用户名: 密码: 验证码:
Mn、RE对AZ61镁合金挤压变形抗力及组织均匀性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
AZ61镁合金是一种综合性能较好,工艺成熟并具有良好应用前景的镁合金,但仍存在挤压效率低,变形抗力大和变形不均匀的问题,不能满足大型中空薄壁形状复杂型材的挤压要求。本文在前人研究成果的基础上,针对AZ61镁合金存在的问题,通过Gleeble热压缩实验和DEFORM-3D模拟仿真软件,运用金相显微镜、扫描电子显微镜和透射电子显微镜等分析手段,对锰和稀土对AZ61镁合金变形行为的影响及其机理进行了研究。
     运用Gleeble热压缩实验机,分别研究了AZ61合金,AZ61+0.68wt%Mn+0.67wt%RE, AZ61+0.54wt%Mn+0.91wt%RE和AZ61+1.0wt%RE合金的热压缩变形行为。所采用的变形温度为260、300、380和430。C,应变速率为0.01、0.1和1s-1,热压缩变形量为60%。结果表明:各成分合金的真应力-真应变曲线变化规律相似,自变形开始流变应力随着应变的增大而迅速增加,直至达到峰值应力。随着变形的进行,流变应力逐渐降低至稳态值,各成分合金的峰值应力均随变形温度的升高而降低。在相同变形条件下,加入锰和稀土的合金峰值流变应力均比AZ61合金的峰值流变应力有所降低。其中,Z61+0.68wt%Mn+0.67wt%RE合金的峰值应力最低。
     通过计算四种成分合金的高温流变应力本构方程各参数可知,AZ61合金的热变形激活能Q最高为180.2KJ/mol,成分4合金的热变形激活能Q最低为171.4KJ/mol,可见加入锰和稀土之后能够降低合金的热变形激活能。说明加入锰和稀土之后能够使合金的塑性变形能力得到提高。
     各成分合金在260℃热压缩变形后组织中以孪晶为主,加入锰和稀土后的合金的孪晶尺寸比AZ61有所增加。当变形温度在300℃及其以上时,各合金中均有动态再结晶晶粒的产生。加入锰和稀土后,合金再结晶晶粒的均匀性得到明显改善。且随变形温度的增加动态再结晶程度也有所增加。结果还表明,加入锰和稀土的合金,其动态再结晶的程度要比AZ61合金的大,说明锰和稀土的加入促进了AZ61合金动态再结晶的发生。对成分4合金(AZ61+0.68wt%Mn+0.67wt%RE)和AZ61合金在380℃,1s-1时分别进行了五种真应变(ε=0.08,0.12,0.16,0.2和0.3)的热压缩变形,显微组织表明:当真应变为0.08时,AZ61合金中尚未出现再结晶晶粒,以孪晶为主,而成分4中出现了部分程度的动态再结晶,说明加入锰和稀土能够使合金的动态再结晶提前,这与真应力-真应变曲线中峰值应变的提前是相吻合的,说明锰和稀土的加入能够降低合金的变形抗力。
     通过透射电镜观察可知,加入锰和稀土之后,产生的Al10RE2Mn7相周围有动态再结晶晶粒的生成。其原因是Al10RE2Mn7相作为一种高温稳定相,在热变形过程中能阻碍位错运动,使位错在其周围形成位错缠结,当位错储存能增加到一定程度时,就发生了动态再结晶。动态再结晶的发生使加工硬化得到完全回复,流变应力随之降低,这正是流变应力曲线中加入锰和稀土之后合金峰值应力降低的原因,变形抗力的降低对挤压大型薄壁复杂型材具有重要意义。
     利用所求得的流变应力本构方程,将其代入到DEFORM-3D数值模拟软件,对四种成分合金的挤压过程进行模拟。结果表明:加入锰和稀土之后合金,其变形均匀性比AZ61合金的好。其中,成分4合金的变形均匀性最好。成分4合金热压缩变形时的再结晶分布较为均匀,组织均匀性的提高有助于变形均匀性的改善。
AZ61magnesuim alloy has brilliant application prospect because of its excellent mechanical performance and mature technology, but there are some problems during the application of it, such as low rate of extrusion processing, high deformation resistance and uneven deformation during the process of deformation, which can't satisfy the extrusion requirement of the large-scale and thin-walled profile. Based on the previous studies and the still existing problems, this paper used Gleeble-1500D hot compression machine and DEFORM-3D simulation software and the OM, SEM and TEM is also used to study the effects of Mn and RE on the deformation behavior of AZ61alloy, and its mechanism is researched.
     The hot compression tests of AZ61alloy, AZ61+0.68wt%Mn+0.67wt%RE, AZ61+0.54wt%Mn+0.91wt%RE and AZ61+1.0wt%RE are performed on Gleeble machine. The deformation temperature is260,300,380and430℃with the strain rate is0.01,0.1and1s-1, respectively. The maximum deformation is to60%. The results showed that true stress-strain curves of four kinds of alloys have the same change. The flow stress increased quickly until to the peak stress with the increase of the strain since the deformation beginning. Then it decreases to a steady value with deformation continuing. And also, the peak stress of alloys decreases with increasing the deformation temperature. Compared with the true stress-strain curves of four kinds of alloys, it can be seen that the peak stress of AZ61is lower than that of alloys with addition of Mn and RE under the same deformation conditions, of which the alloy AZ61+0.68wt%Mn+0.67wt%RE has the lowest peak stress among these alloys.
     Through the calculation of constitutive equations of four kinds of alloys, we can know that the AZ61alloy has the highest hot deformation activation energy, which is180.2KJ/mol, while the composition4(AZ61+0.68wt%Mn+0.67wt%RE) has the lowest one, which is171.4KJ/mol. This shows that the hot deformation activation energy can be decreased with the addition of Mn and RE. It indicates that the addition of Mn and RE make the plastic deformation ability improved.
     The microstructure of four kinds of alloys is mainly about twin when the deformation temperature is260℃, and the twin size increases with addition of Mn and RE. But when the temperature increased to300℃or above, the dynamic recrystallization grain produced in the microstructure of alloys during the compression progress. The degree of dynamic recrystallization of alloys increased with the deformation temperature increasing. The experimental results also show that the degree of dynamic recrystallization of alloys with addition of Mn and RE is greater than that of AZ61alloy, which illustrated that the addition of Mn and RE could accelerate the occurrence of dynamic recrystallization AZ61alloy and composition4are undertook different deformation level (ε=0.08,0.12,0.16,0.2and0.3). The results reveals that recrystallization grain have not seen in AZ61alloy when the true strain was0.08, while there are some small recrystallization grains produced partly in composition4. The phenomenon revealed that the addition of Mn and RE accelerated the occurrence of dynamic recrystallization, which is in agreement with the results of true stress-true strain curve. It indicated that the addition of Mn and RE can lower the deformation resistance.
     We know that there were some dynamic recrystallization grains around Al10RE2Mn7phase in the alloy with addition of Mn and RE by means of transmission electron microscopy. The reason for the dynamic recrystallization phenomenon is that the phases of Al10RE2Mn7at elevated temperatures are stable and impede dislocation slip during the hot compression process. The impediment of the Al10RE2Mn7phases in dislocation slip, and the concentrated dislocations were beneficial for the nucleation of dynamic recrystallization. The occurrence of dynamic recrystallization make the work hardening got fully recovery. This also the reason that the peak stress in the true stress-strain curve became lower with addition of Mn and RE. The decrease of deformation resistance is significant to the extrusion of large thin-walled complicated profiles.
     The extrusion processes of four kinds of alloys are simulated by finite element method analysis software DEFORM-3D.The constitutive equations which had been obtained are input to DEFORM-3D.Computer simulation results showed that the equivalent stress value and equivalent strain value of alloys with addition of Mn and RE are lower than that of AZ61alloy, and the uniformity of the equivalent stress and equivalent strain is better than that of AZ61as well. Composition4had the best uniformity of the equivalent stress and strain. The above mentioned data showed that the addition of Mn and RE to AZ61alloy could improve the deformation uniformity.
引文
[1]黄海军,韩秋华,王瑞权等.镁及镁合金研究动态与发展展望[J].中国铸造装备与技术,2010,1:1-5
    [2]Lalpoor M, Dzwonczyk JS, Hort N, et al. Nucleation mechanism of Mgi7Al12-precipitates in binary Mg-7wt% Al alloy[J] Journal of Alloys and Compounds,2013,557:73~76
    [3]沈远香,张秀蓉,罗明文.高性能稀土镁合金的研发现状及应用[J].四川兵工学报,2008,29(5):114~116
    [4]霍丽娜.镁合金:21世纪的绿色工程新材料[J].世界有色金属,2012,(54):54~55
    [5]王娜,白朴存,侯小虎等.Nd对AZ91镁合金显微组织和耐腐蚀性能的影响[J].材料研究学报,2011,25(2):214~218
    [6]徐河,刘静安,谢水生.镁合金制备与加工技术[M].北京:冶金工业出版社,2007,19~21
    [7]王敬丰,吴夏,汤爱涛等.镁合金防腐蚀技术的研究现状及未来发展方向[J].表面技术,2008,37(5):71~74
    [8]刘楚明,郑梁,王松涛等.高强变形镁合金研究现状及发展趋势[J].宇航材料工艺,2012,10(1):8~12
    [9]Mordike B L, Ebert T. Magnesium:Properties-applications-potential[J]. Materials Science and Engineering,2001,302:37~45
    [10]赵国丹.AZ31镁合金热变形力学行为和动态再结晶的研究[D].[硕士学位论文].重庆:重庆大学,2005
    [11]朱琼.AZ80镁合金微合金化和变形机制研究[D].[硕士学位论文].大连:大连理工大学,2012
    [12]Hono K, Mendis C L, Sasaki T T, et al. Towards the development of heat-treatable high-strength wrought Mg alloys[J]. Scripta Materialia,2010,63:710~715
    [13]王里进.AZ31B镁合金板材的塑性加工成型研究[D].[硕士学位论文].重庆:重庆大学,2006
    [14]王荣贵.我国变形镁合金开发的现状及发展[J].山西冶金,2009,32(2):1-5
    [15]曾小勤,丁文江,卢晨等.Mg-Zn-Al系合金组织和力学性能研究[J].上海交通大学学报,2005,(1):212~219
    [16]赵辉,彭晓东,王艳光等.变形镁合金的塑性改善研究现状[J].稀有金属,2012,36(1):161~166
    [17]刘楚明,郑梁,王松涛等.高强变形镁合金研究现状及发展趋势[J].宇航材料工艺,2012,(1):8~12
    [18]Eddahbi M, Perez P, Monge MA, et al. Microstructural characterization of an extruded Mg-Ni-Y-RE alloy processed by equal channel angular extrusion[J]. Alloys Compound.2009, 473(1/2):79~86
    [19]Liu X B, Osawa Y, Takamori S, Mukai T. Grain refinement of AZ91 alloy by introducing ultrasonic vibration during solidification[J]. Materials Letters.2008,62(17-18):2872~2875
    [20]王艳光,彭晓东,赵辉等.大型薄壁精密镁合金铸件铸造技术进展[J].兵器材料科学与工程,2012,34(5):101~104
    [21]邹宏辉,曾小勤,翟春泉等.镁合金的强韧化进展[J].机械工程材料,2004,28(5):1~3
    [22]王敬丰,赵亮,潘复生等.热处理对AZ61镁合金力学性能和阻尼性能的影响[J].材料热处理学报,2009,30(4):100~102
    [23]张星,张治民.变形条件对AZ61镁合金力学行为的影响[J].塑性工程学报,2008,15(1):76~78
    [24]丁文江,吴玉娟,彭立明等.高性能稀土镁合金的研究进展[J].中国材料进展,2010,29(8):37~45
    [25]王勇,廖治东,张恒飞等.稀土在镁合金中的作用的研究现状[J].材料导报,2011,25(17):487~491
    [26]赵源华,陈云贵,唐永柏等.Nd和Ce对AZ91镁合金组织和力学性能的影响[J].特种铸造及有色合金,2009,29(1):69~72
    [27]Zhang D F, QIF G, Lan.W et al. Effects of Ce addition on microstructure and mechanical properties of Mg-6Zn-1Mn alloy [J]. Trans. Nonferrous Met. Soc. China,2011, (21): 703~710
    [28]王社斌,祁小叶,张金玲等.AZ91合金组织和力学性能的影响[J].金属学报,2011,47(6):743~750
    [29]范晓明万朋文红艳.Mn含量对含铁AZ91镁合金铸态组织与性能的影响[J].开发研究,2008,25(6):16~18
    [30]王迎新.Mg-Al合金晶粒细化、热变形行为及加工工艺的研究[D].[博士学位论文].上海:上海交通大学,2006
    [31]Faramarz Zarandi, Geoff Seale, Ravi Verma et al. Effect of A1 and Mn additions on rolling and deformation behavior of AZ series magnesium alloys[J]. Materials Science and Engineering A,2008,496:159~168
    [32]胡天云,邓运来,唐昌平等.EW83镁合金挤压板材的组织与性能不均匀性研究[J].材料工程,2010,(11):30~34
    [33]杨亮,董建新,何智勇等.基于组织均匀性的690合金管冷轧及退火工艺优化[J].北京科技大学学报,2012,34(4):410-416
    [34]牛济泰.材料和热加工领域的物理模拟技术[M].北京:国防工业出版社,1999,48~52
    [35]刘志超.GH625合金的热变形行为及动态再结晶研究[D].[硕士学位论文].长沙:中南大学,2011
    [36]俞汉清,陈金德.金属塑性成形原理[M].北京:机械工业出版社,1998:23~25
    [37]余永宁.金属学原理[M].北京:冶金工业出版社,2005:428~465
    [38]陈振华.变形镁合金[M].北京:北京工业出版社,2005
    [39]陈先华,汪小龙,张志华.镁合金动态再结晶的研究现状[J].兵器材料科学与工程,2013,36(1):148~152
    [40]杨续跃,张雷,姜育培等.Mg-Y及AZ31镁合金高温变形过程中微观织构的演化[J].中 国有色金属学报,2011,21(2):269~275
    [41]Yin D L, Zhang K F, Wang G F, et al. Warm deformation behavior of hot rolled AZ31 Mg alloy[J]. Materials Science and Engineering A,2005,392 (1/2):320~325
    [42]Tan J C, Tan M J. Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-lZn alloy sheet[J]. Materials Science and EngineeringA,2003,339 (1/2):124-132
    [43]Lin G Y, Zhou J, Zhang Y N, et al. Optimization of deflector hole for aluminium profile extrusion die[J]. J Cent South Univ:Science and Technology,2007,38 (2):225~231
    [44]林高用,周佳,郑小燕等.X5214铝合金型材挤压过程的数值模拟[J].中南大学学报,2008,39(4):748~754
    [45]李庆波,周海涛,刘志超等.AZ80镁合金变形特性及管材挤压数值模拟研究[J].热加工工艺,2010,39(5):31~34
    [46]Li Y B, Chen B Cui H, et al. Hot deformation Behavior of a Spray deposited AZ31 Magnesium Alloy[J].Rare Metals,2009,28(1):91~96
    [47]罗永新,胡文俊,李落星.AZ31镁合金挤压模拟与实验研究[J].热加工工艺,2007,36(1):69~73
    [48]陈永哲,柴跃生,孙钢等.AZ91D镁合金棒材挤压过程的数值模拟研究[J].精密成形工程,2011,3(3):10~14
    [49]刘晓峰,张敏刚,孙述利等.数值模拟内圆角半径对AZ31镁合金等径角挤压过程的影响[J].特种铸造及有色合金,2010,30(6):511~513
    [50]王敏.AZ31镁合金高温塑性变形行为及数值模拟研究[D].[硕士学位论文].太原:太原科技大学,2012
    [51]王斌.ZK60镁合金型材挤压过程有限元数值模拟[D].[硕士学位论文].哈尔滨:哈尔滨理工大学,2009
    [52]马茹,王守仁.AZ31镁合金棒材挤压过程的三维有限元分析[J].济南大学学报,2011,25(4):344~348
    [53]万元元.Mn和RE对AZ61变形镁合金组织和性能的影响[D].[硕士学位论文].郑州:郑州大学,2011
    [54]丁汉林.AZ91镁合金高温变形行为的实验研究与数值模拟[D].[博士学位论文].上海:上海交通大学,2007
    [55]滕浩,尹志民,朱远志等.Ni73Cr19AITi合金的热变形行为[J].金属学报,2006,42(6):629~634
    [56]Li L, Zhou J, Duszczyk J. Determination of a constitutive relationship for AZ31B magnesium and validation through comparison between simulated and real extrusion[J]. Journal of Materials Processing Technology,2006,172 (3):372~380
    [57]Tegart W, Ji M. Activation energies for high temperature creep of polycrystalline magnesium[J].Acta Metall Mater,1961,9:614~617
    [58]牛济泰.材料和热加工领域的物理模拟技术[M].北京:国防工业出版社,1999,153~169
    [59]马继峰.中碳马氏体组织温压缩的流变应力及微观组织与力学性能[D].[硕士学位论 文].秦皇岛:燕山大学,2005
    [60]郭强,严红革,陈振华等.AZ31镁合金高温热压缩变形特性[J].中国有色金属学报,2005,15(6):900~906
    [61]郭强,张辉,陈振华等.AZ31镁合金的高温热压缩流变应力行为的研究[J].湘潭大学自然科学学报,2004,26(3):1090~110
    [62]詹美燕,李春明,尚俊玲.镁合金的塑性变形机制和孪生变形研究[J].材料导报,2011,25(2):1-7
    [63]陈婷.Q235B流动应力及动态再结晶行为研究[D].[硕士学位论文].武汉:武汉科技大学,2011
    [64]罗德信,桂江兵.含Ti超低碳钢流动应力的研究[J].轧钢,2006,23(4):17~20
    [65]Rao P K, et al. High temperature deformation kinetics of Al-4Mg alloy[J]. Mech.Fechnal, 1986,13:83~94
    [66]马庆波,刘胜新,李庆奎等.锑和混合稀土对AZ31镁合金高温变形行为的影响[J].机械工程材料,2007,31(4):82~84
    [67]王银娜.稀土元素对ZK60合金组织性熊和热变形行为的影响[D].[硕士学位论文].长沙:中南大学,2004
    [68]Wu H Y, Yang J C, Zhu F J, et al. Hot deformation characteristics of as-cast and homogenized AZ61 Mg alloys under compression[J]. Materials Science and Engineering A, 2012,550:273~278
    [69]Galiyev A, Kaibyshev, Gottstein G R. Correlation of plastic deformation and Dynamic recrystallization in Magnesium alloy AK80[J]. Acta Mater,2011,49:1199~1207
    [70]王智祥,刘金明,刘柏雄等.AZ61镁合金热压缩流变应力的实验[J].华侨大学学报,2009,30(3):248~252
    [71]傅高升,颜文煅,陈鸿玲等.净化方法1235铝合金热变形材料常数的影响[J].特种铸造及有色合金,2009,29(7):604~608
    [72]陈贵清,傅高升,颜文煅等.3003铝合金热变形行为[J].塑性工程学报,2011,18(4):28~33
    [73]金能萍.Al-Zn-Mg-Cu-Zr合金高温热压缩流变行为研究[D].[硕士学位论文].湖南:湖南大学,2009
    [74]詹美燕,李春明,尚俊玲.镁合金的塑性变形机制和孪生变形研究[J].材料导报,2011,25(2): 1~6
    [75]郭强,严红革,陈振华等.AZ31镁合金高温热压缩变形特性[J].中国有色金属学报,2005,15(6):900~906
    [76]Sitdikov O, Kaibyshev R, Sakai T. Dynamic recrystallization based on twinning in coarse-grained magenisium[J]. Mater Sci Forum,2003,419~422
    [77]Yang XY, Miura H, Sakai T. Dynamic evolution of new grains in magnesium alloy AZ31 during hot deformation [J]. Materials Transations,2003,1 (1):197~203
    [78]汪凌云,范永革,黄光杰等.镁合金AZ3IB的高温塑性变形及加工图[J].中国有金属学报,2004,14(7):1068-1072.
    [79]吕炎.精密塑性体积成形技术[M].北京:国防工业出版社,2003:166-167
    [80]马茹,王守仁.AZ31镁合金棒材挤压过程的三维有限元分析[J].济南大学学报,2011,25(4):344~348
    [81]马壮,刘波,时海芳等.原始组织对42CrMo钢磨削强化层的影响[J].表面技术,2011,40(5):51~53
    [82]邓波,杨钢,钟毅等.原始组织对304L超低碳奥氏体不锈钢等径角挤压变形的影响[J].特殊钢,2007,28(4):21~23
    [83]吴桂敏,高飞,符蓉.镁合金连续挤压过程数值模拟[J].热加工工艺,2009,38(17):39~45
    [84]Basavaraj V P, Cakkingal U, Kumar T S P. Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation[J]. Journal of Materials Processing Technology,2009,209 (1):89~95

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700