用户名: 密码: 验证码:
Nd、Sm、Gd、Dy及Sr掺杂对LaMnO_3结构及电性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)是一种全固态、高效的能量转换装置,由于自身特有的优点,SOFC被认为是21世纪最有效的发电系统之一。目前,SOFC普遍运行在1000℃左右,为了提高能量利用率,开发中温下高离子导电率、高电子导电率的新型电极材料对于SOFC的发展有着重要意义。
     本文采用柠檬酸溶胶-凝胶法制备了Nd、Sm、Gd、Dy及Sr掺杂的LaMnO_3基复合氧化物粉末,对粉体进行FTIR、XRD性能测试,确定残留有机基团的类型,测定其晶体结构和晶胞参数。经压制成形、高温烧结后获得块体样品。在400~700℃温度范围内对块体样品进行二电极交流阻抗谱测试,分析其导电率,并讨论导电率与组成、温度的关系。
     实验结果表明:制备的干凝胶在800℃下烧结4h可以生成单一物相的复合氧化物粉末。各元素的掺入使得晶格结构在LaMnO_3基础上发生了畸变。烧结800℃温度下,LaMnO_3、La_(0.9)RE_(0.1)MnO_3(RE=Nd、Gd、Dy)和REMnO_3对应的红外谱图最强吸收峰波数均随着La含量减少RE含量的增多而降低。粉末样品在13MPa压力下压制成形后烧结,升温速率为2℃/min,在温度升至1100℃后,保温1h,可以烧结成微观形貌良好的复合氧化物陶瓷块体。RE(Nd、Gd、Dy)的掺入显著提高了La_(1-x-y)RE_xSr_yMnO_3(x=0,0.05,0.10,0.15;y=0.1,RE=Nd、Gd、Dy)样品的电导率;Sr的掺入降低了La_(1-x-y)Nd_xSr_yMnO_3(y=0,0.05,0.10,0.15;x=0.1)的导电率,但提高了La_(1-x-y)RE_xSr_yMnO_3(x=0.1,RE=Gd、Dy)的导电率。SmMnO_3在400℃以上的电导率均高于REMnO_3(RE=La、Nd、Gd、Dy)的电导率。SmMnO_3的电导率在650℃时达到最大,其值为0.0048 S·cm~(-1)。与其它LSMO系的离子电导率相比处于一个数量级。
Solid oxide fuel cell(SOFC) is an all solid-state energy conversion device.SOFC is considered to be one of the most effective power system for its outstanding characteristics in 21st century.At present,SOFC runs commonly at about 1000℃.So it makes great sense to develop new pattern of electrode materials which have high ion and electrical conductivity at mesothermal temperature to raise its efficiency.
     In the present work,Nd,Sin,Gd,Dy and Sr doped LaMnO_3-based composite oxide powders are synthesized with citric acid sol-gel method.The powder is tested by FTIR, XRD to characterizeres the type of residual organic substances,crystal structure and crystal unit cell parameter.Bulk samples are obtained through press and then sintered at high temperature.Conductivity of bulk samples is analyzed through AC impedance measuring between 400 to 700℃and relations to composition or temperature are illuminated.
     The result shows that,the structure of the composite oxide synthesized by roasting the xerogel at 800℃for 4h is distorted based on LaMnO_3 structure because of the doping elements.Infrared spectrum shows that the wave number of absorption maximum of LaMnO_3、La_(0.9)RE_(0.1)MnO_3(RE=Nd,Gd,Dy)and REMnO_3 decrease with the decreasement of La and increasement of RE.The powder sample is compacted under the pressure of 13MPa and then sintered at 1100℃for 1h with the speed at 2℃per minute,and bulk samples with fine micromorphological features can be prepared.The RE-doping(RE=Nd, Gd,Dy) improves the conductivity of La_(1-x-y)RE_xSr_yMnO_3(y=0.10) notably;The Sr-doping decreases the conductivity of La_(1-x-y)Nd_xSr_yMnO_3(x=0.10) but increases the conductivity of La_(1-x-y)RE_xSr_yMnO_3(x=0.1,RE=Gd、Dy);The conductivities of SmMnO_3 above 400℃are all higher than the ones of REMnO_3(RE=La,Nd,Gd,Dy).And the highest conductivity of SmMnO_3 is 0.0048 S·cm~(-1) at 650℃.Compare with the conductivity of series of LSMO,the result shows that their quantity is similar.
引文
[1]Stambouli A.B,E.Traversa.Fuel cell,An alternative to standard sources of energy.Renewable and Sustainable Energy Reviews.2002,6:297-306.
    [2]彭苏萍,韩敏芳.固体氧化物燃料电池.物理学与新能源.2003,9:90-94.
    [3]张义煌,董永来,江义等.薄膜型中温固体氧化物燃料电池(SOFC)研制及性能考察.电化学.2000,6(1):78-83.
    [4]McLean G F,Niet T,Prince-Richard S,et al.An assessment of alkaline fuel cell technology.International Journal of Hydrogen Energy.2002,27:507-526.
    [5]Sammes N,Bove R,Stahl K.Phosphoric acid fuel cells:Fundamentals and applications.Current Opinion in Solid State and Materials Science.2004,8:372-378.
    [6]Dicks A L.Molten carbonate fuel cells.Current Opinion in Solid State and Materials Science.2004,8:379,-383.
    [7]Mehta V,Cooper J S.Review and analysis of PEM fuel cell design and manufacturing.Journal of Power Sources.2003,114:32-53.
    [8]Stambouli A B,Traversa E.Solid oxide fuel cells(SOFCs):a review of an environmentally clean and efficient source of energy.Renewable and Sustainable Energy Reviews.2002,6:433-455.
    [9]Song C.Fuel processing for low-temperature and high-temperature fuel cells:challenges,and opportunities for sustainable development in the 21 st century.Catalysis Today.2002,77:17-49.
    [10]Cuenca M M G.Novel anode materials for solid oxide fuel cells.PhD Thesis,University of Twente,The Netherlands,2002:7-8.
    [11]刘建国,孙公权.燃料电池概述.物理学与新能源材料专题,2004,33(2):79-84.
    [12]Baentsch F.Liberalization challenges and opportunities for fuel cells.Power Sources,2000,86:84-89.
    [13]衣宝廉.燃料电池的原理.技术状态与展望.电池工业,2003,8(1):16-22.
    [14]邹学权,刘毅,武建军.新世纪的清洁能源-燃料电池.江苏环境科技,2003,16(1):40-42.
    [15]Cameron D S.Fuel cell energy generators—platinum catalysts used in alternative energy source.Platinum Metals Rev.,1978,22(2):38-46.
    [16]衣宝廉著.燃料电池.原理·技术·应用.化学工业出版社,2003.8(1):475-477.
    [17]Rajivd,V L Richards,J D Carter et al.Development of solid-oxide fuel cells that operate at 500℃.Journal of the Electrochemical Society,1999,146(4):1273-1278.
    [18]Yamamoto O.Solid oxide fuel cells:fundamental aspects and prospects.Electrochimica Acta,2000,45:2423-2435.
    [19]Frost L J,Privette R M,Khandkar A C.Progress in the planar CPn SOFC system design.Journal of Power Sources,1996,61:135-139.
    [20]Jong-Hee,Keun-Suk S,et al.Fabrication and characteristics of anode-supported flat-tube solid oxide fuel cell.Journal of Power Sources,2003,122:138-143.
    [21]汤根土.平板状阳极支撑固体氧化物燃料电池的实验与数值模拟.浙江大学博士论文.2005:18-23.
    [22]孙秀府,郭瑞松,李娟等.Y掺杂SrTiO_3阳极催化剂材料性能研究.电源技术.2006,30(4):282-284.
    [23]江义,李文钊,王世忠.高温固体氧化物燃料电池(SOFC)进展.化学进展.1997,9(4):387-396.
    [24]Stimming T U.Advances,aging mechanisms and lifetime in solid-oxide fuel cells.Journal of Power Sources.2004,127:284-293.
    [25]谢淑红,肖建中.中温闹体氧化物燃料电池制备进展.电池.2004,34(1):59-61.
    [26]Grove W R.On voltaic series and the combination of gases by platinum.PhilMag,1839(14):127-130.
    [27]孟黎青.燃料电池的历史和现状.电力学报,2002,17(2).
    [28]FEDU S W.Laenberg J.Power Sources,1983,10(1):89-89.
    [29]Thounthong P,Rael S,Davat B.Fuel cell and supercapacitors for automotive hybrid electrical system.ECTI Transactions on electrical engine,electronics and communications,2005,3(1):20-30.
    [30]Webster J A.Electric vehicles—from pipe dream to practicality.Reflectios,1999,3(11):6-7.
    [31]向勇,谢道华.ABO_3型氧化物的结构与性能及其应用.材料工程,2000,(9):15-18.
    [32]李福燊,陈大英,王新东等.新型钙钛矿结构复合氧化物材料的电性能.北京科技大学学报,2005,27(3):321-324.
    [33]陈涛,徐政,许业文.钙钛矿锰氧化物磁制冷材料的研究.材料导报,2003,17(3):73.
    [34]秦善,王汝成.钙钛矿(ABX_3)型结构畸变的几何描述及其应用.地质学报,2004,78(3):345-351.
    [35]Glockner R,Islam M S,Norby T.Solid State Ionics,1999,122:145-145.
    [36]Keqin H,Man F,Joh B,Goodenough.J.Am.Ceram.Soc.,1996,79(4):1100-1104.
    [37]Li W X,Yin S.Low Temperature Combustion Synthesis of Ultrafine Ceramic Powder.J Chin Ceram Soc,1999,27(1):71-78.
    [38]王世敏,许祖勋等.纳米材料制备技术(第1版).化学工业出版社,2002.
    [39]赵兵,张瑞海,卢立柱等.功能材料,1997,28(5):500-503.
    [40]施安,刘建良,胡劲等.金属物理—化学法制备高纯金属氧化物粉体的研究现状.昆明理工大学学报,2003(8):34-35.
    [41]刘辉,朱梅英,魏雨.纳米金属氧化物粉体的液相制备和表征进展.纳米材料与结构,2004,11:17-23.
    [42]Will J,Mitterdorfer A.Fabrication of thin electrolytes of Second-generation solid oxide fuel cells,Solid State Ionics,2000,131:79-96.
    [43]曾晓雁,吴懿平.表面工程学.机械工业出版社,2001:213-240.
    [44]袁春波,赵大庆,吴亦洁.13C NMR研究稀土柠檬酸配合物的容易配位结构.化学学报,1996.54:581-584.
    [45]许并社等.纳米材料及应用技术.化合物化学工业出版社,1986.6:206-206.
    [46]徐南平.面向应用过程的陶瓷膜材料设计、制备与应用.北京:科学技术出版社,2005,156-159.
    [47]殷庆瑞,祝炳和.功能陶瓷的显微结构、性能与制备技术.北京:冶金工业出版社,2005,245-246.
    [48]刘粤惠,刘平安.X射线衍射分析原理与应用.北京:化学工业出版社,2003:83-85.
    [49]梁敬魁,陈小龙,古元新.晶体结构的X射线粉末衍射法测定—纪念X射线发现100周年.物理,1995,24(8):483-491.
    [50]简家文,杨邦朝,张益康.交流阻抗谱测试技术在固体电阻电解质氧传感器研究中的应用.功能材料,2004,35(4):464-466.
    [51]曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社,2002.
    [52]王常珍.固体电解质和化学传感器.北京:冶金工业出版社,2000.
    [53]Bauerle J E.Study of solid electrolyte polarization by a complex admittance method.Phys chem..solids,1969,30(12):2657-2670.
    [54]张乃庆,张克宁,吴宁宁等.中温SOFCLa_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3-δ)固体电解质的电性能研究.人工晶体学报,2004,33(3):354-357.
    [55]岳振星,周济,张洪国等.柠檬酸盐凝胶的自燃烧与铁氧体纳米粉合成.硅酸盐学报,1999,27(4):466-470.
    [56]高勇.K、Sr、Sm、Nd掺杂的LaMnO_3基SOFC阴极材料研究:(硕士学位论文).沈阳:沈阳工业大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700