用户名: 密码: 验证码:
火法—湿法联合工艺综合回收脆硫铅锑矿中有价金属的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究开发了用火法湿法联合工艺综合回收脆硫铅锑矿精矿中有价金属的新工艺流程。脆硫铅锑矿精矿经熔炼(配料时加入纯碱和煤粉),硫以硫化钠的形式进入熔炼渣中,同时产出铅锑合金;铅锑合金用于直接吹炼生产锑白产品,吹炼锑白后产出的粗铅进入电解铅系统生产电铅,电铅阳极泥用来回收银等;从熔炼渣中回收的碱(硫化钠)用于浸出脆硫铅锑矿精矿中的锑,以制造焦锑酸钠产品和硫代硫酸钠副产品;熔炼渣经碱回收后,最终富集有来自原料中的锌、铁、铟等金属元素,其中的锌、铁等元素大都以硫化物的形式存在,可通过浮选方法分离出锌精矿,从而使脆硫铅锑矿精矿中的锌、铟等有价金属得以回收。
     对脆硫锑铅矿碱性还原熔炼过程进行理论分析,在碱性熔炼主过程中主金属铅锑及金属银等进入金属相,而伴生元素铜、铁、锌等基本上不参与熔炼反应而直接以硫化物形式进入渣相;硫则以硫化钠的形式进入渣相。对铅锑合金氧化吹炼过程进行热力学计算,铅锑合金中的铁、锡等杂质可通过氧化精炼除去;砷则通过碱性氧化方式脱除;在500~1000℃范围内,合金中的锑主要以三氧化二锑形式进入气相,而不是以金属锑的形式进入气相。
     确定了脆硫铅锑矿精矿碱性熔炼的具体条件为:配料比例为脆硫铅锑矿:纯碱:煤粉;石灰浆=100:50:10;10,料柱1.0-1.5m、风量61~65m3/min.风压30-60mmHg.中心温度1400℃、熔渣温度1000℃、焦率16.8%。在此条件下,床能达到110t球团/(m2·d);金属入合金直收率Pb 85.67%.Sb 82.870%.Ag 87.08%;金属回收率Pb 94.03%. Sb 96.70%.Ag 89.33%.Zn 97.63%.In 68.33%;铜、砷的入渣率Cu72.63%、As 68.88%;熔炼渣渣率(按投入的精矿计)65.6%;熔炼渣含Na2S 52%;合金品位(Pb+Sb)97.80%;其中Pb 53.13%.Sb 44.67%;;锑氧粉产出率(按投入的精矿计)7.36%;入炉物料中带入的硫有99.3%被固定在熔炼渣中,炉子烟气中S02平均浓度为588 ppm,已经达到工业废气二类排放标准,较好地消除了SO2废气污染。
     熔炼渣中硫化钠浸出试验的最佳条件为S:L=1:4、温度90℃、时间90min时,硫化钠的浸出率约为91%,所得滤液含硫化钠约110g/L锑浸出率平均达到91.83%,杂质元素砷也有部分被浸出,浸出率为80%,熔炼渣浸出渣(锌矿)的渣率约为50%;熔炼渣浸出渣中锌和铁等元素基本上都以硫化物形式存在于渣(锌矿)中,此锌矿经化学浮选可产出高银铟含量的多金属型锌精矿。采用压缩空气作氧化剂氧化硫代亚锑酸钠溶液,氧化时间大于45h,溶液中锑的沉淀率约98%左右,氧化后液中锑的浓度小于1g/L,产出的焦锑酸钠产品达到电子工业级二级品的质量要求。通过加硫酸中和以及加硫酸亚铁可部分除去氧化后液中的砷和锑,使其浓度分别降至0.05g/L和0.3g/L以下后,通过浓缩、结晶生产出的硫代硫酸钠产品达到二级品的质量要求。
     采用碱性精炼进行除去粗铅锑合金中杂质元素的实验研究,向熔体中鼓入空气时,可使得氧气能充分与金属面接触,从而达到良好的除杂效果,选择合适的碱性精炼体系为氢氧化钠+空气体系。精合金产出率平均为95.84%,杂质元素的去除率分别为(%):Sn 88.30、As 96.45、Cu 36.10、S 56.64。主金属铅锑的直收率分别为(%):Sb91.98、Pb97.70。精合金中砷的含量可以降至0.010%以下;吹炼锑白过程的实验条件为合金熔体温度(660±30)℃、吹风温度约100℃、合金中锑含量15%~40%,吹风风量及压力控制标准为使合金液表面产生微皱。吹炼锑白时锑的氧化率为73.34%;吹炼后的底合金(底铅)Sb、Pb的含量分别为15%和83%左右;采用提高结晶温度的方法制备大粒度锑白产品,控制实验条件为锑浓度15%~40%、合金熔体温度650~690℃、结晶(空间)温度360~470℃、吹管离金属液面的距离≥50mm,锑白产品的粒度可达到0.6μm以上。
     全流程Pb、Sb、Ag、Zn的总回收率分别达到92.1%、93.5%、97.6%、68.3%;74%As进入铁砷渣;Cu 72.6%进入锌矿,27%进入铅系统。
     与传统的烧结-鼓风炉工艺对比,所研究工艺具有流程简单、效率高、中间物料少、铅锑合金质量高、金属回收率高、各种元素走向合理、利于综合回收和环境保护等优点。
Recovery of valuable metals from jamesonite concentrate with united pyrometallurgical and hydrometallurgical technology is studied. First, jamesonite concentrate is smelted (soda and coal are added into the raw material), sulfur is put into smelting slag in the form of Na2S, and then lead-antimony alloy is produced. The antimony trioxide product is produced by directly blowing lead-antimony alloy, the obtained crude lead is transferred into the lead electrolysis system to produce electrolytic lead product, and silver in the anode slime is recovered. Then, Na2S recovered from smelting slag is used for antimony leaching from jamesonite concentrate to produce sodium pyroantimonate product and sodium hyposulfite by-product. Finally, the other metals such as zinc, iron and indium in the concentrate are enriched in the smelting slag, where Na2S has been recovered. This enriched metals such as zinc and iron are mostly in the form of sulfide, and can be separated by flotation. Thus, zinc, indium and other valuable metals are recovered from the zinc concentrate.
     In this study, the results of smelting process analyzed in theory shows that lead, antimony, silver and so on can easily be reduced into the metal phase (lead-antimony alloy) during smelting process. However, copper, iron, zinc and other elements is too diffcullt to be reduced, so that they exist in the smelting slag in the form of sulfide. In addition, sulfur is transferred into the smelting slag in the form of sodium sulfide.Thermod-ynamics of white antimony blowing from lead-antimony alloy has been researched. Iron, tin and other impurities can be removed with oxidation refining. Arsenic is removed by adding soda. In the temperature range of 500~1000℃, the vapor pressure ratio of antimony oxide to lead oxide (psb2O3/pPbP) is higher than that of antimony to lead (psSb/pPb)-Antimony is mainly transferred into gas phase in the form of antimony trioxide during lead-antimony alloy blowing.
     These raw materials of alkaline smelting jamesonite concentrate are mixed according to the mass ratio of jamesonite concentrate/soda/coal/ lime slurry equal to 100:50:10:10. And then they are prepared into pellets by a honeycomb briquet machine for the intensity, dimension and permeability of these pellets are suitable for blast furnace smelting.The smelting conditions are as follows:material column height-1.0-1.5m,air amount-61-65m3/min,air pressure-30-60mmHg, central temperature-1400℃, slag temperature-1000℃, coal rate-16.8%, and bed capability-110t pellet/(m2·d). The ratio of Pb, Sb, Ag into the alloy is 85.67%, 82.87%,87.08%, respectively. The recovery of Pb, Sb, Ag, Zn, In is 94.03%,96.70%,89.33%,97.63%,68.33%, respectively. The ratio of Cu and As entering into the slag is 72.63%and 68.88%. The smelting slag yield is 65.6% containing 52% sodium sulfide. The Pb and Sb content of lead-antimony alloy is 97.87%,with Pb being 61.66% and Sb being 36.21%. Antimony oxide powder recovery(based on concentrate input) is 7.36%. The sulfur from the materials is fixed by 99.3% as the sodium sulfide in the smelting slag, and SO2 concentration in the waste gas is 588 ppm reaching the industiral waste gas emission standard.
     During the industrial test of sodium sulfide leaching, the optimum conditions are as follows:S:L-1:4, temperature-90℃, time-90min. The leaching; of sodium sulfide is about 91%, the concentration is about 110g/L, the leaching of antimony is 91.83%, most part of As is leached and the rate is 80%, and the leaching slag contains 50% zinc. In the zinc slag, the metal elements such as zinc and iron exist in the form of sulfide. Zinc concentrate with high silver and indium content can be obtained by flotation. The sodium sulfide solution can be used to leach antimony in jamesonite concentrate or mixed antimony and lead oxides. The antimony leaching solution can be oxidized to produce sodium pyroantimonate product by pumping air. When the oxidation time is more than 45h, the sedimentation of antimony is 98%, and the antimony content in the filtration is less than 1g/L. The grade of the sodium pyroantimonate product meets with the second electronic industrial quality requirement. Antimony and arsenic can be decreased to 0.05g/L and 0.3g/L, respectively, by adding sulphuric acid to neutralize the oxidation solution or adding ferrous sulfate to precipitate them, and then qualified sodium thiosulfate can be produced by concentration and crystallization.
     The experiments of impurity removal from lead-antimony alloy by refining with sodium hydroxide such as arsenic show that better effects can be obtained by pumping air into the melt to enlarge reaction area. Thus, the NaOH+air system is selected as the alkaline refining system. The yield of refined Pb-Sb alloy is 95.84%, the removal of impurities such as Sn, As, Cu, S are 88.30%,96.45%,36.10%,56.64%, respectively. The direct recoveries of lead and antimony are 97.70%and 91.98%,separately. The As content can decrease to 0.010%. The conditions of antimony trioxide blowing are as follows:The melt temperature is (660±30)℃, air blowing temperature is about 100℃, the antimony content of the alloy is in the range of 15%~40%, the air amount and pressure are controlled to ruffle the melt surface. Under the above conditions, the antimony oxidation recoveries is 73.34%,with the contents of Sb and Pb in the alloy melt 15%and 83%. And then the great granularity is produced by increasing the crystallization temperature being 360~470℃, the distance from blowing pipe to molten alloy surface is more than or equal to 50mm. As a result, the granularity of the antimony trioxide exceeds 0.6μm.
     In the whole flow, the comprehensive recoveries of Pb, Sb, Ag and Zn are 92.1%,93.5%,97.6%,68.3%, respectively. As enters into the iron-arsenic residue by 74%. Cu enters into the zinc slag by 72.6%and into the lead system by 27%.
     Compared with the traditional sintering-blast furnace process, the process has the advantages of simple flow, high efficiency, less middle materials, high lead-antimony alloy quality, high metal recovery, better comprehensive utilization of resources, and less polution. So it is an energy-saving and environment-friendly process.
引文
[1]赵天从.锑[M].北京:冶金工业出版社,1987:7-29,56-69,475-484,495-502,592-594
    [2]何启贤.铅锑冶金生产技术[M].北京:冶金工业出版社,2005
    [3]刘世友.锑工业生产应用与发展[J].有色矿冶,1998,(1):33-37
    [4]刘吉生.中国锑矿资源储量综述[J].西南矿产地质.1993,(4):61-64
    [5]http://minerals.usgs.gov/minerals/pubs/commodity/antimony/mcs-2008-antim.pdf
    [6]何双梅.我国锑矿矿产类型及其特点.西南矿产地质,1992,(4):1-8
    [7]张国林,姚金炎,谷相平.中国锑矿床类型及时空分布规律.矿产与地质[J].1998,12(5):306-312
    [8]王成彦,邱定蕃.国内锑冶金技术现状及进展[J].有色金属(冶炼部分),2002,(5):6-9
    [9]熊春秀.大厂脆硫铅锑矿冶炼工艺现状及发展方向[J].锡矿山科技,1987,(3):9.
    [10]冉俊铭,黄世弘,易健宏,等.脆硫铅锑矿冶炼工艺现状及展望[J].湖南有色金属,2008,(4):35-37.
    [11]郑克强.锑鼓风炉设计与实践.甘肃有色金属[J].,2000,(1):32-36
    [12]戴伟明.中低度硫化锑矿平炉挥发焙烧生产实践[J].有色金属(冶炼部分),1995,(4):12-15
    [13]周维陶.锑冶金[M].北京:有色总公司内部教材,1986
    [14]林艳,谢刚,杨大锦,等.粗锑精炼的工艺研究[J].云南冶金,2008,37(5):33-36
    [15]刘琼.锑火法精炼深度除砷的生产实践[J].中国有色冶金,2008,(2):26-28
    [16]孙克萍,先晋聪.小型炼锑鼓风炉的应用[J].新疆有色金属,1997,(1):25
    [17]邬建辉,张传福.浮选硫化锑精矿小型鼓风炉挥发熔炼生产超细氧化锑[J].有色金属(冶炼部分),2001,(5):14-17
    [18]刘共元,刘勇.鼓风炉挥发熔炼锑金精矿工艺探讨。有色金属(冶炼部分),2003,(3):35-37
    [19]苏旺成.反射炉熔渣在鼓风炉还原熔炼中的应用[J].广西工学院学报,2005,16(增刊):153-155
    [20]夏家群,许季光.炼锑鼓风炉分析的研究[J].昆明理工大学学报,1995,(4):48-54
    [21]金贵忠.浅谈鼓风炉炼锑技术存在的问题[J].有色冶炼,2002,(6):80-81
    [22]韦元基.脆硫铅锑矿鼓风炉死炉的原因及预防措施[J].有色金属(冶炼部分), 2005,(2):8-10
    [23]翟应森.废铅蓄电池再生冶炼工艺探讨。冶金丛刊,1995,(5):6-10
    [24]周正华.从废旧蓄电池中无污染火法冶炼再生铅及合金[J].上海有色金属,2002,(4):56-59
    [25]徐盛明,肖克剑,汤志军.银精矿碱法熔炼工艺的扩大试验。中国有色金属学报,1998,(8):303-308
    [26]徐盛明,肖克剑,吴延军.从碱浮渣中回收碱和银的初步试验。矿产保护与利用,1999,(1):41-43
    [27]Huang Chao, Tang Chao-bo,Chen Yong-ming, et al. Thermodynamics analysis on reductive-matte smelting of sulfide ore of lead, antimony and bismuth which using ferric oxide as sulfur fixed agent. Sohn International Symposium. Advanced Processing of Metals and Materials. Proceedings of the International Symposium. Thermo and Physicochemical Principles:Non-Ferrous High-Temperature Processing,2006:387-395
    [28]肖剑飞,唐朝波,唐谟堂,陈永明。硫化铋精矿低温碱性熔炼新工艺研究[J]。矿冶工程,2009,29(5):82-85
    [29]孙克萍,先晋聪.锑的低温冶炼新工艺[J].有色金属(冶炼部分),1996,(1):19-22
    [30]Mustaev,A.K., et al. Precipitation method for obtaining Sb, Izv.Akad. Nauk Krig. SSR, Ser. Estestven. I Tekh Nauk, part 2,1960,(33):55
    [31]徐盛明,吴延军.碱性直接炼铅法的应用.矿产保护与利用,1997(6):31-33
    [32]姚维义,李培荣.硫化铅精矿无SO2排放反射炉一步炼铅半工业试验[J].中国有色金属学报,2001.11(6):1127-1130
    [33]唐朝波.铅、锑还原造锍熔炼新方法研究[D].中南大学,2003
    [34]Margulis,Efim V..Low temperature smelting of lead metallic scrap[J]. Erzmetal, 2000,53(2):85-89
    [35]Pickles C.A., Toguri J.M. Soda ash smelting of lead chloride[J]. Canadian Metallurgical Quarterly,1988,27(2):117-122
    [36]Guerrero, A., Romero, R.D. Morales and F. Chavez.Thermodynamic analysis of the soda ash smelting of lead acid battery residue in a rotary furnace[J]. Canadian Metallurgical Quarterly,1997,36(2):121-130
    [37]株洲冶炼厂.铅冶炼[M].北京:有色总公司内部教材,1986
    [38]彭容秋.有色金属提取冶金手册(铅锌镉铋卷)[M].北京:冶金工业出版社,1990:173
    [39]《铅锌冶金学》编委会编.铅锌冶金学[M].北京:科学出版社,2003
    [40]彭容秋.铅冶金[M].长沙:中南大学出版社,2005
    [41]包晓波,邓文基等译.硫化矿冶炼的进展[M].北京:冶金工业出版社,1991
    [42]Michael GKing. The evolution of technology for extractive metallurgy over the last 50 years—Is the best yet to come[J].JOM,2007,(2):21-27
    [43]Sohn H.Y. R&D in the metallurgical industry toward the 21st century[J]. JOM,1997,(4):33-37
    [44]Rama.chandra Rao S. Resource Recovery and Recycling from Metallurgical Wastes[C]. Pyrometallurgical processing. Waste Management Serie,2006, 7:127-165
    [45]Fairweather M.J.. The Sullivan concentrator-the last (and best) 30 years [J]. Minerals Engineering,2006,19(7):852-859
    [46]朱昌乐.鼓风炉炼粗铅渣型选择[J].矿产综合利用1996(4):48
    [47]李清.中小型铅鼓风炉的改造生产实践[J].矿产保护与利用2000(4):49-50
    [48]苗立强,王令明.鼓风炉渣含铅高的原因分析和解决措施[J].工程设计与研究(长沙),1998(3):25-27
    [49]郭继红,翟延忠.DCS控制系统在非稳态制酸工艺中的应用[J].济源职业技术学院学报,2003,2(3):13-14
    [50]琚成新,宫玉川,张斌.钼精矿焙烧烟气制酸工艺探索[J].中国钼业,2008,32(2):5-8
    [51]黄祥化.采用WSA工艺处理低浓度二氧化硫烟气[J].有色冶炼,2001,(2):28-31
    [52]汪家铭.WSA工艺在酸性气硫回收中的应用[J].石油化工技术与经济,2009,25(1):15-19
    [53]刘建平.炼厂酸性气WSA硫化氢湿法制硫酸装置试生产[J].炼油技术与工程,2009,39(2):26-29
    [54]林河成.用有色冶炼烟气生产硫酸的进展[J].四川有色金属,2006,(3):11-16
    [55]陈南洋.我国有色冶炼低浓度二氧化硫烟气制酸技术进展[J].硫酸工业,2005,(2):16-18
    [56]张训鹏,彭容秋.熔池熔炼的发展[J].有色冶炼,1995,(4):20-25
    [57]栾贻红.炼铅新工艺工业化成功技术水平达到国际先进[J].科技潮,2003,(5):36-37
    [58]李贵.铅氧气底吹熔炼新工艺[J].中国有色金属,2008,(5):68-69.
    [59]何仕清.铅冶技术的发展及氧气底吹熔炼工艺[J].企业技术开发,2009,28(10):55-56
    [60]李东波,张兆祥.氧气底吹熔炼-鼓风炉还原炼铅新技术及应用[J].有色金属: 冶炼部分,2003,(5):12-13,17
    [61]黄兴东.韩国锌公司温山QSL炼铅厂[J].有色冶炼,1995,(2):8-11.
    [62]黄作仁.QSL法炼铅工艺的新进展[J].湖南有色金属,1997,13(1):34-36.
    [63]Puellenberg,R. Rohkohl,A.Modern lead smelting at the QSL-plant BERZELIUS metall in Stolberg, Germany[J].Proceedings of the TMS Fall Extraction and Processing Conference,2000:127-148.
    [64]何国才.白银QSL炼铅工艺实践的回顾与展望[J].中国有色冶金,2004,33(4):24-26
    [65]Tan P.F..Thermodynamic Model of Lead Blast Furnace[J].Trans. Nonferrous Met. Soc,2005,15(1):160-164
    [66]Kim, Myung Bae, et al. QSL lead slag fuming process using an ausmelt furnace[J]. Proceedings of the TMS Fall Extraction and Processing Conference, 2000:331-343
    [67]Queneau P.,Siegmund E..Industrial-scale lead-making with the QSL continuous oxygen converter[J].JOM,1996,48(4):38-44
    [68]Fylod J.M. The emerging role of new bath smelting technology in non-ferrous metals. Proceedings of the Savard/Lee International Symposium on bath smelting,1992:103
    [69]Sychev A.P. Sannikov Y.U.I. and Layamina M.A. Dynamics of kivcet process smelting of lead-zinc sulfide raw materials[J].Russ.Metall,1987,(4):1-8
    [70]Nermes E.O. and Talonen T.T..Flash Smelting of Lead Concentrats.TMS-AIME Annual Meeting Atlante,TMS Warrendale,1983:35-83.
    [71]Chaudhuri K.B.and Webb I.D.. The Kivect Process for Lead-Recent Develop-ments. SME-AIME Fall Meeting,Honolulu,Sept.1982:88-316.
    [72]Bezrodnya M.K., Volkova S.S., Ivanova V.B.,etal.New energy technological system of heat utilization in non-ferrous pyrometallurgical plants[J] Journal of Heat Recovery Systems,1985,5(2):127-131
    [73]Warner N.A..Advanced technology for smelting McArthur river ore[J].Minerals Engineering,1989,2(1):3-32
    [74]Moskalyk R.R., Alfantazi A.M.. Review of copper pyrometallurgical practice: today and tomorrow[J]. Minerals Engineering,2003,16(10):893-919
    [75]陈邦俊,张佐民.意大利基夫赛特炼铅技术评价[J].有色金属:冶炼部分,1993,(6):1-8
    [76]叶国萍.基夫赛特炼铅法[J].有色金属:冶炼部分,2000,(4):20-24
    [77]刘万灵.卡尔多炉炼铅技术[J].有色金属(冶炼部分),1999(04):13-16
    [78]谭宪章.玻利登隆斯卡尔冶炼厂技术考察及其简要评述[J].有色冶炼,1999,(4):53-57
    [79]Pazour,D.A..Boliden Tests for Lead Concentrate Smelting[J].World of Mining,1982,35(9):64.
    [80]舒见义,何醒民.卡尔多炉炼铅工艺在国外的研究应用[J].工程设计与研究(长沙),2006,(121):14-16
    [81]陈阜东.卡尔多直接炼铅工艺[J].工程设计与研究,2006,(3):11-13
    [82]赵瑞荣,石西昌.锑冶金物理化学[M].长沙:中南大学出版社,2006:80-81
    [83]雷满奇,韦连军.广西南丹某铅锑锌多金属矿选矿试验研究[J].矿产保护与利用,2009(2):25-29
    [84]唐谟堂,唐朝波,姚维义等.脆硫铅锑矿精矿的还原造锍熔炼[J].中南工业大学学报(自然科学版),2003,34(5):502-505
    [85]陈永明,黄潮,唐谟堂,姚维义等.硫化锑精矿还原造锍熔炼一步炼锑[J].中国有色金属学报,2005,15(8):1311-1316
    [86]徐养良,华一新.脆硫铅锑矿铅锑分离新工艺研究[J].中国有色冶金,2005,(10):44-46.
    [87]韦万新.脆硫铅锑矿火法流程生产高铅锑合金的实践[J].有色冶炼,1992,21(2):42.
    [88]安建刚.脆硫铅锑矿综合回收铜铋实践[J].有色金属(冶炼部分),2005,(5):26-28
    [89]乌红绪.亚铵法治理低浓度SO2生产工艺实践与理论分析[J].中国钼业,2005,29(2):26-28,32
    [90]张秋芳,施贤蛟.新型炼铜工艺-Contop熔炼[J].有色矿冶,2001,17(2):19-22
    [91]王星.用旋涡熔炼法直接生产白冰铜和粗铜.中国有色冶金,2006,35(3):6-10
    [92]唐谟堂,鲁君乐.新氯化—水解法处理大厂脆硫铅锑矿精矿[J].有色金属(冶炼部分),1991,(5):20-22
    [93]唐谟堂,赵天从.AC法处理大厂脆硫锑铅矿精矿[J].有色金属(冶炼部分),1989(6):13-16
    [94]唐谟堂王玲.中和水解法处理脆硫锑铅精矿浸出液新工艺[J].中南工业大学学报,1997,28(3):226-228
    [95]杨天足,唐建军.焦锑酸钠生产工艺及研究进展[J].无机盐工,1999,31(1):20-22.
    [96]黎东明,江德严,傅政等.强化喷射氧化制取锑酸钠[P].中国专利:ZL94113384.2,1998-01-28.
    [97]Yang Tianzu,Lai Qionglin,Tang Jianjun,et al.The precipitation of antimony from the solution of thioantimonite by air oxidation in the presence of catalytic agents [J]. Journal of Central South University of Technology,2002,9(2):107-111
    [98]申初云.我国锑酸钠生产工艺综述[J].锡矿山科技,1995(1):9-15
    [99]王志明,杨天足,王卫东,等.从锑精矿制备焦锑酸钠的工业试验[J].湖南冶金,2005,33(3):17-20
    [100]马娴贤,郭琦.碱性介质氧化法制备锑酸钠的工艺探讨[J].无机盐工业,1995,(5):4-6
    [101]杨显万.矿浆电解原理[M].北京:冶金工业出版社,2000
    [102]邱定蕃.清洁高效的提取冶金-矿浆电解[J].中国工程科学,1999,1(1):67-72
    [103]王成彦,邱定蕃,张寅生,江培海.矿浆电解法处理铋精矿的研究[J].有色金属,1995,47(3):55-60
    [104]王成彦,邱定蕃,张寅生,等.矿浆电解法处理铋精矿的研究[J].有色金属,1995,47(3):55
    [105]江海.矿浆电解技术处理多金属复杂金矿石取得成功[J].中国工程科学,2000,(1):67
    [106]王成彦,邱定蕃,江培海.复杂锑铅矿矿浆电解工艺和理论研究[J].有色冶炼,2002,(6):72-75
    [107]王成彦,邱定蕃,江培海脆硫锑铅矿矿浆电解机理研究[J].有色金属,2003,55(1):25-42
    [108]王成彦.梁德华.复杂锑铅精矿矿浆电解研究[J].矿冶,2002,11(3):51-55
    [109]陈国发.硫化铅精矿的碱法熔炼[J].有色金属(冶炼部分),1986(2):20-22
    [110]傅崇说.有色冶金原理[M].北京:冶金工业出版社,1993
    [111]李洪桂.冶金原理[M].北京:科学出版社,2010
    [112]叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社,2002.
    [113]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993.
    [114]伊赫桑·巴伦.纯物质热化学数据手册(程乃良,译者).北京:科学出版社,2003
    [115]陈新民.火法冶金过程物理化学.北京:冶金工业出版社,1994
    [116]Barin I., Knacke 0., Kubaschewski O.. Thermochemical properties of inorganic substance.Springer-Verlag Berlin Heidelberg. New York Verlag Stahleisen M.b. H Dusseldorf:1977
    [117]Gautam R. and Seider W.D. Computation of phase and chemical equilibrium [J]AIChE,1979(25):991
    [118]Azuma,S.Goto,N.Takebe.Nippon Kogyo Kaishi.1970,(86):221-216
    [119]库巴谢夫斯基等著.邱竹贤等译.冶金热化学.北京:冶金工业出版社,1985
    [120]J.R.Stubbles,C.E.Brichenall.Transactions of the Metallurgical Society of AIME, 1959,(6):535
    [121]Ottonello G Principles of Geochemistry.New York:Columbia University Press, 1997
    [122]Hultgren,R.,Orr,R.L.,Anderson,D.,Kelley,K.K..Selected Values of Thermody-namic Properties of Metals and Alloys, New York:John Willy&Sons,1963
    [123]Reynolds W.C.The element potential method for chemical equilibrium analysis. Stanford University,1996
    [124]J.R.Tayler.Advances in Sulfide Smelting.TMS,1983:213-222
    [125]White W.M. Geochemistry. An online textbook. New York:Cornell University, 2001
    [126]梁连科.冶金热力学及动力学[M].沈阳:东北工学院出版社,1990
    [127]陈金彪,范翔,安剑刚.反射炉炼锑二段脱砷二段脱铅法生产实践[J].湖南有色金属,2006,22(5):33-35
    [128]魏昶,姜琪,罗天骄,黄孟阳.重有色金属冶炼中砷的脱除与回收[J].中国有色金属学会第五届学术年会论文集,2003:135-139
    [129]彭子玉.有色金属高砷物料的冶炼脱砷[J].工程设计与研究,1990,20-30
    [130]符金开,罗晓春,余伦.等离子体锑白炉生产超细三氧化二锑粉末试验研究[J].湖南有色金属,2003,19(6):35-36
    [131]冷新村,范翔,安剑刚.影响锑白炉Sb203白度的因素[J].有色金属:冶炼部分2007(5):49-51
    [132]杜新玲,汤长青.高纯锑白生产工艺述评[J].辽宁化工2007,36(12):853-856
    [133]石锑中.火法制取锑白的生产实践[J].有色金属:冶炼部分,1990,(3):17-18
    [134]唐仕祥.工业锑白炉试制粗颗粒Sb203的研究[J].湖南冶金1998,(3):8-10
    [135]戴永年.真空冶金[M].北京:冶金工业出版社,1987.
    [136]张国靖,刘永成,张永年.铅锑合金真空蒸馏分离研究[J].有色金属:冶炼部分,1989,(4):21-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700