用户名: 密码: 验证码:
合金元素添加对TiC/Ti6A14V复合材料组织和性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用熔铸法制备了自生TiC颗粒增强Ti6A14V基复合材料,利用扫描电镜、X射线衍射仪、磨损实验机、万能材料实验机和电化学工作站等分析测试手段,研究了C含量变化、添加合金元素B、Zr和Y对复合材料组织、磨损性能、压缩性能和电化学腐蚀行为的影响。
     研究结果表明,与基体合金Ti6A14V相比,TiC/Ti6A14V复合材料的磨损性能、压缩性能显著提升,但是复合材料的耐腐蚀性要比基体合金差。
     TiC/Ti6A14V复合材料的性能与增强相TiC的含量和形貌有直接关系。随着C含量增多,复合材料中的TiC量增多,耐磨性能提高。添加微量合金元素(B、Zr和Y)可使TiC枝晶细化,使得参与摩擦的TiC颗粒变小,复合材料的耐磨性变差;适量Zr和Y元素的添加会引起TiC枝晶粗大,适量的B添加会使复合材料中有TiB生成,它们均会使得参与摩擦的增强相增多,从而改善复合材料的耐磨性。Hank's液润滑能显著改善复合材料的耐磨性。
     随着C含量的增多,TiC/Ti6A14V复合材料能更好的承受载荷,室温压缩性能上升。加入微量合金元素(B、Zr和Y)时,TiC枝晶的破碎有利于提高复合材料的压缩性能;当加入适量的Zr、Y元素时,TiC枝晶变得发达,易引起应力集中,使复合材料的压缩性能下降,而加入适量的B元素时,生成的TiB促使其压缩性能继续提高。复合材料的断裂表现为典型的脆性断裂。
     TiC/Ti6A14V复合材料的耐腐蚀性能随C量的增多而变差。加入微量合金元素(B、Zr和Y)时,TiC枝晶的破碎加大了增强体与界面的接触面积,使复合材料的耐腐蚀性能变差;加入适量Zr、Y元素时,变得粗大的TiC枝晶与界面接触面积变小,使复合材料的耐腐蚀性能变好,添加适量B元素时,新生成的TiB又加重了对基体表面钝化膜的破坏,从而使复合材料的耐腐蚀性能继续变差。
In this paper, TiC particles reinforced Ti6A14V matrix composites had been fabricated using in-situ melting-casting process.The effect of C content and elements addition of B, Zr and Y on wear performance, compression performance and electrochemical corrosion of composites had been studied by scanning electron microscopy(SEM), X-ray diffraction(XRD), wear testing machine, universal material testing machine and electrochemical workstation.
     The results showed that TiC/Ti6A14V composites had better wear properties and compression properties than matrix alloy Ti6A14V. They showed that composites had better mechanical properties than matrix alloy. However, the corrosion resistance of composites was poorer than that of the matrix alloy.
     Properties of TiC/Ti6A14V matrix composites contacted with the content and morphology of enhanced phase TiC.TiC increased as the C content increased, and wear rate declined gradually. So wear resistance of composites improved. TiC dendrite fractured and became small when a small amount of alloying elements (B, Zr and Y) were added.And the TiC particles involving in wear were fewer, so wear resistance of composites declined; TiC dendrites were laeger(Adding Zr and Y) and TiB(Adding B) formed when appropriate elements were added.Therefor particles involving in wear increased and the wear resistance of composites improved. Hank's liquid lubrication could improve the wear resistance of composites significantly.
     With the increasing of TiC, TiC/Ti6A14V composites could bear the load better, so its compression performance at room temperature increased. Adding a small amount of elements (B, Zr and Y), which made TiC dendrite fracture and it is very helpful to improve the compression properties of composites. TiC dendrite became coarse and led to stress concentration easily When appropriate amount of Zr, Y element were added. So compressive properties of composites decreased. Adding the appropriate amount of B element would generate TiB, so compression performance of composites continued to improve. Fracture type of composites was typical brittle fracture.
     TiC/Ti6Al4V composites with the increasing of TiC could destroy the passivation film of the matrix alloy surface, so the corrosion resistance of composites declined. Adding a small amount of elements (B, Zr and Y), which made TiC dendrite fracture, and contact area between reinforced phase and matrix alloy increased, so the corrosion resistance of composites declined. When added an appropriate amount of Zr, Y element, TiC dendrite became coarse. And contact area between reinforced phase and matrix alloy became smaller, so the corrosion resistance of composites increased. Adding the appropriate amount of B element would generate TiB, so the passivation film of the matrix alloy surface was destroyed badly. Accordingly the corrosion resistance of composites continued to decrease.
引文
[1]胥锴,刘政,刘萍.金属基复合材料的发展及其应用[J].南方金属.2005,6:1-6页
    [2]Thompson M S,Nardone V C.In-situ reinforced titanium matrix Composites[J].Mater Sci Eng A.1991,144:121-126P
    [3]Zhu S J,Mukherji D,Chen W,et al.Steady state creep behavior of Ti26A124V composite[J]. Mater Sci Eng A.1998,256:301-307P
    [4]Wang L,Niimomi M,Takahashi S.Relationship between fracture toughness and microstructure of Ti26A122Sn24Zr22Mo alloy reinforced with TiB particulates[J].Mater Sci Eng A.1999,263:319-325P
    [5]方峰,谈淑咏,江静华等.金属基复合材料概述[J].江苏机械制造与自动化.2000,1:46-48页
    [6]M.Hunt.Textron Unit Makes Reinforeed Titanium, AluminumParts[J]. Aviation Week and Space Technology.1992,8P
    [7]J.C.Chesnutt,C.William.Titanium Aluminides for Advanced Aircraft Engines[J]. Defence and Aerospace,1990,15(8):509-513P
    [8]J.A.Vaeari.The Challenges of orient Express[J].Am.Maeh.,1990,26(1):35-39p
    [9]王文生,阎蕴琪,李中奎.纤维增强TiAl基复合材料的研究[J].钛工业进展.2003,(2):5页
    [10]赵永庆,周廉,Alain Vasse.SiC长纤维增强钛合金基复合材料的界面研究[J].稀有金属材料与工程.2004,33(4):359页
    [11]Xun Y W,Tan M J,Zhou J T.Processing and interface stability of SiC fiber reinforced Ti15V3Cr matrix composites[J].Mater Proc Techn.2000,102:215P
    [12]赵永庆,周廉,Alain Vassel.SiC连续纤维增强钛基复合材料研究[J].稀有金属材料与工程.2003,32(3):161页
    [13]曾立英,邓炬,白保良等.连续纤维增强钛基复合材料研究概况[J].稀有金属 材料与工程.2000,29(3):211-215页
    [14]Hanusiak W M,Fields J L,Nansen D S.Titanium Matrix Composits status[J].Ti-2003 Science and Technology,2003,2:2463-2469P
    [15]毛小南,张鹏省,于兰兰等.纤维增强钛基复合材料研究新进展[J].稀有金属快报.2005,24(5):1-7P
    [16]Thomas M P,Winsone M R. Longitudinal yielding behaviour of SiC-fiber-reinforced titanium matrix composites[J].Comp Sci Techn. 1999,59:297P
    [17]杨延清,朱艳,马至军.SiC长纤维增强钛合金基复合材料的制备.机械科学与技术[J].2002,21(3):424页
    [18]杨延清,朱艳,陈彦.SiC纤维增强Ti钛基复合材料的制备和性能[J].稀有金属材料与工程.2002,31(3):201页
    [19]Chawla K.Interface in metal matrix composites[J].Composite Interfaces. 1997,4(5):287P
    [20]Zhang G D,Chen R.Effects of interfacial bonding strength on the mechanical properties of metal matrix composites[J].Composite Interfaces. 1993,1(4):337P
    [21]Wanjara P,Drew R A L,Root J,et al.Evidence for stable stoichiometric TiC at the interface in TiC particulate reinforced Ti alloy composites[J].Acta Mater.2000,48(7):1443-1450P
    [22]Dai J Y, Xing Z P, Wang Y G,et al. HREM study of TiB2/NiAl interfaces in aNiA12TiB2 in-situ composite[J]. Materials Letters.1994,20(12):23P
    [23]Tjong S C, Ma Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites[J].Mater Sci Eng A.2000,29:49-113P
    [24]Zhang X N, Zhang D,et al.In situ technique for synthesizing(TiB+TiC)/Ti composites[J].Scripta Mater.1999,41(1):39-46P
    [25]Liu H Z,Wang L H,Wang A M,et al.Preparation of nanometer size TiC particulate reinforcements in Ti matrix composites under high pressure[J]. Nanostructured Mater.1997,9:177-190P
    [26]Nakane S, Yamada O, Miyamoto Y,et al. Simultaneous synthesis and densification of TiB/a-Ti(N) composite material by self-propagating combustion under nitrogen pressure[J].Solid State Commun,1999,110:447P
    [27]Rangarajan S, Aswath P B, Soboyejo W o. Microsrucyure development and fracture of in-situ reinforced Ti-8.5Al-1B-1Si[J].Scripta materialia, 1996,35(2):239-245P
    [28]Kobayashi M,Funami K,Suzuki S,et al.Manufacturing process and mechanical properties of fine TiB dispersed Ti6A14V alloy composites obtained by reaction sintering[J].Mater Sci Eng A,1998,A243(1/2):279
    [29]Loretto M H,Konitze D G.The effect of matrix reinforcement reaction on fracture in Ti6A14V base composites[J].Metallurgical Materials Tranaction A, 1990,21A(6):1579P
    [30]Konitzer D G, Loretto M H. Microstructure assessment of Ti6A14V metal-matrix composites[J].Acta Metall Mater,1989,37(2):397P
    [31]Blenhinsop P A.Advanced alloy and processes[J].Titanium Science and Technology.1992,12(3):15-26P
    [32]Ma Z Y,Mishra R S,Tjong S C.High temperature creep behavior of TiC particulate reinforced Ti26Al24V alloy composite[J].Acta Mater.2002,50: 4293-4302P
    [33]吕唯洁,张荻.原位合成钛基复合材料的制备、微结构及力学性能[M].北京:高等教育出版社,2005.3
    [34]Zhang S,Wu W T,Wang M C,et al.In-situ synthesized and wear performance of TiC particle reinforced composite coating on alloy Ti6Al4V[J].Surface and Coatings Technology.2001,138(1):95-100P
    [35]Soboyejo W O,Shen W,Srivat san T S.An investigation of fatigue crack nucleation and growth in a Ti6Al4V/TiB in situ composite[J].Mechanics of Materials.2004,36:141-159P
    [36]T.W.Clyne,H.M.Flower.Titanium Matrix Composites[J].Titanium'92 Science and Technology,1992:2467-2478P
    [37]E.N.T.Jong.Interfacial Reaction Kinetics in AlPha and BetaTitanium Based Composites[J].Titanium'92 Science and Technology,1992:2561-2568P
    [38]Gorsse S,Chaminade J P,Le Petitcorps Y,et al.In situ preparation of titanium base composites reinforced by TiB single crystals using a power metally technique[J].Composites Part A.1998,29(9-10):1229-1234P
    [39]Feng Tang, Satoshi Emura, Masuo Hagiwara.Reinforcing effect of in situ grown TiB fibers on Ti222A1211Nb24Mo alloy[J].Scripta Mater.2000,43: 573-578P
    [40]金云学TiCP/Ti复合材料TiC生长形态及其控制[D].哈尔滨工业大学博士学位论文.2002:98-121页
    [41]Abkowitz S, Weihrauch P. Advanced powder metal titanium alloy matrix composite reinforced with ceramic and intermetallic particles[J].Titaniump Science and Technology.1992:2511-2520P
    [42]S.Abkowitz,Advanced Powder Metal Titanium Alloy Matrix Composites Reinforced withCeramic and Inter-metallie Particles[J].Titanium'92 Science and Technology,1992:2511-2518P
    [43]T.Saito,T.Furuta,T.yamaguchi.Recent Advancement in TMCs[J].Proc.of the 8th World Conf.On Titanium,Oct.1995,Birmingham,UK:33-44P
    [44]Ranganath S,Subrahmanyam J.On the In-Situ Formation of TiC and Ti2C Reinforcements in Combustion-Assisted Synthesis of Titanium Matrix Composites [J].Metallurgical and Materials Transactions A, Physical Metallurgy and Materials Science,1996,27:237-240P
    [45]SaitoTakashi.The Automotive Application of Discontinuously Reinforced TiB-Ti Composites[J].JOM,2004,56(5):33-36P
    [46]吕唯洁,张荻.原位合成钛基复合材料的制备、微结构及力学性能[M].北京:高等教育出版社,2005.3
    [47]张小明,张廷杰,毛小南等.SHS法制备钛基复合材料用的TiC颗粒[J].钛工业进展,2003,(1):18页
    [48]G.Z.Lou,Q.P.Zeng,J.Deng,The researeh and development of TMCs[J]. Titanium 95:SeieneeAnd Technology,1995:2704-2713P
    [49]Araki Hiroyasu,Akira Ishikawa.Mechanical Properties of Mechanically Alloyed TiC Particulate-Reinforced Titanium[J]粉体ぉょび粉末冶金,2001,43(10):1247-1252P
    [50]Q.P.Zeng,X.N.Mao,Z.M.Wang.Composite on Titanium Base[J].Rare Metal Material and Engineering,1991,7(1):69-73P
    [51]J.Y.Wu,Z.P.Cai.The Metal Matrix composites Used in Aviation[J].Journal of Materials Engineering,1992,(7-9):47-52p
    [52]W.Takahashi.Properties of Carbide DisPersed Titanium alloy Prepared by VAR Melting[J].Pro.3rd Japan International SAMPE Symposium,Dec,1993,(7-9):1824-1929P
    [53]湛永钟,张国定,蔡宏伟.颗粒增强金属基复合材料的干摩擦性能与磨损机理[J].材料科学与工程学报.2003,21(5):748-752页
    [54]朱和祥,黎祚坚SiCp/Al复合材料摩擦磨损性能研究[J].机械工程材料.1996,20(3):40-42页
    [55]陈跃,邢建东.增强颗粒对铝基复合材料摩擦学性能的影响[J].摩擦学学报.2001,21(40):251-255页
    [56]金学云,刘凤伟,曾松岩等TiCp/Ti6A14V复合材料的耐磨性及磨损机制[J].材料科学与工艺.2008,16(2):184-188页
    [57]李邦盛,郭景杰,傅恒志.原位TiB晶须增强钛基复合材料的磨损机制[J].摩擦学学报,2005,25(1):18-22页
    [58]尚俊玲,李邦盛,任明星.原位TiB/Ti复合材料的磨损性能及磨损机制[J].铸造,2008,57(5):465-469页
    [59]马宗义,郑镇洙,肖伯律.原位TiB晶须和TiC颗粒复合增强Ti复合材料的压缩性能及微观结构[J].材料科学与工艺,2002,10(6):189-191页
    [60]周伟民(TiB+TiC)/Ti复合材料的反应热压制备及高温性能[D].哈尔滨:哈尔滨工业大学硕士生学位论文,2003.
    [61]吕维洁,张小农,张荻.铸态(TiB+TiC)/Ti复合材料组织和性能的研究[J].复合材料学报,2001,18(8):60-66页
    [62]杨志峰,吕维洁,盛险峰等.原位合成钛基复合材料的高温力学性能[J].机械工程材料.2004,28(3):22-24页
    [63]De Castro V,Leguey T,Monge M A. Discontinuously reinforced titanium matrix composites for fusion applications[J].Journal of Nuclear Materials.2002,311:691-695P
    [64]Pacicej R C,Agarwala V S.Influence of processing variables on the corrosion susceptibility of metal-matrix composites[J].Corrosion,1988,44:680-684P
    [65]England J,Hall I W.On the effect of the strength of the matrix in metal matrix composites[J].Scrip Metall,1986,20:697-700P
    [66]Arsenault R J,Fisher R M. Micro structure of fiber and particulate SiC in 6061 Al composites[J].Scrip Metall,1983,17:67-71P
    [67]Aylor D M,Moran P J.Effect of reinforcement on the pitting behavior of aluminum-base metal matrix composites[J].J Electrochem Soc,1985,132: 1277-1281P
    [68]Hihara L H,Latansion R M. Galvanic corrosion of alumiummatrix composites [J].Corrosion,1992,48:546-552P
    [69]Deuis R L,Green L,Subramanian C, et al.Influence of the reinforcement phase on the corrosion of alumimum composite coatings[J].J Mater Sci Lett,1997,16:440-444P
    [70]Deuis R L,Green L,Subramanian C,et al.Corrosion behavior of aluminium composite coatings[J]. Corrosion,1997,53:880-890P
    [71]Trazaskoma P P,McCaffery E M,Crowe C R. Corrosion behavior of SiC/Al metal matrix composites[J] J Electrochem Soc,1983,13:1804-1809P
    [72]张丽华,金云学,郭宇航.钛基复合材料的耐腐蚀性能研究[J].全面腐蚀控制,21(4):12-14页
    [73]曾泉浦.颗粒强化钛基复合材料研究取得新进展[J].钛工业进展,1994,(4):8页
    [74]李棣泉,梁振锋.颗粒增强钛基复合材料复合方法的研究[J].钛工业进展,1997,10(2):16页
    [75]曲选辉,肖平安,祝宝军.高温钛合金和颗粒增强钛基复合材料的研究和发展[J].稀有金属材料与工程,2001,20(3):161页
    [76]Saito Takashi.The Automotive Application of Discontinuously Reinforced TiB-Ti Composites[J].JOM,2004,56(5):33-36页
    [77]Tsang H T,Chao C G,Ma C Y. Effects of volume fraction of reinforcement on tensile and creep properties of in-situ TiB/Ti MMC.Scripta Mater.1997,37(9):1359-1365P
    [78]Lu W J,Zhang D,Zhang X N.Microstructure and tensile properties of in situ (TiB+TiC)/Ti6242 composites prepared by common casting technique[J]. Mater Sci Eng A.2001,311:142-150P
    [79]葛志明.钛的二元系相图[M].国防工业出版社.1977,12:6-60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700