用户名: 密码: 验证码:
口腔修复支架用钛—锆—铌—锡合金制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     钛以其良好的机械性能、耐腐蚀性和优异的生物相容性在医学领域中得到广泛应用。目前应用于临床的口腔修复材料主要是纯钛及Ti-6Al-4V合金,长期临床应用及研究表明纯钛用于活动义齿机械性能略显不足,临床上常出现卡环断裂等情况。且材料耐磨性较差,铸造、焊接、抛光等加工性能较差;Ti-6Al-4V含有Al及V等潜在毒性元素,限制了钛及其合金在口腔修复领域的应用。因此研制机械性能及生物相容性良好且易进行口腔修复工艺制作的义齿修复支架用钛合金对提高义齿修复质量及扩大修复适应证都是十分必要的。
     方法:
     1、合金制备:选用高纯度Ti、Zr、Nb、Sn合金元素,按Ti-12.5Zr-3Nb-2.5Sn(wt%)比例称取原料配制合金,采用高真空电弧熔炼合金。
     2、机械性能评价。将钛锆铌锡合金制作标准力学试样,经850℃固溶1.5h,500℃时效3h后,采用万能拉伸试验机测试力学性能;采用MH-6显微硬度仪测试合金显微维氏硬度;扫描电子显微镜观察合金显微组织,分析拉伸试样断口形貌;用RIGAKUDMAX型X-射线衍射仪对合金进行物相分析,确定合金金相组织中各相的组成结构及种类;采用金相试验观察合金的微观组织结构。
     3、生物学性能评价。参照国家制订的口腔医用材料技术报告相关标准,采用细胞毒性试验、急性全身毒性试验、口腔粘膜刺激试验、致敏性试验等体内及体外试验,测定新型钛合金的生物安全性,评价其生物学性能。
     4、铸造性能评价。制作测试蜡型,按照牙科纯钛镁系包埋材要求包埋,采用国产LZ5型离心铸钛机铸造试样,确定合金的铸造温度,测试合金的铸流率,并评价合金的铸造反应层和线收缩率。
     结果:
     1、合金机械性能及组织结构:Ti-12.5Zr-3Nb-2.5Sn合金抗拉强度为671.3±24.7MPa,屈服强度为561.5±39.9 MPa,延伸率为18.1±4.6%,弹性模量为92.5±8.0Gpa,合金硬度为250.7±16.1HV。试样断口处可见明显颈缩现象,肉眼观察呈纤维状,颜色灰暗。SEM显示组织在扩展区形成等轴韧窝,呈典型的微孔聚合型断裂方式。金相结构中晶粒组织均匀,呈现针状a分布于粗大的β晶粒中。XRD显示合金为近α相。
     2、合金生物学性能:细胞毒性试验显示合金0.2g/ml比例的浸提液,其细胞相对增殖度为124%,细胞毒性反应分级为0级;全身急性毒性试验显示小白鼠经尾部静脉注射给予试验样品浸提液,72h观察期内,其反应症状与对照组相比无明显差异,体重均未出现下降;口腔粘膜刺激试验显示合金固定于地鼠颊粘膜表面14天后,颊粘膜无充血、无肿胀、无糜烂,未见溃疡反应。组织学观察,动物接触供试样品部位粘膜上皮组织完好,无细胞变性、坏死,粘膜下白细胞浸润平均<25个/每高倍视野,血管无充血,粘膜下组织无水肿;致敏性试验显示供试品组及阴性对照组动物皮肤均未出现水肿、红斑等过敏反应,致敏率均为0
     3、合金铸造性能:按临床常规操作制作试样蜡型,纯钛镁系包埋材包埋并按纯钛包埋材升温曲线焙烧,400℃时铸造,其铸流率为100%,铸造线收缩率,表面反应层满足修复支架的铸造要求。
     结论:
     1、Ti-12.5Zr-3Nb-2.5Sn合金经850℃固溶1.5h,500℃时效3h,机械性能较纯钛明显提高,能够满足口腔修复支架用金属材料的性能要求。
     2、生物学试验表明,合金的细胞毒性反应为0级,全身毒性试验中未见急性毒性反应,对口腔粘膜无刺激性,无皮肤致敏反应,具有良好的生物相容性。
     3、该合金铸造时表面反应层和铸造线收缩率能够满足口腔修复支架的精度要求。加工出的铸造支架及口盖铸件完整,模型上就位顺利,打磨及抛光性能良好。
Objective:
     Titanium was widely used for its good mechanical, corrosion- resistance and biological properties. Titanium and Ti-6Al-4V are mostly used in dental restoration field. Considering the low tensile strength, bad wear resistance, and difficulties in processing technology of the titanium in the current clinical applications and researches, loop fracture offen appears in clinical medicine, Ti-6A1-4V contain Al&V, which restricted its application in the field of prosthodontics. Therefore, it is necessary to develop a new type of titanium alloy for dental restoration with better mechanical properties, biocompatibility and easy to process, which can enhance the effect of dental reparation and to expand the indications in the dental restoration.
     Methods:
     1. Preparation of alloy: Ti, Zr, Nb, Sn were selected as alloy elements. According to proportion of Ti-12.5Zr-3Nb-2.5Sn (wt%), raw materials were weighed and alloy was prepared by high vacuum arc melting alloy.
     2. Evaluation of mechanical properties. Ti-Zr-Nb-Sn alloy was made into standard samples, the mechanical properties was tested by universal tensile test machine after quenching process at 850℃for 1.5 hours and aging treatment at 850℃for 3 hours; Micro Vickers hardness was tested by MH-6 micro-hardness tester; the microstructure and the fracture morphology were scanned and observed by electron microscope; the alloy microstructure was analyzed with X-ray diffraction phase.
     3. Evaluation of biological performance. According to correlative standards, a series of in vivo and in vitro tests, such as the cell toxicity test, toxicity test, oral mucosa stimulate experiment and sensitization experiments was made to study the biological safety of the new titanium alloys and evaluate its biological properties.
     4. Evaluation of casting performance. Produced wax type tester, embedded as embedding materials, cast by LZ5-centrifugal casting machine, to study casting temperature of the titanium alloy and to test the alloy casting flow rate, evaluation of alloy casting reaction layer and linear shrinkage.
     Results:
     1. Organizational structure and mechanical properties. The tensile strength, yield strength, elongation, elastic modulus and hardness of alloy were 671.3±24.7MPa, of 561.5±39.9 MPa,18.1±4.6%,92.5±8.0Gpa,250.7±16.1HV respectively. It clearly showed necking phenomenon, fibrous by naked eye, the color gray. Specimen fracture electron microscopy revealed the formation of organizations in the expansion area. In the metallographic structure, it was showed that the distribution of needle-like a in the thick ofβgrains. XRD display alloy was nearlyα-Ti.
     2. Biological properties. Cytotoxic test showed that the degree of cell relative proliferation was 124% and cell toxicity grading was grade 0; Systemic acute toxicity test showed no significant differences in reaction symptom and body weight compared with the control group after 72h; Oral mucous membrane irritation test showed no buccal congestion, no swelling, no erosion, no ulcer reaction when alloy was fixed on hamster buccal surface for 14 days. Histological observation found no adverse reaction at the tested sample area animal contact with; Sensitization experiments showed no skin edema, erythema or other allergic reactions on the test sample group and negative control animals. Sensitization rate was 0.
     3. Casting properties. Samples were waxed, embedded and roasted by demand, cast at 400℃. The casting flow rate was 100%. Linear shrinkage and the surface reaction layer met the demand.
     Conclusions:
     1. The mechanical properties was prior to Titanium obviously, after quenching process and aging treatment and the former could meet the performance demand to the metal material used for oral restoration.
     2. Biology experiment showed that the alloy cytotoxicity reaction level was 0; no acute toxic reactions, irritation to the oral mucosa, or skin sensitization.
     3. The surface reaction layer and linear shrinkage met the accuracy requirements of dental demands. The casting stand and flap were complete. The model emplacement, grinding and polishing were excellent.
引文
[1]Nagai E, Otani K, Suzuki S. Repair of denture base resin using woven metal and glass fiber: Effect of methylene chloride pretreatment [J]. Prosthet Dent, 2001,85(5):496.
    [2]Wiakott HWA, Nichicholls JI, belser UC. Stress fatigue lensie principles and prosthodintic implications [J]. Int J prosthodont,1995,8(2):105-116.
    [3]Hedzelek W, Gajdus P. Mechanical strength of an acrylic resin palatal denture base reinforced with a mesh or bundle of glass fibers [J]. Int J Prosthodont,2007,20(3):311-312.
    [4]Cohen SM, Viswanadhan T.Castability Optimization of palladium based alloys [J]. Prosthet Dent,1996,76(2):125-131.
    [5]汪大林.牙科医学中金属与合金材料的应用现状和存在的问题[J].生物医学工程学杂志,1993,10(10):364-367.
    [6]Douglass CW. Future needs for dental restorative material [J]. AdvDent Res, 1992,6:4-6.
    [7]Bridgeman J T, Marker V A. Comparison of Titanium and Cobalt-chromium Removable Partial Denture Clasps [J]. Prosthet Dent, 1997,78:187-193.
    [8]黎红,张孟.钛修复体的口腔生物摩擦学特性研究[J].中华口腔医学杂志,2004,39(1):63-66.
    [9]吴海树,李长义.异种合金与纯钛激光焊接焊接区元素混熔分布及组织结构特征.中华口腔医学杂志,2002,37(4):287-89.
    [10]张连云等.纯钛铸件化学抛光的实验研究.华西口腔医学杂志,2002,20(6):401-403.
    [11]Zhang Yumei,Guo Tianwen,Li Zuocheng. New high strength titanium alloy Ti-Zr for dental Use [J]. West China Journal of Stomatology,1999,17(4): 24.
    [12]Masafumi Kikuchi, Masatoshi Takahashi, Toru Okabe, et al.Grindability of dental cast Ti-Ag and Ti-Cu alloys [J].Dent Mater J,2003,22(2):191-205.
    [13]Okazaki Y, et al. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompability of new Ti alloys without Al and V [J]. Biomatefials,1998,19:1197-1215.
    [14]Mitsuo Niinomi.Recent research and development in titanium alloys for biomedical applications and healthcare goods [J].Sci Technol Advan Mater, 2003,4:445-454.
    [15]Kikuchi M, Takahashi M. Grindability of dental cast Ti-Ag and Ti-Cu alloys, Dent Mater,2003,22(2):191-205.
    [16]H.M.Silva, S.G. Schneider. Study of nontoxic aluminum and vanadium-free titanium alloys for biomedical applications [J]. Materials Scienceand Engineering,2004,24(5):679-682.
    [17]Mitsuo N. Sci Tech Adv Mater,2003,4:445-454.
    [18]Silva HM, Schneider SG, Moura NC. Study of nontoxic aluminum and wanadium-free titanium alloys for biomedical applications [J]. Materials science & Engineering C,2004(24):679-682.
    [19]Ho WF, Cheng CH, Pan CH, et al. Structure, mechanical properties and grindability of dental Ti-lOZr-X alloys [J]. Mater Sci Eng C,2009, 29(1):36-43.
    [20]Long M.Rack H J.Titanium alloys in total joint replacement-a materials science perspective [J].Biomaterials,1998,19:1621-1639.
    [21]Wang K.Gustabson L.J Dumbleton.The characterization of Ti-12Mo-6Zr-2Fe-a new alloy developed for surgical implants[A].Beta titanium alloys in the 1990's [G].Warrendale.PA:TMS-AIME.1993.49-60.
    [22]Steinemann S G, Mausli S, Szmukler-Moncler S, et al. Beta-titanium alloy for surgical implants [A]. Titanium'92, Science and Technology [C]. TMS, Warrendale, PA:1993,2689-2696.
    [23]李佐臣,李常亮,裘松波等.外科植入TAMZ合金生物学性能评价[J].稀有金属材料与工程,1998,27(1):59-61.
    [24]刘金城,高 勃,郝玉琳,等.牙用低弹性模量钛铌锆锡合金的机械性能研究[J].实用口腔医学杂志,2006,22(1):57-59.
    [25]李军,周廉.新型医用钛合金Ti-12.5Zr-2.5Nb-2.5Ta的研究[J].稀有金属材料与工程,2003,32(5):398-400.
    [26]Y.Okazaki, E.Nishimura. Surface analys of Ti-15Zr-4Nb-4Ta alloy after implantation in rat tibia [J].Biomaterials,2001,22:599-560.
    [27]刘瑛,邓波.应用d-电子合金设计理论优化GH907合金组织及持久性能[J].材料工程,1997,7:23-25,29.
    [28]Z.D.Cui, H.C.Man. The corrosion and nickel release behavior of laser surface-melted NiTi shape memory alloy in Hanks solution [J]. Surface & Coatings Technology,2005,192:347-353.
    [29]Molinari A, Straffelini G. Dry Sliding Wear Mechanisms of the Ti6A14V Alloy Wear [J].1997,208(1-2):105-112.
    [30]S. L.Zhu, X.J.Yang. Stress-strain behavior of porous NiTi alloys prepared by powders sintering [J]. Materials Science and Engineering A,2005, 408:264-268.
    [31]周彦邦.钛合金铸造概论[M].北京:航空工业出版社,2000.
    [32]Y.L.Hao, S.J. Li. Effect of Zr and Sn on Young's modulus and superelasticity of Ti-Nb-based alloys [J]. Materials Science and Engineering A,2006,441:112-118.
    [33]Zhang YM. Rare Metal Materials and Engineering [J].1999,28(2):125-128.
    [34]Luo XP, Guo TW. Titanium Casting Into Phosphate Bonded Investment with Zirconite [J], Dent Mater,2002,18(7):512-515.
    [35]张振兴.钛及钛合金熔炼方法初探[J].金属材料研究,1990(16):9-10.
    [36]Wen-Fu Ho, Wei-Kai Chen, Shih-Ching Wu et al. Structure, mechanical properties, and grindability of dental Ti-Zr alloys. J Mater Sci:Mater Med, 2008,19:3179-3186.
    [37]H.Y.Kim, Y.Ohmatsu, J.I.Kim et al. Effect of Nb Addition on Shape Memory Behavior of Ti-Mo-Ga Alloys. Materials Transactions.2006, 47(3):518-522.
    [38]Robert G.Craig, John M.Powers. Restorative Dental Materials 11th Edition, 2002:104-116.
    [39]Ying-Long Zhou, Mitsuo Niinomi. Journal of Alloys and Compounds 466(2008)535-542.
    [40]Yutaka O,Toru O.Effect of corrsion on the strength of soldered titanium and Ti-6A1-4V alloy.Dent Mater,1996,12(3):167-172.
    [41]刘金城,高勃,郝玉琳等.牙用低弹性模量钛锆铌锡合金的机械性能研究.实用口腔医学杂志,2006,22(1):57-59.
    [42]束德林主编.工程材料力学性能.第一版,北京:机械工业出版社,2003:9-19.
    [43]Kikuchi M, Takahashi M, Okuno O. Elastic moduli of cast Ti-Au, Ti-Ag, and Ti-Cu alloys. Dental Materials [J].2006,22(7):641-646.
    [44]M.Kikuchi, M.Takahashi, O.Okuno. Elastic moduli of cast Ti-Au, Ti-Ag, and Ti-Cu alloys. Dental Materials [J].2006,22:641-646.
    [45]于世凤主编.口腔组织病理学.第五版,北京:人民卫生出版社,2006:42.
    [46]Richardson RR, Miller JA, Reichert MW. Polyimidesas biomaterials: Preliminary biocompatibility testing [J].Biomaterials,1993,14(8):627-635.
    [47]奚廷斐.医疗器械生物学评价(二)[J].中国医疗器械信息,1999,5(4):9-14.
    [48]奚廷斐.医疗器械生物学评价(三)[J].中国医疗器械信息,1999,5(5):9-16.
    [49]李晓征,白玉盛.骨髓细胞形态学临床带教的体会与思考[J].临床和实验医学杂志,2007,6(7):179-181.
    [50]Hao H P.The practical guide of the standards on biological evaluation of medical devices.Beijing: ChinaStandardPress,2000:1292.
    [51]Vincent PF, StevensL, Basford KE. A comparison of the casting ability of precious and non-precious alloy forporcelain veneering [J]. J ProsthetDent, 1977,37(5):527-536.
    [52]Hinman RW, Tesk JA, Whitlock RP, et al. A technique forcharacterizing casting behaviorof dental alloy [J]. J DentRes,1985,64(2):134-138.
    [53]张玉梅,郭天文,李佐臣.铸模温度对牙科用Ti-Zr合金铸流率影响的研究[J].华西口腔医学杂志,2001,19(3):178-180.
    [54]周彦邦.钛合金铸造概论[M].北京:航空工业出版社,2000:175.
    [55]Watanabe I, Watkins JA, Nakajimi H, et al. Effect of presure difference on the quality of titanium casting [J]. J Dent Res,1997,76(3):773-9.
    [56]Sunnerkrantz PA, Syverud M, Hero H. Effect of casting atmosphere on the quality of Ti-crowns [J]. Scand J Dent Res,1990,98:268-72.
    [57]Mori T, Jean Louis M, Yabugami M, et al. The effect of investments type on the fit of cast titanium crowns [J]. Aust Dent J,1994,39:348-52.
    [58]Takahashi J, Kimura H, Lautenschlager EP, et al. Casting pure titanium into commercial phosphate-bonded SiO2 investment molds [J]. J Dent Res,1990, 69(2):1800-1805.
    [59]Pulskamp FE. A comparison of the casting accuracyof basemetal and gold alloys [J]. J Prosthet Dent,1979,41:272-6.
    [60]Shanley JJ, Ancowitz SJ, Fenster RK, et al. A comparative study of the centrifugal and vacuum pressure techniques of casting removable partial frameworks [J].J Prosthet Dent,1981,45:18-23.
    [61]Blackman R, Barghi N, Tran C. Dimensional changes in casting titanium removable partial denture frameworks [J]. J Prosthet Dent,1991,65: 309-15.
    [62]Carter TJ, Kidd JN. The Precision casting of cobalt-chromium alloy. Part 1. The influence of casting varibles on demensions and finish [J]. Br Dent J, 1965,118:383-90.
    [1]Ho WF, Cheng CH, Pan CH, et al. Structure, mechanical properties and grindability of dental Ti-lOZr-X alloys [J]. Mater Sci Eng C,2009,29(1):36-43.
    [2]de Torres EM, Rodrigues RC, de Mattos Mda G, et al. The effect of commercially pure titanium and alternative dental alloys on the marginal fit of one-piece cast implant frameworks [J]. J Dent,2007,35(10):800-805.
    [3]Ho WF, Chen WK, Wu SC, et al. Structure, mechanical properties, and grindability of dental Ti-Zr alloys [J]. J Mater Sci Mater Med,2008, 19(10):3179-3186.
    [4]Oda Y, Okabe T. Effect of corrosion on the strength of soldered titanium and Ti-6A1-4V alloy [J]. Dent Mater,1996,12(3):167-172.
    [5]Guilherme AS, Henriques GE, Zavanelli RA, et al. Surface roughness and fatigue performance of commercially pure titanium and Ti-6A1-4V alloy after different polishing protocols[J]. J Prosthet Dent,2005,93(4):378-385.
    [6]Wang RR, Fenton A. Titanium for prosthodontic applications:A review of the literature [J]. Quintessence Int,1996,27(6):401-408.
    [7]Iijima D, Yoneyama T, Doi H, et al. Wear properties of Ti and Ti-6Al-7Nb castings for dental prostheses[J]. Biomaterials,2003,24(8):1519-1524.
    [8]Watanabe I, Ohkubo C, Ford JP, et al. Cutting efficiency of air-turbine burs on cast titanium and dental casting alloys [J]. Dent Mater,2000,16(6):420-425.
    [9]Srimaneepong V, Yoneyama T, Wakabayashi N, et al. Deformation properties of Ti-6Al-7Nb alloy castings for removable partial denture frameworks [J]. Dent Mater J,2004,23(4):497-503.
    [10]Srimaneepong V, Yoneyama T, Kobayashi E, et al. Mechanical strength and microstructure of laser-welded Ti-6Al-7Nb alloy castings [J]. Dent Mater J,2005, 24(4):541-549.
    [11]Srimaneepong V, Yoneyama T, Kobayashi E, et al. Comparative study on torsional strength, ductility and fracture characteristics of laser-welded alpha+beta Ti-6Al-7Nb alloy, CP Titanium and Co-Cr alloy dental castings [J]. Dent Mater,2008,24(6):839-845.
    [12]刘金城,高 勃,郝玉琳,等.牙用低弹性模量钛铌锆锡合金的机械性能研究[J].实用口腔医学杂志,2006,22(1):57-59.
    [13]Delvat E, Gordin DM, Gloriant T, et al. Microstructure, mechanical properties and cytocompatibility of stable beta Ti-Mo-Ta sintered alloys [J]. J Mech Behav Biomed Mater,2008,1(4):345-351.
    [14]Hao YL, Li SJ, Sun SY, et al. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications [J]. Acta Biomater,2007, 3(2):277-286.
    [15]Kikuchi M, Takahashi M, Okuno O. Mechanical properties and grindability of dental cast Ti-Nb alloys [J]. Dent Mater J,2003,22(3):328-342.
    [16]Cheng WW, Ju CP, Lin JH. Structure, castability and mechanical properties of commercially pure and alloyed titanium cast in graphite mould [J]. J Oral Rehabil, 2007,34(7):528-540.
    [17]Kikuchi M, Takahashi M, Okuno O. Mechanical properties and grindability of dental cast Ti-Nb alloys [J]. Dent Mater J,2003,22(3):328-342.
    [18]Ohkubo C, Hosoi T, Ford JP, et al. Effect of surface reaction layer on grindability of cast titanium alloys [J]. Dent Mater,2006,22(3):268-274.
    [19]Bermingham MJ, McDonald SD, Nogita K, et al. Effects of boron on microstructure in cast titanium alloys[J].Scr Mater,2008,59(5):538-541.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700