ, Thomson AB, and Fedorak RN. Stanniocalcin: a novel protein regulating calcium and phosphate transport across mammalian intestine. Am JPhysiol.1998,274: G96-102.
    119. Maynard J, and Georgiou G. Antibody engineering. Annu Rev Biomed Eng.2000, 2: 339-376.
    120. McCudden CR, James KA, Hasilo C, and Wagner GF. Characterization of mammalian stanniocalcin receptors. Mitochondrial targeting of ligand and receptor for regulation of cellular metabolism. JBiol Chem.2002,277:45249-45258.
    121. McCudden CR, Kogon MR, DiMattia GE, and Wagner GF. Novel expression of the stanniocalcin gene in fish. JEndocrinol.2001,171:33-44.
    122. McCudden CR, Majewski A, Chakrabarti S, and Wagner GF. Co-localization of Stanniocalcin 1 ligand and receptor in human breast carcinomas. Mol Cell Endocrinol.2004,213: 167-172.
    123. McGill G, Shimamura A, Bates RC, Savage RE, and Fisher DE. Loss of matrix adhesion triggers rapid transformation-selective apoptosis in fibroblasts.J Cell Biol. 1997,138:901-911.
    124. Merino D, and Bouillet P. 29 Apoptosis and Cell Survival in the Immune System. Apoptosis: Physiology and Pathology.2011:333.
    125. Moore EE, Kuestner RE, Conklin DC, Whitmore TE, Downey W, Buddle MM, Adams RL, Bell LA, Thompson DL, Wolf A, Chen L, Stamm MR, Grant FJ, Lok S, Ren H, and De Jongh KS. Stanniocalcin 2:characterization of the protein and its localization to human pancreatic alpha cells. Horm Metab Res.1999,31:406-414.
    126. Moyer M, Dickson P, and Culpepper AL. In vitro propagation and characterization of normal, preneoplastic, and neoplastic colonic epithelial cells. Colon Cancer Cells. 1990:85-136.
    127. Moyer MP, and Aust JB. Human colon cells:culture and in vitro transformation. Science.1984,224: 1445-1447.
    128. Nelson AE, Namkung HJ, Patava J, Wilkinson MR, Chang A, Reddel RR, Robinson BG, and Mason RS. Characteristics of tumor cell bioactivity in oncogenic osteomalacia. Mol cel endocrinol.1996,124:17-23.
    129. Neutra M, and Louvard D. Differentiation of intestinal cells in vitro. Functional epithelial cells in culture.1989:363-398.
    130. Nguyen A, Chang AC, and Reddel RR. Stanniocalcin 1 acts in a negative feedback loop in the prosurvival ERK1/2 signaling pathway during oxidative stress. Oncogene.2009,28:1982-1992.
    131. Nijenhuis T, Hoenderop JG, and Bindels RJ. TRPV5 and TRPV6 in Ca2+(re) absorption: regulating Ca2+ entry at the gate. Pflugers Archiv.2005,451:181-192.
    132. Nijenhuis T, Hoenderop JG, van der Kemp AW, and Bindels RJ. Localization and regulation of the epithelial Ca2+ channel TRPV6 in the kidney.J Am Soc Nephrol. 2003,14:2731-2740.
    133. Norman AW. Vita min D receptor: new assignments for an already busy receptor. Endocrinology.2006,147:5542-5548.
    134. Ogawa M. Fine structure of the corpuscles of Stannius and the interrenal tissue in goldfish, Carassius auratus. Z Zellforch Microsk Anat.1967,81:174-189.
    135. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, and Krajewski S. Apoptosis in the failing human heart. N Engl J Med.1997,336:1131-1141.
    136. Olsen HS, Cepeda MA, Zhang QQ, Rosen CA, Vozzolo BL, and Wagner GF. Human stanniocalcin:a possible hormonal regulator of mineral metabolism. Proc NatlAcad Sci U S A.1996,93:1792-1796.
    137. Owsianik G, Talavera K, Voets T, and Nilius B. Permeation and selectivity of TRP channels. Annu. Rev. Physiol.2006,68:685-717.
    138. Paciga M, DiMattia GE, and Wagner GF. Regulation of luteal cell big stanniocalcin production and secretion. Endocrinology.2004, 145:4204-4212.
    139. Paciga M, Hirvi ER, James K, and Wagner GF. Characterization of big stanniocalcin variants in mammalian adipocytes and adrenocortical cells. Am J Physiol Endocrinol Metab.2005,289:E197-E205.
    140. Paciga M, McCudden CR, Londos C, DiMattia GE, and Wagner GF. Targeting of big stanniocalcin and its receptor to lipid storage droplets of ovarian steroidogenic cells. J Biol Chem.2003,278:49549-49554.
    141. Paciga M, Watson AJ, DiMattia GE, and Wagner GF. Ovarian stanniocalcin is structurally unique in mammals and its production and release are regulated through the luteinizing hormone receptor. Endocrinology.2002, 143:3925-3934.
    142. Pang PK, Pang RK, Liu VK, and Sokabe H. Effect of fish angiotensins and angiotensin-like substances on killifish calcium regulation. Gen Comp Endocrinol. 1981,43:292-298.
    143. Pang PK, Pang RK, and Sawyer WH. Effects of environmental calcium and replacement therapy on the killifish, Fundulus heteroclitus, after the surgical removal of the corpuscles of Stannius. Endocrinology.1973,93:705-710.
    144. Perreault N, and Beaulieu J-F. Use of the dissociating enzyme thermolysin to generate viable human normal intestinal epithelial cell cultures. Exp Cell Res. 1996, 224:354-364.
    145. Picciotto MR, and Wickman K. Using knockout and transgenic mice to study neurophysiology and behavior. Physiol Rev.1998,78:1131-1164.
    146. Pierson PM, Lamers A, Flik G, and Mayer-Gostan N. The stress axis, stanniocalcin, and ion balance in rainbow trout. Gen Comp Endocrinol.2004,137:263-271.
    147. Price KL, Long DA, Jina N, Liapis H, Hubank M, Woolf AS, and Winyard PJ. Microarray interrogation of human metanephric mesenchymal cells highlights potentially important molecules in vivo. Physiol Genomics.2007, 28:193.
    148. Quaroni A, Calnek D, Quaroni E, and Chandler JS. Keratin expression in rat intestinal crypt and villus cells. Analysis with a panel of monoclonal antibodies.J Biol Chem.1991,266:11923-11931.
    149. Quaroni A, and Isselbacher KJ. Cytotoxic effects and metabolism of benzo [a] pyrene and 7,12-dimethylbenz [a] anthracene in duodenal and ileal epithelial cell cultures. JNatl Cancer Inst.1981,67:1353-1362.
    150. Quaroni A, Wands J, Trelstad RL, and Isselbacher KJ. Epithelioid cell cultures from rat small intestine. Characterization by morphologic and immunologic criteria. J Cell Biol.1979,80:248-265.
    151. Radman DP, McCudden C, James K, Nemeth EM, and Wagner GF. Evidence for calcium-sensing receptor mediated stanniocalcin secretion in fish. Mol Cell Endocrinol.2002,186:111-119.
    152. Rochette-Egly C, Lacroix B, Pflieger H, Doffoel M, Kedinger M, and Haffen K. Calmodulin in normal and cystic fibrosis human intestine at different developmental stages. Gut. 1988,29:571-579.
    153. Rusu D, Loret S, Peulen O, Mainil J, and Dandrifosse G. Immunochemical, biomolecular and biochemical characterization of bovine epithelial intestinal primocultures. BMC cell biology.2005,6:42.
    154. Sabbah HN. Apoptotic cell death in heart failure. Cardiovasc Res.2000,45: 704-712.
    155. Savill J, and Fadok V. Corpse clearance defines the meaning of cell death. Nature. 2000,407:784-788.
    156. Sazonova O, James KA, McCudden CR, Segal D, Talebian A, and Wagner GF. Stanniocalcin 1 secretion and receptor regulation in kidney cells. Am J Physiol Renal Physiol.2008,294:F788-794.
    157. Schetter AJ, Heegaard NH, and Harris CC. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis. 2010,31: 37-49.
    158. Schreiber RD, Old LJ, and Smyth MJ. Cancer immuno edit ing:integrating immunity's roles in cancer suppression and promotion. Science. 2011,331: 1565-1570.
    159. Serlachius M, and Andersson LC. Upregulated expression of Stanniocalcin 1 during adipogenesis. Exp Cell Res.2004,296:256-264.
    160. Serlachius M, Zhang KZ, and Andersson LC. Stanniocalcin in ter minally differentiated mammalian cells. Peptides.2004,25:1657-1662.
    161. Shao A, Wood R, and Fleet J. Increased Vita min D Receptor Level Enhances 1,25 Dihydroxyvita min D3-Mediated Gene Expression and Calcium Transport in Caco-2 Cells. J Bone Miner Res.2001,16:615-624.
    162. Sheikh-Hamad D. Mammalian Stanniocalcin 1 activates mitochondrial antioxidant pathways:new paradigms for regulation of macrophages and endothelium. Am J Physiol Renal Physiol.2010,298:F248-254.
    163. Sheikh-Hamad D, Bick R, Wu GY, Christensen BM, Razeghi P, Poindexter B, Taegtmeyer H, Wamsley A, Padda R, Entman M, Nielsen S, and Youker K. Stanniocalcin 1 is a naturally occurring L-channel inhibitor in cardiomyocytes: relevance to human heart failure. Am J Physiol Heart Circ Physiol.2003,285: H442-448.
    164. Sheikh-Hamad D, Rouse D, and Yang Y. Regulation of stanniocalcin in MDCK cells by hypertonicity and extracellular calcium. Am J Physiol Renal Physiol. 2000, 278:F417-424.
    165. Shin J, Oh D, and Sohn YC. Molecular characterization and expression analysis of Stanniocalcin 1 in turbot (Scophthalmus maximus). Gen Comp Endocrinol.2006, 147:214-221.
    166. So YP, and Fenwick JC. In vivo and in vitro effects of Stannius corpuscle extract on the branchial uptake of 45Ca in stanniectomized North American eels (Anguilla rostrata). Gen Comp Endocrinol.1979,37:143-149.
    167. Solcia E, Capella C, Fiocca R, Sessa F, LaRosa S, and Rindi G. Disorders of the endocrine system. Pathology of the Gastrointestinal Tract. Philadelphia, PA: Williams and Wilkins.1998:295-322.
    168. Song G, Bazer FW, Wagner GF, and Spencer TE. Stanniocalcin (STC) in the endometrial glands of the ovine uterus:regulation by progesterone and placental hormones. Biol Reprod.2006,74:913-922.
    169. Song G, Dunlap KA, Kim J, Bailey DW, Spencer TE, Burghardt RC, Wagner GF, Johnson GA, and Bazer FW. Stanniocalcin 1 is a lu minal epithelial marker for implantation in pigs regulated by progesterone and estradiol. Endocrinology.2009, 150:936-945.
    170. Stiiber D, Matile H, and Garotta G. System for high-level production in Escherichia coli and rapid purification of recombinant proteins:application to epitope mapping, preparation of antibodies, and structure-function analysis. Immunol Methods.1990, 4:121-152.
    171. Stannius. Ober Nebenniere bei Knochenfischen. Arch. Anat. Physiol.1839,6: 97-101.
    172. Stasko SE, and Wagner GF. Possible roles for stanniocalcin during early skeletal patterning and joint formation in the mouse. J Endocrinol.2001a,171:237-248.
    173. Stasko SE, and Wagner GF. Stanniocalcin gene expression during mouse urogenital development: a possible role in mesenchymal-epithelial signalling. Dev Dyn.2001b, 220:49-59.
    174. Sterba T, Wagner GF, Schroedter IC, and Friesen HG. In situ detection and distribution of stanniocalcin mRNA in the corpuscles of Stannius of sockeye salmon, Oncorhynchus nerka. Mol Cell Endocrinol.1993,90:179-185.
    175. Sundell K, Bjornsson BT, Itoh H, and Kawauchi H. Chum salmon (Oncorhynchus keta) stanniocalcin inhibits in vitro intestinal calcium uptake in Atlantic cod (Gadus morhua). J Comp Physiol B.1992,162:489-495.
    176. Suzuki Y, Landowski CP, and Hediger MA. Mechanisms and regulation of epithelial Ca2+ absorption in health and disease. Annu. Rev. Physiol.2008,70: 257-271.
    177. Tamura S, Oshima T, Yoshihara K, Kanazawa A, Yamada T, Inagaki D, Sato T, Yamamoto N, Shiozawa M, and Morinaga S. Clinical significance of STC1 gene expression in patients with colorectal cancer. AntiCancer Res. 2011,31:325-329.
    178. Tegel H, Tourle S, Ottosson J, and Persson A. Increased levels of recombinant human proteins with the Escherichia coli strain Rosetta (DE3). Protein Expr Purif. 2010,69:159-167.
    179. Tohmiya Y, Koide Y, Fujimaki S, Harigae H, Funato T, Kaku M, Ishii T, Munakata Y, Kameoka J, and Sasaki T. Stanniocalcin 1 as a novel marker to detect minimal residual disease of human leukemia. Tohoku J Exp Med.2004,204:125-133.
    180. Toribio R. Disorders of the endocrine system.Saunders, St. Louis, MO:Equine Internal Medicine,2004.
    181. Tremblay G, Delbecchi L, Loiselle MC, Ster C, Wagner GF, Talbot BG, and Lacasse P. Serum levels of Stanniocalcin 1 in Holstein heifers and cows. Domest Anim Endocrinol.2009,36:105-109.
    182. Tseng DY, Chou MY, Tseng YC, Hsiao CD, Huang CJ, Kaneko T, and Hwang PP. Effects of stanniocalcin 1 on calcium uptake in zebrafish (Danio rerio) embryo. Am J Physiol Regul Integr Comp Physiol.2009,296:R549-557.
    183. Turner J, Sazonova O, Wang H, Pozzi A, and Wagner GF. Induction of the renal Stanniocalcin 1 gene in rodents by water deprivation. Mol Cell Endocrinol.2010, 328:8-15.
    184. Turner J, Xiang FL, Feng Q, and Wagner GF. The renal Stanniocalcin 1 gene is differentially regulated by hypertonicity and hypovolemia in the rat. Mol Cell Endocrinol.2011,331:150-157.
    185. Van Cromphaut S, Rummens K, Stockmans I, Van Herck E, Dijcks F, Ederveen A, Carmeliet P, Verhaeghe J, Bouillon R, and Carmeliet G. Intestinal Calcium Transporter Genes Are Upregulated by Estrogens and the Reproductive Cycle Through Vita min D Receptor - Independent Mechanisms. JBone Miner Res. 2003, 18:1725-1736.
    186. Van de Graaf S, Bindels R, and Hoenderop J. 2007. Physiology of epithelial Ca2+ and Mg2+ transport Rev Physiol Biochem Pharmacol, p 77-160. Springer.
    187. Van Itallie CM, and Anderson JM. Claudins and epithelial paracellular transport. Annu. Rev. Physiol.2006,68:403-429.
    188. Varghese R, Gagliardi AD, Bialek PE, Yee SP, Wagner GF, and Dimattia GE. Overexpression of human stanniocalcin affects growth and reproduction in transgenic mice. Endocrinology.2002,143:868-876.
    189. Varghese R, Wong CK, Deol H, Wagner GF, and DiMattia GE. Comparative analysis of mammalian stanniocalcin genes. Endocrinology.1998,139:4714-4725.
    190. Verbost PM, Flik G, Fenwick JC, Greco A-M, Pang PK, and Bonga SEW. Branchial calcium uptake:possible mechanisms of control by stanniocalcin. Fish Physiol Biochem. 1993,11:205-215.
    191. Wagner G, Hampong M, Park C, and Copp D. Purification, characterization, and bioassay of teleocalcin, a glycoprotein from salmon corpuscles of Stannius. Gen Comp Endocrinol.1986a, 63:481-491.
    192. Wagner GF, De Niu P, Jaworski E, Radman D, and Chiarot C. Development of a dose-response bioassay for stanniocalcin in fish. Mol Cell Endocrinol.1997a, 128: 19-28.
    193. Wagner GF, and Dimattia GE. The stanniocalcin family of proteins. J Exp Zool A Ecol Genet Physiol. 2006a,305:769-780.
    194. Wagner GF, and Dimattia GE. The stanniocalcin family of proteins. J Exp Zool A Comp Exp Biol.2006b,305:769-780.
    195. Wagner GF, Dimattia GE, Davie JR, Copp DH, and Friesen HG. Molecular cloning and cDNA sequence analysis of coho salmon stanniocalcin. Mol Cell Endocrinol. 1992,90:7-15.
    196. Wagner GF, Fargher RC, Milliken C, McKeown BA, and Copp DH. The gill calcium transport cycle in rainbow trout is correlated with plasma levels of bioactive, not immunoreactive, stanniocalcin. Mol Cell Endocrinol. 1993,93: 185-191.
    197. Wagner GF, Fenwick JC, Park CM, Milliken C, Copp DH, and Friesen HG. Comparative biochemistry and physiology of teleocalcin from sockeye and coho salmon. Gen Comp Endocrinol.1988,72:237-246.
    198. Wagner GF, Guiraudon CC, Milliken C, and Copp DH. Immunological and biological evidence for a stanniocalcin-like hormone in human kidney. Proc Natl Acad Sci USA.1995,92:1871-1875.
    199. Wagner GF, Hampong M, Park CM, and Copp DH. Purification, characterization, and bioassay of teleocalcin, a glycoprotein from salmon corpuscles of Stannius. Gen Comp Endocrinol.1986b,63:481-491.
    200. Wagner GF, Jaworski EM, and Haddad M. Stanniocalcin in the seawater salmon: structure, function, and regulation. Am JPhysiol.1998,274:R1177-1185.
    201. Wagner GF, Milliken C, Friesen HG, and Copp DH. Studies on the regulation and characterization of plasma stanniocalcin in rainbow trout. Mol Cell Endocrinol. 1991,79:129-138.
    202. Wagner GF, Vozzolo BL, Jaworski E, Haddad M, Kline RL, Olsen HS, Rosen CA, Davidson MB, and Renfro JL. Human stanniocalcin inhibits renal phosphate excretion in the rat. J Bone miner Res.1997b,12:165-171.
    203. Wary KK, Thakker GD, Humtsoe JO, and Yang J. Analysis of VEGF-responsive genes involved in the activation of endothelial cells. Molecular cancer.2003,2:25.
    204. Wascher RA, Huynh KT, Giuliano AE, Hansen NM, Singer FR, Elashoff D, and Hoon DS. Stanniocalcin 1 A Novel Molecular Blood and Bone Marrow Marker for Human Breast Cancer. Clin Cancer Res.2003,9:1427-1435.
    205. Waseem A, Gough AC, Spurr NK, and Lane EB. Localization of the gene for human simple epithelial keratin 18 to chromosome 12 using polymerase chain reaction. Genomics.1990,7:188-194.
    206. Watanabe T, Ichihara M, Hashimoto M, Shimono K, Shimoyama Y, Nagasaka T, Murakumo Y, Murakami H, Sugiura H, and Iwata H. Characterization of Gene Expression Induced by RET with MEN2A or MEN2B Mutation. Am J Pathol. 2002, 161:249-256.
    207. Watson PR, Galyov EE, Paulin SM, Jones PW, and Wallis TS. Mutation of invH, but Notstn, reduces Salmonella-induced enteritis in cattle. Infect Immun. 1998,66: 1432-1438.
    208. Weickert MJ, Doherty DH, Best EA, and Olins PO. Optimization of heterologous protein production in Escherichia col. Curr opin biotechnol. 1996,7:494-499.
    209. Weiser MM. Intestinal epithelial cell surface membrane glycoprotein synthesis I. An indicator of cellular differentiation. JBiol Chem. 1973,248:2536-2541.
    210. Welcsh PL, Lee MK, Gonzalez-Hernandez RM, Black DJ, Mahadevappa M, Swisher EM, Warrington JA, and King M-C. BRCA1 transcriptionally regulates genes involved in breast tumorigenesis. Proc Natl Acad Sci.2002,99:7560-7565.
    211. Wilson M, and Hohmann A. Immunity to Escherichia coli in pigs:adhesion of enteropathogenic Escherichia coli to isolated intestinal epithelial cells. Infect Immun. 1974,10:776-782.
    212. Wiseman H, and Halliwell B. Damage to DNA by reactive oxygen and nitrogen species:role in inflammatory disease and progression to cancer. Biochem. J.1996, 313:17-29.
    213. Wong CK, Ho MA, and Wagner GF. The co-localization of stanniocalcin protein, mRNA and kidney cell markers in the rat kidney.J Endocrinol. 1998,158: 183-189.
    214. Wong CK, Yeung HY, Mak NK, DiMattia GE, Chan DK, and Wagner GF. Effects of dibutyryl cAMP on stanniocalcin and stanniocalcin-related protein mRNA expression in neuroblastoma cells. J Endocrinol.2002, 173:199-209.
    215. Wu L, Xi Z, Guo R, Liu S, Yang S, Liu D, Dong S, and Guo D. Exogenous ARC down-regulates caspase-3 expression and inhibits apoptosis of broiler chicken cardiomyocytes exposed to hydrogen peroxide. Avian Pathol.2013, 42:32-37.
    216. Wu S, Yoshiko Y, and De Luca F. Stanniocalcin 1 acts as a paracrine regulator of growth plate chondrogenesis. JBiol Chem.2006,281:5120-5127.
    217. Xi Z, Yang S, Liu D, Wu L, Liu X, Zhao J, and Guo D. ROS Induce Cardiomyocyte Apoptosis in Ascitic Broiler Chickens. Pak Vet J.2012b,32:613-617.
    218. Xiao LJ, Yuan JX, Song XX, Li YC, Hu ZY, and Liu YX. Expression and regulation of stanniocalcin 1 and 2 in rat uterus during embryo implantation and decidualization. Reproduction.2006,131:1137-1149.
    219. Yeung B, Law A, and Wong CK. Evolution and roles of stanniocalcin. Mol cel endocrinol.2012,349:272-280.
    220. Yeung BH, and Wong CK. Stanniocalcin 1 regulates re-epithelialization in human keratinocytes. PLoS One. 2011,6:e27094.
    221. Yeung HY, Chan DK, Mak NK, Wagner GF, and Wong CK. Identification of signal transduction pathways that modulate dibutyryl cyclic adenosine monophosphate activation of stanniocalcin gene expression in neuroblastoma cells. Endocrinology. 2003,144:4446-4452.
    222. Yeung HY, Lai KP, Chan HY, Mak NK, Wagner GF, and Wong CK. Hypoxia-inducible factor-1-mediated activation of Stanniocalcin 1 in human cancer cells. Endocrinology.2005,146:4951-4960.
    223. Yin X, Xu J-N, Zou C, He F-S, and Fang F. Genes differentially expressed in human lung fibroblast cells transformed by glycidyl methacrylate. Biomed Environ Sci.2004,17:432-441.
    224. Yoshiko Y. Evidence for Stanniocalcin Gene Expression in Mammalian Bone. Endocrinology.1999,140:1869-1874.
    225. Yoshiko Y, and Aubin JE. Stanniocalcin 1 as a pleiotropic factor in mammals. Peptides.2004,25:1663-1669.
    226. Yoshiko Y, Aubin JE, and Maeda N. Stanniocalcin 1 (STC1) protein and mRNA are developmentally regulated during embryonic mouse osteogenesis:the potential of stel as an autocrine/paracrine factor for osteoblast development and bone formation. JHistochem Cytochem.2002,50:483-492.
    227. Yoshiko Y, Kosugi T, and Koide Y. Effects of a synthetic N-ter minal fragment of stanniocalcin on the metabolism of mammalian bone in vitro. Biochim Biophys Acta. 1996,1311:143-149.
    228. Yoshiko Y, and Maeda N. In situ hybridization analysis of stanniocalcin mRNA expressing cells in the mouse kidney. Mol Cell Endocrinol. 1998,141:37-40.
    229. Yoshiko Y, Maeda N, and Aubin JE. Stanniocalcin 1 stimulates osteoblast differentiation in rat calvaria cell cultures. Endocrinology.2003,144:4134-4143.
    230. Zaidi D, James KA, and Wagner GF. Passive immunization of lactating mice with Stanniocalcin 1 antiserum reduces mammary gland development, milk fat content, and postnatal pup growth. Am J Physiol Endocrinol Metab.2006,291:E974-981.
    231. Zhang K, Lindsberg PJ, Tatlisumak T, Kaste M, Olsen HS, and Andersson LC. Stanniocalcin: A molecular guard of neurons during cerebral ischemia. Proc Natl Acad Sci USA.2000,97:3637-3642.
    232. Zhang KZ, Westberg JA, Paetau A, von Boguslawsky K, Lindsberg P, Erlander M, Guo H, Su J, Olsen HS, and Andersson LC. High expression of stanniocalcin in differentiated brain neurons. Am JPathol.1998,153:439-445.
    233. Zlot C, Ingle G, Hongo J, Yang S, Sheng Z, Schwall R, Paoni N, Wang F, Peale FV, and Gerritsen ME. Stanniocalcin 1 is an autocrine modulator of endothelial angiogenic responses to hepatocyte growth factor. J Biochem 2003,278: 47654-47659.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700