用户名: 密码: 验证码:
PTEN对奶牛肝细胞脂肪酸氧化代谢及VLDL组装分泌的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过体外原代犊牛肝细胞,运用RNA干扰(RNAi)和过表达技术,构建了腺病毒介导的PTEN干扰和过表达载体;利用荧光定量PCR和ELISA等分子生物学方法,检测了PTEN对肝细胞中脂肪酸氧化关键酶和VLDL组装分泌主要结构蛋白/或功能蛋白转录水平、蛋白水平和酶活性的影响,验证了细胞培养液中VLDL浓度及肝细胞内TG含量的变化,探讨了PTEN对肝细胞脂肪酸代谢和VLDL组装分泌的调控机制。为进一步揭示奶牛脂肪肝的发生机理和利用基因疗法治疗该病奠定了理论基础。
     成功构建了腺病毒介导的过表达和RNAi载体,并获得高滴度的重组腺病毒,确定了重组腺病毒转染原代犊牛肝细胞条件,建立了重组腺病毒转染原代肝细胞的方法。
     体外肝细胞PTEN基因RNAi试验结果表明:1)当PTEN基因表达被下调后,可显著降低脂肪酸活化关键酶ACSL的mRNA表达量、蛋白翻译水平及酶活性(p<0.01);降低脂肪酸跨膜转运关键酶CPTⅠ和CPTⅡ mRNA表达量、蛋白翻译水平及酶活性,其中CPTⅠ酶活性降低极显著(p<0.01);β-氧化过程关键酶CAD、HADH、ECH和TH mRNA表达量均降低(p<0.01),HADH蛋白表达量降低(p<0.05),CAD、HADH、ECH酶活性均降低(p<0.05)。过氧化物酶体脂肪酸氧化关键酶ACO mRNA表达量及酶活性升高(p<0.01)。2) PTEN基因表达被下调后,RNAi组VLDL组装分泌相关的结构蛋白或功能蛋白ApoB100、ApoE和MTP mRNA表达及蛋白水平降低极显著(p<0.01),LDLR mRNA表达及蛋白水平降低显著(p<0.05)。培养液中VLDL浓度降低(p<0.05),而肝细胞内TG含量升高(p<0.05)。
     体外肝细胞PTEN基因过表达试验结果表明:1)当过表达PTEN基因后,可升高脂肪酸氧化过程第一步关键酶活化酶ACSL的mRNA表达量、蛋白翻译水平及酶活性(p<0.01);升高脂肪酸转运关键酶CPTⅠ(p<0.05)和CPTⅡ(p<0.01)mRNA表达量、蛋白翻译水平及酶活性,只升高β-氧化过程关键酶CAD、HADHmRNA表达量(p<0.01),HADH蛋白表达量升高(p<0.05),ECH和TH mRNA及蛋白水平不受过表达PTEN的调控。CAD、HADH酶活性升高(p<0.05)。过氧化物酶体脂肪酸氧化关键酶ACO mRNA表达量及酶活性降低(p<0.01)。2)过表达PTEN基因后, RNAi组VLDL组装分泌相关的结构蛋白或功能蛋白ApoB100、ApoE和MTP mRNA表达及蛋白水平升高极显著(p<0.01),LDLRmRNA表达及蛋白水平变化不显著(p>0.05)。培养液中VLDL浓度显著升高(p<0.05),而肝细胞内TG含量降低(p<0.05)。
     上述结果说明:PTEN可通过升高或降低脂肪酸氧化和VLDL组装分泌关键蛋白的转录和翻译水平,调控脂肪酸在肝细胞内的氧化代谢和VLDL组装分泌,PTEN是肝细胞脂肪沉积重要调控因子,有望成为基因疗法治疗奶牛脂肪肝的靶基因。
Employing RNA interference (RNAi) and overexpression technique, the role ofPTEN in the regulation of fatty acid oxidation and assembly and secrete of VLDLwas evaluated in the cultured hepatocytes of newboned calf. The expression of keyenzymes mRNA and protein and enzymatic activity were detected by fluorescentquantitation PCR and enzyme linked immunosorbent assay (ELISA) to research thealterations of fatty acid oxidation capability and VLDL assembly and secretion inheptocytes. The obtainde information conduces to understand the efficacy andmechanism of PTEN in fatty liver of dairy cow. The results are as follow:
     The vectors of overexpression and RNAi were built by adenvirus mediated. Thetwo high titer recombinated-adenvirus were obtain by amplicated in293cell. Themethod of recombinated-adenvirus transfected in the cultured hepatocytes ofnewboned calf was built.
     After the PTEN gene was silenced, the expressions of PTEN mRNA and proteinwere cut down. Compared with control group and negative control group, theexpression of key enzyme related to fatty acid oxidation were down-regulated.ThemRNA abundance and protein expression and enzymic activity of acyl-CoAsynthetase (ACSL) related to fatty acid activation were significantly lower(p<0.01). The mRNA abundance and protein expression and enzymic activity ofcarnitine palmityl transferaseⅠ(CPTⅠ) and carnitine palmityl transferaseⅡ(CPTⅡ)related to fatty acid transmembrane transport were significantly lower(p<0.01).The change of enzymic activity of CPTⅠ was the greatest in over threeenzymes. The expression of Acyl-CoA dehydrogenase(CAD),3-hydroxy acyl-CoAdehydrogenase (HADH), enoyl CoA hydratase(ECH) mRNA were also significantlylower (p<0.01).The expression of HADH protein was significantly lower(p<0.05),and the enzymic activity of CAD,HADH,ECH was significantly lower (p<0.05). But the enzymic activity and expression of acyl-CoA oxidase(ACO)mRNA were significantly higher(p<0.01)in peroxisome. The expressions ofapolipoproteinB100(ApoB100), apolipoproteinE (ApoE) and microsomaltriglyceride transfer protein (MTP)mRNA and protein, related to VLDL assemblyand secretion,were significantly lower(p<0.01).The expression of LDLR mRNAwas significantly lower(p<0.05).The concentration of VLDL was significantlylower in medium(p<0.05). The content of TG was increased in hepatocytes.
     Compared with controls, overexpression of PTEN significantly up-regulatedACSL(p<0.01),CPTⅠ(p<0.05),CPT Ⅱ (p<0.01),CAD(p<0.01) and HADH(p<0.05) mRNAor protein expressions, which related to fatty acid oxidation. Theenzymic activity of CAD and HADH was significantly higher(p<0.05). But theexpression of ECH and TH mRNA and enzymic activity did not markedlly change(p>0.05). The enzymic activity and expression of ACO mRNA were significantlylower(p<0.01)in peroxisome. At the same time, the expression of ApoB100(p<0.01), ApoE (p<0.05)and MTP (p<0.01) increased. The expression of low-densitylipoprotein receptor (LDLR) was slightly up-regulated, but no significantlydifference (p>0.05). To certify the impact of overexpressing PTEN on lipidosis inhepatocytes we detected the concentration of GT and VLDL. The concentration ofTG significantly was decreased in hepatocytes (p<0.05). The concentration of VLDLwas significantly increased in medium (p<0.05).
     Overexpressing or silenceing PTEN in hepatocytes can chang the fatty acidoxidation and assembly and secrete of VLDL by regulating the expression andactivity of key enzyme. At least in part, the regulation of PTEN could be a potentialapproach for the gene treatment of cow with fatty liver in the future.
引文
[1] Norimatsu Y, Miyamoto M, Kobayashi T K, et al. Diagnostic utility ofphosphatase and tensin homolog, beta-catenin, and p53for endometrialcarcinoma by thin-layer endometrial preparations [J]. Cancer,2008,114(3):155-164.
    [2] Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase genemutated in human brain, breast and preostatemcancer [J].Science,1997,275(5308):1943-1947.
    [3] Steek PA, Petshous MA, Jasser SA, et al. Identification of a candidate tumorsuppressor, MMAC1at chromosorne10q23.3that is matated in multipleadvanced cancers [J]. Nat Genet,1997:15:356-363.
    [4] Li DM, Sun H. TEPl, encoded by a candidate tumor suppressor locus, is anovel protein tyrosine phosphatase regulated by transforming growth factorβ[J]. Cancer Res,1997,57:2124-2129.
    [5] Rodriguez JA, Guiteau JJ, Nazareth L, et al. Sequencing the full-Length of thephosphatase and tensin homolog (PTEN) gene in hepatocellular carcinoma(HCC) using the454GS20and illumina GA DNA sequencing platforms [J].World J Surg,2009,33(4):647-652.
    [6] Tamura M, Gu J, Matsumoto K, et al. Inhibition of cell migration, spreading,and focal adhesions by tumor suppressor PTEN [J]. Science,1998,280:1614-1617.
    [7] Lee JO, Yang H, Georgescu MM, et al. CrystaI structure of the PTEN tumorsuppressor:impIications for its phosphoinositide phosphatase activity andmembrane association [J]. Cell,1999,99(3):323-334.
    [8] Siddall H K, Warrell C E, Yellon D M, et al. Ischemia-reperfusion injury andcardioprotection: investigating PTEN, the phosphatase that negativelyregulates PI3K, using a congenital model of PTEN haploinsufficiency [J].Basic Res Cardiol,2008,103(6):560-568.
    [9] Junger MA, Rintelen F, Stocker H, et al. The Drosophila forkhead transcriptionfactor FOXO mediated the reduction in cell number associated with reducedinsulin signaling [J]. J Biol,2003,2(3):20-26.
    [10] Zhou YJ, Xiong YX, Wu XT, et al. Inactivation of PTEN is associated withincreased angiogenesis and VEGF overexpression in gastric cancer [J]. WorldJ Gastroenterol,2004,10(21):3225-3229.
    [11] Wong JT, Kim PT, Peacock JW, et al. Pten (phosphatase and tensinhomologue gene)haploinsufficiency promotes insulin hypersensitivity [J].Diabetologia (2007)50:395-403.
    [12] Mihaela M. Mocanu, Duncan C. Field, Derek M. Yellon, A Potential Role forPTEN in the Diabetic Heart[J]. Cardiovasc Drugs Ther (2006)20:319-321.
    [13] Gorbenko O, Panayotou G, Zhyvoloup A, et al. Identification of novelPTEN-binding partners: PTEN interaction with fatty acid binding proteinFABP4[J]. Mol Cell Biochem,2010,337:299-305.
    [14] Furukawa K, Kumon Y, Harada H, et a1. PTEN gene transfer suppresses theinvasive potential of human malignant gliomas by regulating cellinvasion-related molecules [J]. Int J Oneo1.2006,29:73-81.
    [15] Siesser PMF, Hanks SK. The signaling and biological implications of FAKoverexpression in cancer [J]. Clin Cancer Res,2006,12:3233-3237.
    [16] Assinder S J, Dong Q, Mangs H, et al. Pharmacological targeting of theintegrated protein kinase B, phosphatase and tensin homolog deleted onchromosome10, and transforming growth factorbeta pathways in prostatecancer [J]. Mol Pharmacol,2009,75(3):429~436.
    [17] Lai J P, Bao S, Davis I C, et al. Inhibition of the phosphatase PTEN protectsmice against oleic acid-induced acute lung injury [J]. Br J Pharmacol,2009,156(1):189~200.
    [18] Langlois M J, Roy S A, Auclair B A, et al. Epithelial phosphatase and tensinhomolog regulates intestinal architecture and secretory cell commitment andacts as a modifier gene in neoplasia [J]. FASEB J,2009,23(6):1835-1844.
    [19] Cano CE, Motoo Y,Iovanna JL.Epithelial-to-mesenchymal transition inpancreatic adenocarcinoma[J]. Scientific World Journal,2001,10(1):1947-1957.
    [20] Yang XS, Chrisman H, Weijer CJ. PDGF signaling controls the migration ofmesoderm cells during chick gastrulation by regulating N-cadherin expression[J]. Developmeng,2008,135(21):3521-3530.
    [21] Kazunori Uegaki, Yasunobu Kanamori, Junzo Kigawa, et al. PTEN isinvolved in the signal transduction pathway of contact inhibition inendometrial cells [J]. Cell Tissue Res (2006)323:523-528.
    [22] Radu A, Neubauer V, Akagi T, et al. PTEN Induces cell cycle arrest bydecreasing the level and nuclear localization of cyclin D1[J]. Mol Cell Biol,2003,23:6139-6149.
    [23] Fraser M M, Bayazitov I T, Zakharenko S S, et al. Phosphatase and tensinhomolog, deleted on chromosome10deficiency in brain causes defects insynaptic structure, transmission and plasticity, and myelination abnormalities[J]. Neuroscience,2008,151(2):476~488.
    [24] Sulis ML, Parsons R. PTEN: from pathology to biology[j]. Trends Cell Biol,2003,13:478-483.
    [25] Catherine Fan, Lizhi He, Anil Kapoor. PTEN inhibits BMI1functionindependently of its phosphatase activity [J]. Molecular Cancer2009,8:98.
    [26] Maki Goto, Akira Iwase, Hisao Ando, et al. PTEN and Akt expression duringgrowth of human ovarian follicles [J]. J Assist Reprod Genet (2007)24:541-546.
    [27] Cristofano AD, Pandolfi PP.The multiple role of PTEN in tumor suppression[J]. Cell,2000,100:387-390.
    [28]郝礼森,张晓岚,安君艳,等. PTEN在肝纤维化大鼠肝组织中的动态表达[J].中国病理生理杂志,2009,25(6):1137-1141.
    [29] Wu H, Wang S, Wang D, et a1. Reversal of the nmligmnt phenotype ofovarian Cancer A2780cells through transfection with wild-type PTEN gene[J]. Cancer Lettem,2008,271:205-214.
    [30] Cuadrado A, Orive A, Garcia-Suarez C, et al. Non-alcoholic steatohepatitis(NASH) and hepatocellular carcinoma [J]. Obes Surg2005,15:442-446.
    [31] Sato W, Horie Y, Watanabe S, et al. Tumor suppressor gene PTEN andnon-alcoholic steatohepatitis (NASH)[J]. Nippon Rinsho2005,63:1475-1483.
    [32] Vinciguerra M, Veyrat-Durebex C, Moukil MA, Rubbia-Brandt Let al. PTENdown-regulation by unsaturated fatty acids triggers hepatic steatosis via anNF-kappaBp65/mTOR-dependent mechanism. Gastroenterology2008;134:268-280.
    [33] Watanabe S, Horie Y, Kataoka E, et al. Non-alcoholic steatohepatitis andhepatocellular carcinoma: lessons from hepatocyte-specific phosphatase andtensin homolog (PTEN)-deficient mice [J]. J Gastroenterol Hepatol,2007,22Suppl1:96-100.
    [34] Fernandez S, Garcia-Garcia M, Torres-Aleman I. Modulation by insulin-likegrowth factor I of the phosphatase PTEN in astrocytes [J]. Biochim BiophysActa,2008,1783(5):803~812.
    [35] Nakashima N, Sharma PM, Imamura T,et al. The tumor suppressor PTENnegatively regulates insulin signaling in3T3-L1adipocytes [J] Journal ofBiological Chemistry,2000,275(17):12889-12895.
    [36] Bangyan Stiles, Ying Wang, Andreas Stahl, et al. Live-specific deletion ofnegative regulator Pten results in fatty liver and insulin hypersensitivity [J].PNAS,2004,101(7):2081-2087.
    [37] Stile B L. Phosphatase and tensin homologue deleted on chromosome10:extending its PTENtacles [J]. Int J Biochem Cell Biol.2009,41(4):757-761.
    [38] Asp L, Magnusson B, Rutberg M, et al. Role of ADP ribosylation factor1inthe assembly and secretion of ApoB-100-containing lipoproteins [J].Arterioscler Thromb Vasc Biol,2005,25(3):566-570.
    [39] Qiu W, Federico L, Naples M, Avramoglu RK, et al. Phosphatase and tensinhomolog (PTEN) regulates hepatic lipogenesis, microsomal triglyceridetransfer protein, and the secretion of apolipoprotein B-containing lipoproteins[J]. Hepatology,2008,48(6):1799-1809.
    [40] Jorritsma R., Jorritsma Y, Schukken, et al. Relationships between fatty liverand fertility and some periparturient diseases in commercial Dutch dairy herds[J]. Theriogenology,2000,54:1065–1074.
    [41] Kelton DF, Lissemore KD, Martin RE. Recommendations for recording andcalculating the incidence of selected clinical diseases of dairy cattle [J]. DairySci,1998,81:2502–9.
    [42] Allen MS, Bradford BJ, Harvatine KJ. The cow as a model to study foodintake regulation [J]. Annu Rev Nutr,2005,25:523–547.
    [43] Grummer RR, Mashek DG, Hayirli A. Dry matter intake and energy balancein the transition period [J]. Vet Clin North Am Food Anim Pract,2004,20:447–453.
    [44] Leroy J, Vanholder T. Nutrient prioritization in dairy cows early postpartum:mismatch between metabolism and fertility [J]. Reprod Domest Anim,2008,43:96–100.
    [45] Herdt. Ruminant adaptation to negative energy balance. Influences on theetiology of ketosis and fatty liver [J]. Vet Clin North Am Food Anim Pract,2000,16:215–230.
    [46] Ametaj, B. N., Bradford, B. J., Bobe, G., et al. Acute phase response indicatesinflammatory conditions may play a role in the pathogenesis of fatty liver indairy cows [J]. Dairy Sci,2002,85(Suppl.1):189.
    [47] Orellana, M., Fuentes, O., Rosenbluth, H., et al. Modulation of rat liverperoxisomal and microsomal fatty acid oxidation by starvation [J]. FEBS Lett.,1992,310:193–196.
    [48] Kunitake, S. T., Carilli, C. T., Lau, K., et al. Identification of proteinsassociated with apolipoprotein A-I-containing lipoproteins purified byselected-affinity immunosorption [J]. Biochemistry,1994,33:1988–1993.
    [49] Villalba, M., Pajares, M. A., Renart, M. F, et al. Protein kinase C catalyses thephosphorylation and acti-vation of rat liver phospholipid methyltransferase [J].Biochem,1987,241:911–916.
    [50] Oikawa, S., Katoh, N., Kawawa, F, et al. Decreased serum apolipoproteinB-100and A-I concentrations in cows with ketosis and left displacement of theabomasums [J].Am. Vet. Res,1997,58:121–125.
    [51] Nakagawa, H. and Katoh, N. Reduced activity of lecithin:cholesterolacyltransferase in the serum of cows with ketosis and left displacement of theabomasums [J]. Vet. Res. Commun,1998,22:517–524.
    [52] C., Jannin, B. and Berlot, J. P. Regulation of the peroxisomalbeta-oxidation-dependent pathway by peroxisomal proliferator-activatedreceptor alpha and kinases [J]. Biochem.Pharmacol,2000,60:1027–1032.
    [53] Holtenius, V. P. and Niskanen, R. Leberzellverfettung bei Kuehen mitlabmagenverlagerung [J]. Dtsch. Tieraarztl.Wochenschr,1985,92:398–400.
    [54] Oikawa, S., Katoh, N., Kawawa, F, et al. Decreased serum apolipoproteinB-100and A-I concentrations in cows with ketosis and left displacement of theabomasums [J].Am. Vet. Res,1997,58:121–125.
    [55] Pinsent, P. J. N., Neal, P. A. and Ritchie, H. E. Displacement of the bovineabomasums [J]. a review of80clinical cases.Vet. Rec,1961,73:729–735.
    [56] Bolton, J. R., Merritt, A. M., Carlson, G. M, et al. Normal abomasalelectromyography and emptying in sheep and the effects of intraabomasalvolatile fatty acid infusion [J]. Am. J. Vet. Res,1976,37:1387–1392.
    [57] Yamamoto, M., Nakagawa-Ueta, H., Katoh, N, et al. Decreased concentrationof serum apolipoprotein C-III in cows with fatty liver, ketosis, left displacementof the abomasum, milk fever and retained placenta [J]. Vet. Med. Sci,2001,63:227–233.
    [58] Oikawa, S. and Katoh, N. Reduced concentrations of apolipoproteins B-100and A-I in serum from cows with retained placenta [J]. Can. Vet. Res,1997,61:312–314.
    [59] Sato, S., Suzuki, T. and Okada, K. Suppression of mitogenic response ofbovine peripheral blood lymphocytes by ketone bodies [J]. Vet. Med. Sci,1995,57:183–185.
    [60] Havel, R. J., Kane, J. P. and Kashyap, M. L. Interchange of apolipoproteinsbetween chylomicrons and high density lipoproteins during alimentary lipemiain man [J]. Clin. Invest,1973,52:32–38.
    [61] Gyang, E. O., Markham, R. J. F., Usenik, E. A, et al. Polymorphonuclearleukocyte function in cattle with left displaced abomasum with or withoutconcurrent infections [J]. Am. Vet. Res.1986,47:429–432.
    [62] Schukken, Y. H., Erb, H. N. and Scarlett, J. M. A hospital-based study of therelationship between retained placenta and mastitis in dairy cows [J]. CornellVet,1989,79:319–326.
    [63] Shen W-J, Sridhar K, Bernlohr DA, et al. Interaction of rat hormone-sensitivelipase with adipocyte lipid-binding protein [J]. Proc Natl Acad Sci USA,1999,96:5528–5532.
    [64] Mulliganf J, Dohertym L. Production diseases of the transition cow [J]. Vet J,2008,176(1):3-9.
    [65] Bewley JM, Schutz MM. Review: an interdisciplinary review of bodycondition scoring for dairy cattle [J]. Prof Anim Scientist,2008,24:507–529.
    [66] Roche JR, Friggens NC, Kay JK, et al. Invited review: body condition scoreand its association with dairy cow productivity, health, and welfare [J]. DairySci,2009,92:5769–6801.
    [67] Desideri-Vaillant V, Bordier L, Gidenne S, et al. Value of non-esterified fattyacids quantification in diabetes [J]. Ann Biol Clin (Paris),2004,62:177–182.
    [68] Pilz S, Marz W. Free fatty acids as a cardiovascular risk factor [J]. Clin ChemLab Med,2008,46:429–434.
    [69] Tyburczy C, Lock AL, Dwyer DA, et al. Uptake and utilization of transoctadecenoic acids in lactating dairy cows [J]. Dairy Sci,2008,91:3850–3861.
    [70] Leroy J, Vanholder T, Mateusen B, et al. Non-esterified fatty acids in follicularfluid of dairy cows and their effect on developmental capacity of bovineoocytes in vitro[J].Reproduction,2005,130:485–495.
    [71] Loor JJ, Dann HM, Guretzky NAJ, et al. Plane of nutrition prepartum altershepatic gene expression and function in dairy cows as assessed by longitudinaltranscript and metabolic profiling [J]. Physiol Genomics,2006,27:29–41.
    [72] Li LO, Klett EL, Coleman RA. Acyl-CoA synthesis, lipid metabolism andlipotoxicity [J]. Biochim Biophys Acta (BBA)–Mol Cell Biol Lipids,2010,1801:246–251.
    [73] Klapper M, Dapner M, Vock C, et al. Expression analysis of genes involved infat assimilation in human monocytes [J]. IUBMB Life,2006,58:435–440.
    [74] Tebbey PW, Buttke TM. Independent arachidonic acid-mediated generegulatory pathways in lymphocytes [J]. Biochem Biophys Res Commun,1993,194:862–868.
    [75] Elmasri H, Karaaslan C, Teper Y, et al. Fatty acid binding protein4is a targetof VEGF and a regulator of cell proliferation in endothelial cells [J]. FASEB,2009,23:3865–3873.
    [76] Loor JJ, Everts RE, Bionaz M, et al. Nutrition-induced ketosis alters metabolicand signaling gene networks in liver of periparturient dairy cows [J]. PhysiolGenomics,2007,32:105–106.
    [77] Bijlmakers M-J. Protein acylation and localization in T cell signaling (Review)[J]. Mol Membr Biol,2009,26:93–103.
    [78] Kliewer SA, Sundseth SS, Jones SA, et al. Fatty acids and eicosanoidsregulate gene expression through direct interactions with peroxisomeproliferator-activated receptors [J]. Proc Natl Acad Sci USA,1997,94:4318–4323.
    [79] Lacetera N, Scalia D, Franci O, et al. Short communication: effects ofnonesterified fatty acids on lymphocyte function in dairy heifers [J]. Dairy Sci,2004,87:1012–1014.
    [80] Scalia D, Lacetera N, Bernabucci U, et al. In vitro effects of nonesterifiedfatty acids on bovine neutrophils oxidative burst and viability [J]. Dairy Sci,2006,89:147–154.
    [81] Zhang W-Y, Schwartz E, Wang Y, et al. Elevated concentrations ofnonesterified fatty acids increase monocyte expression of CD11b and adhesionto endothelial cells [J]. arterioscler thromb Vasc Biol,2006,26:514–519.
    [82] Norio KATOH.Relevance of apolipoproteins in the development of fatty liverand faffy liver related peripartum diseases in dairy cows [J].Biochemistry,2001,293-307.
    [83] Baum C L, Teng B, Davidson N O. Apolipoprotein B messenger RNA editingin the rat liver [J]. Biol.Chem,1990,265:19263–19270.
    [84] Uchide T, Tohya Y, Onda K, et al. Apolipoprotein B (apoB) concentration inlipoproteins in cows [J]. Vet. Med. Sci,1997,59:711–714.
    [85] Uhlar C M, Whitehead A S. Serum amyloid A, the major vertebrateacute-phase reactant. Eur [J]. Biochem,1990,265:501–523
    [86] Marcos E, Mazur A, Cardot P, et al. The effect of pregnancy and lactation onserum lipid and apolipoprotein B and A-I levels in dairy cows [J]. Anim.Physiol.Anim. Nutr,1990,64:133–138.
    [87] Yamamoto M, Katoh N, Oikawa S. Evaluation of serum apolipoprotein C-IIIconcentration by enzyme-linked immunosorbent assay and its higherconcentration in cows during midlactation than during the nonlactating stage [J].Am.Vet.Res,1998,59:1358–1363.
    [88] Gruffat D, Durand D, Chilliard Y, et al. Hepatic gene expression ofapolipoprotein B100during early lactation in underfed, high producing dairycows [J]. Dairy Sci,1997,80:657–666.
    [89] Hertz R, Bishara-Shieban J, Bar-Tana J. Mode of action of peroxisomeproliferators as hypolipidemic drugs [J]. Biol. Chem,1995,270:13470–13475.
    [90] Rayssiguier Y, Mazur A, Gueux E, et al. Plasma lipoproteins and fatty liver indairy cows [J].Res. Vet. Sci,1988,45:389–393.
    [91] Katoh N, Wrenn R W, Wise B C, et al. Substrate proteins forcalmodulin-sensitive and phospholipid-sensitive Ca2+-dependent proteinkinases in heart, and inhibition of their phosphorylation by palmitoylcarnitine[J]. Proc. Natl. Acad. Sci. U.S.A,1981,78:4813–4817.
    [92] Oikawa S, Katoh N, Kawawa F, et al. Decreased serum apolipoprotein B-100and A-I concentrations in cows with ketosis and left displacement of theabomasums [J].Am. Vet. Res,1997,58:121–125.
    [93] Oikawa S, Katoh N. Reduced concentrations of apolipoproteins B-100and A-Iin serum from cows with retained placenta [J]. Can. Vet. Res,1997,61:312–314.
    [94] Oikawa S, Katoh N. Decreases in apolipoprotein B-100and A-I concentrationsin cows with milk fever and downer cows [J]. Can. Vet. Res,2002,66:31-34.
    [95] Glascock R F, Welch V A. Contribution of the fatty acids of three low densityserum lipoproteins to bovine milk fat [J]. Dairy Sci,1974,57:1364–1370.
    [96] Herdt T H, Liesman J S, Gerloff B J, et al. Reduction of serumtriacylglycerol-rich lipoprotein concentrations in cows with hepatic lipidosis [J].Am. Vet. Res,1983,44:293–296.
    [97] Morrow D A. Fat cow syndrome [J]. Dairy Sci,1976,59:1625–1629.
    [98] Morrow D A, Hillman D, Dade A W, et al. Clinical investigation of a dairyherd with the fat cow syndrome [J]. Am. Vet. Med. Assoc,1979,174:161–167.
    [99] Gerloff B J, Herdt T H, Emery R S. Relationship of hepatic lipidosis to healthand performance in dairy cattle [J].Am. Vet. Med. Assoc,1986,188:845–850.
    [100] Karathanasis S K, McPherson J, Zannis V I, et al. Linkage of humanapolipoproteins A-I and C-III genes [J]. Nature (Lond.),1983,304:371–373.
    [101] Ndikum-Moffor F M, Simmen R C M, Fields P A, et al. Synthesis andmessenger RNA expression of apolipoproteins E and A-I by the bovine corpusluteum during the estrous cycle and pregnancy [J]. Biol. Reprod,1997,56:745–756.
    [102] Brewer H B, Shulman R, Herbert P, et al. The complete amino acid sequence ofalanine apolipoprotein (apoC-III), an apolipoprotein from human plasma verylow density lipoproteins [J]. Biol. Chem,1974,249:4975–4984.
    [103] Ito Y, Azrolan N, O’Connell A, et al. Hypertriglyceridemia as a result of humanapo CIII gene expression in transgenic mice [J]. Science,1990,249:790–793.
    [104] Maeda N, Li H, Lee D, et al. Targeted disruption of the apolipoprotein C-IIIgene in mice results in hypotriglyceridemia and protection from postprandialhypertriglyceridemia [J]. Biol. Chem,1994,269:23610–23616.
    [105] Yamashita G, Corradini S G, Secknus R, et al. Biliary haptoglobin, a potentpromoter of cholesterol crystallization at physiological concentrations [J]. LipidRes,1995,36:1325–1333.
    [106] Horst R L, Goff J P, Reinhardt T A. Calcium and vitamin D metabolism in thedairy cow [J]. Dairy Sci,1994,77:1936–1951.
    [107] Katoh N, Oikawa S, Oohashi T, et al. Decreases in apolipoprotein B-100andA-I concentrations and induction of haptoglobin and serum amyloid A innonfed calves [J]. Vet. Med. Sci,2002,64:51–55.
    [108] Manabe M, Abe T, Nozawa M, et al. New substrate for determination of serumlecithin:cholesterol acyltransferase [J]. Lipid Res,1987,28:1206–1215.
    [109] Nakagawa H, Katoh N. Reduced activity of lecithin:cholesterol acyltransferasein the serum of cows with ketosis and left displacement of the abomasums [J].Vet. Res. Commun,1998,22:517–524.
    [110] Reeders S T, Hildebrand C E. Report of the committee on the geneticconstitution of chromosome16. Cytoge-net [J]. Cell Genet,1989,51:299–318.
    [111] Kimura K, Katoh N, Sakurada K, et al. Phospholipid-sensitive Ca2+-dependentprotein kinase system in testis: localization and endogenous substrates [J].Endocrinology,1984,115:2391–2399.
    [112] Coetzee G A, Strachan A F, Westhuyzen D R, et al. Serum amyloidA-containing human high density lipoprotein: density,size and apolipoproteincomposition [J]. Biol. Chem,1986,261:9644–9651.
    [113] Kushibiki S, Hodate K, Ueda Y, et al. Administration of recombinant bovinetumor necrosis factor-alpha affects intermediary metabolism and insulin andgrowth hormone secretion in dairy heifers [J]. Anim. Sci,2000,78(8):2164-2171.
    [114] Harris H W, Brady S, Eand Rapp J H. Hepatic endosomal trafficking oflipoprotein-bound endotoxin in rats [J]. Surg. Res,2002,106(1):188-195.
    [115] Wassell J. Haptoglobin: function and polymorphism [J]. Clin. Lab,2000,46(11-12):547-552.
    [116] Matzke M, Matzke A J, Kooter J M. RNA: guiding gene silencing [J]. Science,2001,293(5532):1080-1083.
    [117] Hannon G J. RNA interference [J]. Nature,2002,418(6894):244-251.
    [118] Napoli C, Lemieu X C, JORGENSEN R. Introuction of a chalcone synthasegene into Petunia result in rewersible co-suppression of homlogous genes intrans [J]. Plant cell,1990,2:179-289.
    [119] Caplen NJ, Fleenor J, Fire A, et al. DsRNA-mediated gene silencing incultured Drosophila cells: a tissue culture model for the analysis of RNAinterference [J]. Gene,2002,252(1-2):95-105.
    [120] Dalmay, Hamiltina, Rudds, et al. An RNA-dependent RNA polymerase gene inArabidopsis requieed for posttranscripitional gene silencing mediated by atransgnen but not by a virus [J]. Cell,2002,101:643-533.
    [121] Ge Q Mcmanus MT, Nguyen T, et al. RNA interference of influenza virusproduction by directly targeting mRNA for degradalion and indirectlyinhibiting all virvs RNA transcription [J]. Proc Natl Aead Scl USA2003,100(5):2718-2737.
    [122] Hammod SM,Caudy AA,Hannon GJ. Post-transcriptionalgene silencing bydouble stranded RNA [J]. Nature RevGen,2001,2:110-119.
    [123] Powelka AM, Seth A, Virbasius JV, et al. Suppression of oxidative metabolismand mitochondrial biogenesis by the transcriptional corepressor RIP140inmouse adipocytes [J].2006,116:125–136.
    [124] Salvi A,Arici B, De Petro G,et al.Small interfering RNA urokinase siliencinginhibits a invasion and migration of human hepatocellular carcinoma cell [J].MolCancer,2004,3(6):671.
    [125] Jacque J M,Triques K,Stevenson M,et al. Modulation of HIV21replication byRNAi [J]. Nature,2002,418:435-2438.
    [126]张旭,丁会芹,王冰,等.脂质体介导RNAi的研究[J].生物医学工程学杂志,2012,4:722-726.
    [127]Kumar P, Wu H, McBride JL, et al. Transvascular delivery of small interferingRNA to the central nervous system [J]. Nature2007,448(7149):39-43.
    [128] Puri V, Virbasius JV, Guilherme A, et al. RNAi screens reveal novel metabolicregulators: RIP140, MAP4k4and the lipid droplet associated fat specificprotein (FSP)27. Volume192, Issue1, pages103–115, January2008.
    [129]Fire A, Xu s, Montgomery MK, et al. Potent and specific genetic interferenceby double strandde RNA in Caenorhabditis elegans [J]. Nature,1998,391(6669):806-811.
    [130]Civitarese AE, Ukropcova B, Carling S, et al. Role of adiponectin in humanskeletal muscle bioenergetics [J]. Cell Metab,2006,4:75–87.
    [131] Louet J. F., Le May C., Pegorier J. P., et al. Regulation of liver carnitinepalmitoyltransferase I gene expression by hormones and fatty acids [J].Biochemical Society Transactions,2001,29(Pt2):310.
    [132] Hardy OT, Hohmeier HE, Becker TC, et al. Functional genomics of thebeta-cell: short-chain3-hydroxyacyl-coenzyme A dehydrogenase regulatesinsulin secretion independent of K+currents.2007Mar;21(3):765-768.
    [133] Martens GA, Vervoort A, Van de Casteele M, et al. Specificity in beta cellexpression of L-3-hydroxyacyl-CoA dehydrogenase, short chain, and potentialrole in down-regulating insulin release.2007Jul20;282(29):21134-44.
    [134] Gibbons G.F. Assembly and secretion of hepatic very-low-densitylipoprotein[J]. Biochem J,1990,268:1-13.
    [135] Emery, R. S.,J. S. Liesman, and T. H. Herdt. Metabolism of long-chain fattyacids by ruminant liver[J]. J Nutr,1992,122:832-837.
    [136]张才,王利民,刘国文,等.犊牛肝细胞的分离与原代培养[J].细胞生物学杂志,2007,29:880-884.
    [137]蔡大伟,侯艳宁.原代肝细胞培养技术研究现状及其新药研发中的应用[J].解放军药学学报,2009,(3):245;246.
    [138]任丽丽,杨仕明.不同类型载体携带Math1-EGFP基因对293T细胞转染效率及细胞毒性的研究[J].中华耳科学杂志,2009,4(7):347-352.
    [139]闻治国,侯水生,谢明.肝脏极低密度脂蛋白合成和分泌的研究进展[J].动物营养学报,2011,23(11):1854-1861.
    [140]王艳林,刘孝全.载脂蛋白B研究进展[J].国外医学:生理病理科学与临床分册,1994,2(l4):106-108.
    [141] Gibbons G.F. Assembly and secretion of hepatic very-low-densitylipoprotein[J]. Biochem J,1990,268:1-13.
    [142] Marcos, E. A. Mazur, P. Cardot et al. Serum Apolipoproteins B and A-I andnaturally occurring fatty liver in dairy cows[J]. Lipids,1990,25:575-577.
    [143] Emery, R. S. J. S. Liesman, and T. H. Herdt. Metabolism of long-chain fattyacids by ruminant liver[J]. J Nutr,1992,122:832-837.
    [144]曹华斌,郭小权,张彩英,等.高能低蛋白饲粮对蛋鸡肝脏apo B-100基因mRNA表达的影响[J].中国兽医学报,2010,3(30):393-397.
    [145]张森,李辉.载脂蛋白B研究进展[J].国际遗传学杂志,2006,5(29):364-367.
    [146]孙玉成,王雪莹,李红梅,等.张嘉保干乳期能量摄入水平对围产期奶牛肝载脂蛋白B100mRNA[J].丰度的影响中国兽医学报,2006,26(3):320-322.
    [147] Ad eli K, M oh am madi A, Macri J. Reg ulation of apol ipoprotein B biogenesis in h uman hepatocytes: Pos t t rans cript ional cont rolm echan isms that deter mine the hepat ic product ion of apolipoprot ein B-cont ain ing l ipoproteins [J]. Clin Bioch em,1995,28:123-130.
    [148] Herdt TH, Smith JC. Blood-lipid and lactation-stage factors affecting serumvitamin E concentrations and vitamin E cholesterol ratios in dairy cattle. J VetDiagn Invest8:228-232(1996).
    [149] Rayssiguier Y, Noé L, Etienne J, Gueux E, et al. Effect of magnesiumdeficiency on post-heparin lipase activity and tissue lipoprotein lipase in therat.1991Mar;26(3):182-6.
    [150]彭旷.载脂蛋白E及其基因敲除小鼠的研究进展[J].心血管病学进展,2006,27:74-78.
    [151] Huang Y, Liu X Q, RALL S C, Jr., et al. Over-expression and accumulation ofapolipoprotein E as a cause of hypertriglyceridemia[J]. The JournalofBio-logicalChem istry,1998,273:26388-26393.
    [152] Curtiss L, K, Boisvert W. A, Apolipoprotein E and Atherosclerosis[J] curr,Opin Lipdol,2000(11):243-251.
    [153] Gusarova V, Seo J, Sullivan M L, et al. Golgi-associated maturation of verylow density lipo-proteins involves conformational changes in apoli-poproteinB, but is notdependenton apolipoprotein E[J]. The Journal of BiologicalChemistry,2007,282:19453-19462.
    [154]黄俊军.微粒体甘油三酯转运蛋白的研究[J].国外医学临床生物化学与检验学分册.1998,5(19):259-261.
    [155] Borradaile N M, De-Dreu L E, BARRETT PH, et al. Inhibition of hepatocyteapoB secretion by naringenin: enhanced rapid intracellular degradationindependent of reduced m icrosomal cholesteryl esters[J]. Journal of LipidResearch,2002,43(9):1544-1554.
    [156] Bremmer D R, Bert ics S J, Besong S A, et al. Changes in hepatic microsomaltrigly ceride transferprotein and triglyceride in periparturi ent dairy cattle[J]. JDai ry Sci,2000,83:2252-2260.
    [157] Bremmer D R, Trow er S L, Bertics S J, et al. Etiology of fatty liver in dairycattle: effect s of nutritional and horm on al st atus on hepat ic microsomaltriglyceride t ransf er prot ein[J]. J Dairy,Sci,1999,83:2239-2251.
    [158] Bernabucci U, Ronch i B, Bas irico L, et al. Abundance of mRNA ofapolipoprot ein B100, apol ipoprot ein E, and microsomal triglyceridetransferprotein in liver from periparturient dairy cows[J]. J Dairy Sci,2004,87:2881-2888.
    [159]蔡海江.低密度脂蛋白受体研究进展[J].生理科学进展.1984,1:79-82.
    [160]陈芬.低密度脂蛋白受体功能及其影响因素研究进展[J].中国动脉硬化杂志.2006,5(14):448-450.
    [161]孙玉成,王雪莹,陈仕均,等.乳牛肝MTP基因mRNA定量检测模板的构建[J].中国兽医科技,2005,35(9):731-734.
    [162] Teusink B, Mensenkamp A R, Van Der B H, et al. Stimulation of the in vivoproduction ofvery low density lipoproteins by apolipoprotein E isindependentof the presence of the low density lipoprotein receptor[J]. TheJournal of Biological Chemistry,2001,276:40693-40697.
    [163] Shelness GS, Sellers JA. Very-low-density lipoprotein assembly andsecretion[J]. Curr Opin Lipidol.2001,12(2):151-157.
    [164]李传富,蔡海江,李子行,等.血脂平对大鼠清除日一VLDI.的影响[J].南京医学院学报,1987,3(7):178-181.
    [165]黄晓宇,王继文,冷军.VLDL与肝脂肪变性的关系及LXR对VLDL的调控[J].安徽农业科学,2006,34(14):3384-3385.
    [166] Peyrou M, Bourgoin L, Foti M. Dig Dis. PTEN in non-alcoholic fatty liverdisease/non-alcoholic steatohepatitis and cancer.2010,28(1):236-246.
    [167] Bangyan Stiles, Ying Wang, Andreas Stahl, et al. Live-specific deletion ofnegative regulator Pten results in fatty liver and insulin hypersensitivityProcNatl Acad Sci USA.2004February17;101(7):2082–2087.
    [168] Vinciguerra M, Sgroi A, Veyrat-Durebex C, et al. Unsaturated fatty acidsinhibit the expression of tumor suppressor phosphatase and tensin homolog(PTEN) via microRNA-21up-regulation in hepatocytes. Hepatology.2009,49(4):1176-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700