用户名: 密码: 验证码:
纳入拘束效应的含裂纹结构蠕变寿命评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
裂尖拘束状态影响蠕变裂纹扩展速率。采用深裂纹高拘束的标准试验室紧凑拉伸(CT)试样测得的蠕变裂纹扩展数据用于评价实际含裂纹结构的蠕变寿命,可能得到过于保守或非保守的评价结果。为了提高含裂纹高温构件蠕变寿命评价和预测的准确性,需要建立纳入裂尖拘束效应的评价方法,目前国内外对此的研究还十分有限。本文通过试验、数值计算和理论分析相结合,宏观与微观相结合,力学与材料相结合的方法系统研究了拘束对Cr-Mo-V钢蠕变裂纹扩展速率的影响及机理,试验室试样和实际管道蠕变裂尖拘束的表征及关联,拘束相关的Cr-Mo-V钢蠕变裂纹扩展速率方程的构建及其应用等,致力建立纳入裂尖拘束效应的蠕变寿命评价方法。论文主要工作和结论如下:
     1)试验测试了不同厚度CT试样在宽范围C*区间的蠕变裂纹扩展速率。发现试样厚度引起的面外拘束对蠕变裂纹扩展速率的影响与载荷水平(C*)相关,在与实际构件工作载荷相关的低C*区,蠕变裂纹扩展速率存在显著的拘束效应。通过微细观观察探明了不同C*区拘束对蠕变裂纹扩展速率影响的机理。为建立纳入拘束效应的蠕变寿命预测模型和方法提供了物理基础。
     21对新发展的蠕变拘束参数R进行了修正,提出了载荷无关的蠕变拘束参数R*,基于各试样及管道在不同载荷水平下拘束参数R的大量计算结果,验证了R*的载荷无关性。深入分析了参数R*的影响因素,包括试样/结构几何、裂纹尺寸、裂尖距离和蠕变时间等。提出了R*工程应用的简化定义和计算方法。为建立纳入拘束效应的含缺陷高温结构寿命评价方法提供了双参数(C*-R*蠕变断裂力学基础。
     3)通过三维(3-D)有限元数值计算,分析了五种不同几何和加载方式试样和高温轴向表面裂纹管道的裂尖拘束,给出了3-D裂纹构件拘束的表征方法。计算分析了试样和管道几何、裂纹尺寸、载荷水平等对裂尖拘束的影响规律,验证了3-D裂纹管道及试样拘束R*的载荷无关性。发现单边缺口拉伸试样的蠕变裂尖拘束与裂纹管道最接近,采用3-D裂纹前沿平均拘束参数R*avg分析了二者的关联性。
     4)基于拘束参数R*及面外拘束蠕变裂纹扩展试验,建立了Cr-Mo-V钢拘束相关的蠕变裂纹扩展速率方程,用不同加载方式试样(不同拘束)的蠕变裂纹扩展试验验证了方程的有效性和可移植性。另外,测试获得了Cr-Mo-V钢不同拘束试样的蠕变裂纹起裂时间及蠕变断裂韧性,分析了拘束对其影响的规律。基于拘束参数R*建立了Cr-Mo-V钢拘束相关的蠕变裂纹起裂时间及蠕变断裂韧性方程。
Crack-tip constraint can affect creep crack growth (CCG) rate. The use of CCG data measured from standard compact tension (CT) specimens with deep crack and high constraint will produce over-conservative or non-conservative assessment results for the creep life of practical cracked structures with different constraints. In order to improve the accuracy of creep life assessment of high temperature components, there is a strong incentive to establish life assessment method incorporating crack-tip constraint effects. However, the studies in this area have been very limited. In this dissertation, with a comprehensive approach of combining testing, finite element numerical simulation and theoretical interpretation, macro and micro-analysis, and solid mechanics and materials science, the constraint effect and mechanism on CCG rate of the Cr-Mo-V steel, the characterization and correlation of creep crack-tip constraint between axially cracked pipelines and test specimens, the establishment and application of constraint-dependent CCG rate equations of the Cr-Mo-V steel were systematically studied in order to provide a theoretical basis for creep life assessment incorporating crack-tip constraint effects. The main work and conclusions are summarized as follows:
     1) The CCG rate in a wide range of C*was measured by using CT specimens with different thicknesses. It was found that the effect of out-of-plane constraint induced by specimen thickness on the CCG rate was related to C*levels. In the low C*region related to the service loads of practical components, constraint significantly influences CCG rate. The mechanism of the constraint effect on CCG rates was explored through micro and meco-scale observation. It provided a physical basis for creep life prediction models and methods incorporating constraint effects.
     2) A modification of the new developed constraint parameter R was proposed, and a load-independent creep constraint parameter R*was defined. The load independence was validated by using extensive calculation results of constraint parameter R of various specimens and pipes under different loading levels. The influence factors of the parameter R*were deeply analyzed, including specimen/structure geometry, crack size, distance from the crack tip and creep time. A simplified definition and calculation method was proposed for the engineering application of R*. It provided a creep fracture mechanics basis using two parameter (C*-R*) for creep life assessment of structures containing crack incorporating constraint effects.
     3) The crack-tip constraints of five kinds of specimens with various geometries and loading modes and pipes with axial surface cracks were investigated by using three-dimensional (3-D) finite element method. The characterization method of the R*was determined for3-D cracked components. The effects of geometries, crack sizes and loading levels on crack-tip constraint of specimens and pipes were analyzed. The load independence of the constraint R*was validated for3-D cracked pipes and test specimens. It is found that the single-edge notched tension specimen provides a closely matched creep crack-tip constraint with the axially cracked pipes. The correlation between them was analyzed using the average constraint R*avg over the3-D crack front.
     4) Based on the parameter R*and CCG rates of out-of-plane constraint experiments, the constraint-dependent CCG rate equation was obtained for the Cr-Mo-V steel. The availability and portability of the equation were validated by the CCG rates tested from specimens with various loading modes. In addition, the creep crack initiation time and creep fracture toughness were measured for the specimens with different constraints of the Cr-Mo-V steel. Based on the constraint parameter R*, the constraint-dependent creep crack initiation time and creep fracture toughness equations were established for the Cr-Mo-V steel.
引文
[1]涂善东,轩福贞,王卫泽.高温蠕变与断裂评价的若干关键问题[J].金属学报.2009,45(7):781-787.
    [2]王正东.蠕变断裂研究中的局部损伤方法[D].上海:华东理工大学,1990.
    [3]ASTM E 1820-11. Standard test method for measurement of fracture toughness [S]. Philadelphia PA:American Society for Testing and Materials.2011
    [4]BS7448. Fracture mechanics toughness tests. Method for determination of KIc, critical CTOD and critical J values of metallic materials [S].1991
    [5]Harlin G, Willis JR. The influence of crack size on the ductile-brittle transition [J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences. 1988,415(1848):197-226.
    [6]Bilby B, Cardew GE, Goldthorpe MR, et al. A finite element investigation of the effect of specimen geometry on the fields of stress and strain at the tips of stationary cracks [M]. Size effects in fracture. London:Institution of Mechanical Engineers.1986:37-46.
    [7]Betegon C, Hancock JW. Two-parameter characterization of elastic-plastic crack-tip fields [J]. Journal of Applied Mechanics.1991,58:104-110.
    [8]O'Dowd NP, Shih CF. Family of crack-tip fields characterized by a triaxiality parameter-Ⅰ. Structure of fields [J]. Journal of the Mechanics and Physics of Solids.1991,39(8): 989-1015.
    [9]O'Dowd NP, Shih CF. Family of crack-tip fields characterized by a triaxiality parameter-Ⅱ. Fracture applications [J]. Journal of the Mechanics and Physics of Solids. 1992,40(5):939-963.
    [10]O'Dowd NP, Shih CF. Two-parameter fracture mechanics:theory and applications [M]. ASTM STP 1207, Fracture Mechanics. Philadelphia:American Society for Testing and Materials.1994:21-47.
    [11]O'Dowd NP. Applications of two parameter approaches in elastic-plastic fracture mechanics [J]. Engineering Fracture Mechanics.1995,52(3):445-465.
    [12]Yang SR, Chao YJ, Sutton MA. Higher order asymptotic crack tip fields in a power-law hardening material [J]. Engineering Fracture Mechanics.1993,45:1-20.
    [13]Chao YJ, Yang S, Sutton MA. On the fracture of solids characterized by one or two parameters:theory and practice [J]. Journal of the Mechanics and Physics of Solids. 1994,42(4):629-647.
    [14]Chao YJ, Zhu XK. J-A2 characterization of crack-tip fields:extent of J-A2 dominance and size requirements [J]. International Journal of Fracture.1998,89(3):285-307.
    [15]R6. Assessment of the integrity of structures containing defects [S].2003
    [16]Kim W. The master curve method:a new concept for brittle fracture [J]. International Journal of Materials and Product Technology.1999,14(2-3):2-3.
    [17]Gurson AL. Continuum theory of ductile rupture by void nucleation and growth. Part Ⅰ. Yield criteria and flow rules for porous ductile media [J]. Journal Engineering Materials and Technology.1977,99:2-15.
    [18]Tvergaard V. Influence of voids on shear band instabilities under plane strain conditions [J]. International Journal of Fracture.1981,17(4):389-407.
    [19]Tvergaard V. On localization in ductile materials containing spherical voids [J]. International Journal of Fracture.1982,18(4):237-252.
    [20]Needleman A, Tvergaard V. An analysis of ductile rupture in notched bars [J]. Journal of the Mechanics and Physics of Solids.1984,32(6):461-490.
    [21]Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar [J]. Acta metallurgica.1984,32:157-169.
    [22]Nikbin KM, Smith DJ, Webster GA. An engineering approach to the prediction of creep crack growth [J]. Journal of engineering materials and technology.1986,108(2): 186-191.
    [23]Webster GA, Ainsworth RA. High temperature component life assessment [M]. London: Chapman and Hall,1994.
    [24]ASTM E 1457-07. Standard test method for measurement of creep crack growth rates in metals [S]:American Society for Testing and Materials.2007
    [25]Bettinson AD, O'Dowd NP, Nikbin KM, et al. Experimental investigation of constraint effects on creep crack growth [C].2002 ASME Pressure Vessels and Piping Conference. Vancouver, BC, Canada,2002. PVP2002-1117.
    [26]Takahashi Y, Igari T, Kawashima F, et al. High temperature crack growth behavior of high-chromium steels [C].18th International Conference on Structural Mechanics in Reactor Technology. Beijing, China,2005.
    [27]R5. Assessment procedure for the high temperature response of structures [S]. Glonoster, UK:British Energy Generation Ltd.2003
    [28]涂善东,轩福贞,王国珍.高温条件下材料与结构力学行为的研究进展[J].固体力学学报.2010,31(6):679-695.
    [29]DeCastro P, Spurrire J, Hancock P. An experimental study of the crack length/specimen width (a/W) ratio dependence of the crack opening displacement (COD) test using small-scale specimens [M]. ASTM STP 677, Fracture Mechanics. Philadelphia: American Society for Testing and Materials.1979:486-497.
    [30]Hancock JW, Cowling MJ. Role of state of stress in crack-tip failure processes [J]. Metal Science.1980,14:293-304.
    [31]McMeeking RM, Parks DM. On criteria for J-dominance of crack-tip fields in large-scale yielding [M]. ASTM STP 668, Elastic-Plastic Fracture. Philadelphia:American Society for Testing and Materials.1979:175-194.
    [32]Shih CF, German MD. Requirements for a one parameter characterization of crack tip fields by the HRR singularity [J]. International Journal of Fracture.1981,17:27-43.
    [33]李尧臣,王自强.平面应变I型非线性裂纹问题的高阶渐近解[J].中国科学A.1986:182-194.
    [34]王自强,陈少华.高等断裂力学[M].北京:科学出版社,2009.
    [35]Xia L, Wang TC, Shih CF. Higher-order analysis of crack tip fields in elastic power-law hardening materials [J]. Journal of the Mechanics and Physics of Solids.1993,41(4): 665-687.
    [36]Williams ML. On the stress distribution at the base of a stationary crack [J]. Journal of Applied Mechanics.1957,24(1):109-114.
    [37]Larsson SG, Carlsson AJ. Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials [J]. Journal of the Mechanics and Physics of Solids.1973,21(4):263-277.
    [38]Leevers PS, Radon JC. Inherent stress biaxiality in various fracture specimen geometries [J]. International Journal of Fracture.1982,19(4):311-325.
    [39]Al-Ani AM, Hancock JW. J-dominance of short cracks in tension and bending [J]. Journal of the Mechanics and Physics of Solids.1991,39(1):23-43.
    [40]Sumpter JD. An experimental investigation of the T stress approach [M]. ASTM STP 1171. Philadelphia:American Society for Testing and Materials.1993:492-502.
    [41]McClintock FA. A criterion for ductile fracture by the growth of holes [J]. Journal of Applied Mechanics.1968,35:363.
    [42]Rice JR, Tracey DM. On the ductile enlargement of voids in triaxial stress fields* [J]. Journal of the Mechanics and Physics of Solids.1969,17(3):201-217.
    [43]Liu HW, Zhuang T. Plane-strain crack tip field and a dual-parameter fracture-criterion for non-linear fracture mechanics [J]. Theoretical and applied fracture mechanics.1987,7(3): 149-168.
    [44]Kordisch H, Sommer E, Schmitt W. The influence of triaxiality on stable crack growth [J]. Nuclear engineering and design.1989,112:27-35.
    [45]Rice JR. Limitations to the small scale yielding approximation for crack tip plasticity [J]. Journal of the Mechanics and Physics of Solids.1974,22:17-26.
    [46]Chao YJ, Zhu XK, Kim Y, et al. Characterization of crack-tip field and constraint for bending specimens under large-scale yielding [J]. International Journal of Fracture.2004, 127(3):283-302.
    [47]Guo WL. Elastoplastic three dimensional crack border field-Ⅰ. Singular structure of the field [J]. Engineering Fracture Mechanics.1993,46:93-104.
    [48]Guo WL. Elastoplastic three dimensional crack border field-Ⅱ. Asymptotic solution for the field [J]. Engineering Fracture Mechanics.1993,46:105-113.
    [49]Wanlin G. Elasto-plastic three-dimensional crack border field-Ⅲ. Fracture parameters [J]. Engineering Fracture Mechanics.1995,51:51-71.
    [50]Zhang B, Guo WL. Tz constraints of semi-elliptical surface cracks in elastic plates subjected to uniform tension loading [J]. International Journal of Fracture.2005,131(2): 173-187.
    [51]Zhao JH, Guo WL, She CM, et al. Three dimensional K-Tz stress fields around the embedded center elliptical crack front in elastic plates [J]. Acta Mechanica Sinica.2006, 22(2):148-155.
    [52]Zhao J, Guo W, She C. The in-plane and out-of-plane stress constraint factors and K-T-Tz description of stress field near the border of a semi-elliptical surface crack [J]. International Journal of Fatigue.2007,29(3):435-443.
    [53]She CM, Guo WL. The out-of-plane constraint of mixed-mode cracks in thin elastic plates [J]. International Journal of Solids and Structures.2007,44(9):3021-3034.
    [54]Zhang B, Guo WL. Three-dimensional stress state around quarter-elliptical corner cracks in elastic plates subjected to uniform tension loading [J]. Engineering Fracture Mechanics.2007,74(3):386-398.
    [55]Zhao JH, Guo WL, She CM. Three-parameter approach for elastic-plastic fracture of the semi-elliptical surface crack under tension [J]. International Journal of Mechanical Sciences.2008,50(7):1168-1182.
    [56]Zhao J, Guo W, She C. The in-plane and out-of-plane stress constraint factors and K-T-Tz description of stress fields near the border of a quarter-elliptical corner crack [J]. Fatigue & Fracture of Engineering Materials & Structures.2007,30(8):673-681.
    [57]Neimitz A, Galkiewicz J. Fracture toughness of structural components:influence of constraint [J]. International Journal of Pressure Vessels and Piping.2006,83:42-54.
    [58]Gao HJ. Variation of elastic T-stresses along slightly wavy 3D crack fronts [J]. International Journal of Fracture.1992,58(3):241-257.
    [59]Wang X. Elastic T-stress solutions for semi-elliptical surface cracks in finite thickness plates [J]. Engineering Fracture Mechanics.2003,70(6):731-756.
    [60]Wang X. Elastic T-stress solutions for penny-shaped cracks under tension and bending [J]. Engineering Fracture Mechanics.2004,71(16):2283-2298.
    [61]Wang X, Bell R. Elastic T-stress solutions for semi-elliptical surface cracks in finite thickness plates subject to non-uniform stress distributions [J]. Engineering Fracture Mechanics.2004,71(9):1477-1496.
    [62]Qu J, Wang X. Solutions of T-stresses for quarter-elliptical corner cracks in finite thickness plates subject to tension and bending [J]. International Journal of Pressure Vessels and Piping.2006,83(8):593-606.
    [63]Lewis T, Wang X. The T-stress solutions for through-wall circumferential cracks in cylinders subjected to general loading conditions [J]. Engineering Fracture Mechanics. 2008,75(10):3206-3225.
    [64]Gonzalez-Albuixech VF, Giner E, Fernandez-Saez J, et al. Influence of the T33-stress on the 3-D stress state around corner cracks in an elastic plate [J]. Engineering Fracture Mechanics.2011,78(2):412-427.
    [65]Zhang ZL, Hauge M, Thaulow C. Two-parameter characterization of the near-tip stress fields for a bi-material elastic-plastic interface crack [J]. International Journal of Fracture. 1996,79:65-83.
    [66]Zhang ZL, Thaulow C, Hauge M. Effects of crack size and weld metal mismatch on the has cleavage toughness of wide plates [J]. Engineering Fracture Mechanics.1997,57(6): 653-664.
    [67]Wells AA, McBride FH. Application of fracture mechanics to high-temperature creep rupture [J]. Canadian Metallurgical Quarterly.1967,6(4):347-368.
    [68]Siverns MJ, Price AT. Crack growth under creep conditions [J]. Nature.1970,228: 760-761.
    [69]Wang YL, Shen FZ, Tu ST. A study of creep crack propagation of HK 40 furnace tubes with C-shaped specimens [J]. Engineering Fracture Mechanics.1994,47:39-47.
    [70]Landes JD, Begley JA. A fracture mechanics approach to creep crack growth [M]. ASTM STP 590, Mechanics of Crack Growth. Philadelphia:American Society for Testing and Materials.1976:128-148.
    [71]Nikbin KM, Webster GA, Turner CE. Relevance of nonlinear fracture mechanics to creep cracking [M]. ASTM STP 601. Philadelphia:American Society for Testing and Materials. 1976:47-62.
    [72]Wiesner C, Earthman JC, Eggeler G, et al. Creep crack growth and cavitation damage in a 12% CrMoV steel [J]. Acta metallurgica.1989,37(10):2733-2741.
    [73]Staley Jr JT, Saxena A. Mechanisms of creep crack growth in 1 wt% antimony-copper: Implications for fracture parameters [J]. Acta Metallurgica et Materialia.1990,38(6): 897-908.
    [74]Churley WE, Earthman JC. High-temperature crack growth in 304 stainless steel under mixed-mode loading conditions [J]. Metallurgical and Materials Transactions A.1997, 28(3):763-773.
    [75]Nguyen B-N, Onck P, van der Giessen E. Crack-tip constraint effects on creep fracture [J]. Engineering Fracture Mechanics.2000,65(4):467-490.
    [76]Ohji K, Kubo S. Fracture mechanics evaluation of crack growth behavior under creep and creep-fatigue conditions [M]. High Temperature Creep-Fatigue. London:Elsevier Applied Science Publishers.1988:91-113.
    [77]Saxena A. Creep crack growth under non-steady-state conditions [M]. ASTM STP 905. Philadelphia:American Society for Testing and Materials.1986:185-201.
    [78]Oh CS, Kim YJ, Yoon KB, et al. The relationship between Ct and contour integrals under small-scale transient creep [J]. Engineering Fracture Mechanics.2010,77(3):565-574.
    [79]Ellison EG, Harper MP. Creep behaviour of components containing cracks-a critical review [J]. The Journal of Strain Analysis for Engineering Design.1978,13:35-51.
    [80]Sadananda K, Shahinian P. Review of the fracture mechanics approach to creep crack growth in structural alloys [J]. Engineering Fracture Mechanics.1981,15(3):327-342.
    [81]Yamamoto M, Miura N, Ogata T. Effect of constraint on creep crack propration of Mod. 9Cr1Mo steel weld joint [C]. Proceedings of the ASME 2009 Pressure Vessels and Piping Division Conference. Prague, Czech Republic,2009. PVP2009-77862.
    [82]王正东.直流电位法裂纹测试技术的优化及对2.25Cr1Mo钢蠕变裂纹扩展的研究[D].上海:华东理工大学,1986.
    [83]张俊善.材料的高温变形与断裂[M].北京:科学出版社,2007.
    [84]Riedel H. Fracture at high temperatures [M]. Berlin:Springer-Verlag,1987.
    [85]Bassani JL, McClintock FA. Creep relaxation of stress around a crack tip [J]. International Journal of Solids and Structures.1981,17(5):479-492.
    [86]Gieseke B, Saxena A. Correlation of creep-fatigue crack growth rates using crack-tip parameters [M]. Advances in Fracture Research. Oxford:Pergamon Press.1989: 189-196.
    [87]Saxena A, Gieseke B. Transients in elevated temperature crack growth [M]. High Temperature Fracture Mechanisms and Mechanics. London:Mechanical Engineering Pubication.1987:291-309.
    [88]Wang GZ, Liu XL, Xuan FZ, et al. Effect of constraint induced by crack depth on creep crack-tip stress field in CT specimens [J]. International Journal of Solids and Structures. 2010,47:51-57.
    [89]Riedel H, Rice JR. Tensile cracks in creeping solids [C]. Fracture Mechanics:12th Conference.1980.112-130.
    [90]Austin TSP, Webster GA. Prediction of creep crack growth incubation periods [J]. Fatigue & Fracture of Engineering Materials & Structures.1992,15(11):1081-1090.
    [91]Davies CM, O'Dowd NP, Nikbin KM, et al. An analytical and computational study of crack initiation under transient creep conditions [J]. International Journal of Solids and Structures.2007,44(6):1823-1843.
    [92]Yatomi M, O'Dowd NP, Nikbin KM, et al. Theoretical and numerical modelling of creep crack growth in a carbon-manganese steel [J]. Engineering Fracture Mechanics.2006, 73(9):1158-1175.
    [93]Davies CM, Mueller F, Nikbin KM, et al. Analysis of creep crack initiation and growth in different geometries for 316H and carbon maganese steels [J]. Journal of ASTM International.2007,3(2):JAI13220.
    [94]Dean DW, Gladwin DN. Creep crack growth behaviour of Type 316H steels and proposed modifications to standard testing and analysis methods [J]. International Journal of Pressure Vessels and Piping.2007,84(6):378-395.
    [95]Webster GA. Fracture mechanics in the creep range [J]. The Journal of Strain Analysis for Engineering Design.1994,29(3):215-223.
    [96]Saxena A. Nonlinear fracture mechanics for engineers [M]. CRC press,1998.
    [97]Tabuchi M, Ha J, Hongo H, et al. Experimental and numerical study on the relationship between creep crack growth properties and fracture mechanisms [J]. Metallurgical and Materials Transactions A.2004,35(6):1757-1764.
    [98]Ben Hadj Hamouda H, Laiarinandrasana L, Piques R. A local approach to creep fracture by slow crack growth in an MDPE:Damage modelling [J]. International Journal of Pressure Vessels and Piping.2009,86(2-3):228-238.
    [99]Fookes AJ, Smith DJ. A new method for assessing high-temperature crack growth [J]. Fatigue & Fracture of Engineering Materials & Structures.2005,28(9):769-778.
    [100]Bettinson AD. The influence of constraint on the creep crack growth of 316H stainless steel [D]. London:Imperial College,2002.
    [101]Bettinson AD, O'Dowd NP, Nikbin K, et al. Two parameter characterization of crack tip fields under creep condtions [J]. Solid Mechanics and Its Application.2000,86:95-104.
    [102]Bettinson AD, Nikbin K, O'Dowd NP, et al. The influence of constraint on the creep crack growth in 316H stainless steel [C]. Proceedings of 5th International Conference on Engineering Structural Integrity Assessment. Cambridge, UK,2000.
    [103]Ozmat B, Argon AS, Parks DM. Growth modes of cracks in creeping type 304 stainless steel [J]. Mechanics of Materials.1991,11:1-17.
    [104]Dogan B, Ceyhan U, Nikbin KM, et al. European code of practice for creep crack initiation and growth testing of industrially relevant specimens [J]. Journal of ASTM International.2006,3(2):JAI13220.
    [105]Laiarinandrasana L, Kabiri MR, Reytier M. Effect of specimen geometries on the C* versus da/dt master curve for type 316L stainless steel [J]. Engineering Fracture Mechanics.2006,73(6):726-737.
    [106]Tabuchi M, Kubo K, Yagi K. Effect of specimen size on creep crack growth rate using ultra-large CT specimens for 1Cr-Mo-V steel [J]. Engineering Fracture Mechanics.1991, 40(2):311-321.
    [107]Yatomi M. Factors affecting the failure of cracked components at elevated temperature [D]. London:Imperial College,2003.
    [108]Yatomi M, Nikbin KM, O'Dowd NP. Creep crack growth prediction using a damage based approach [J]. International Journal of Pressure Vessels and Piping.2003,80(7-8): 573-583.
    [109]Tabuchi M, Adachi T, Yokobori AT, et al. Evaluation of creep crack growth properties using circular notched specimens [J]. International Journal of Pressure Vessels and Piping.2003,80(7-8):417-425.
    [110]Zhao L, Jing HY, Xu LY, et al. Evaluation of constraint effects on creep crack growth by experimental investigation and numerical simulation [J]. Engineering Fracture Mechanics.2012,96:251-266.
    [111]Budden PJ, Dean DW. Constraint effects on creep crack growth [C]. Proceedings of Eighth International Conference on Creep and Fatigue at Elevated Temperatures. San Antonio, Texas, USA,2007. CREEP2007-26104.
    [112]Begley JA, Landes JD. Serendtrity and the J integral [J]. International Journal of Fracture.1976,12(5):764-766.
    [113]Shih CF, O'Dowd NP, Kirk MT. A framework for quantifying crack tip constraint [M]. Constraint effects in fracture. Philadelphia:American Society for Testing and Materials. 1993:2-20.
    [114]Budden PJ, Ainsworth RA. The effect of constraint on creep fracture assessments [J]. International Journal of Fracture.1999,97:237-247.
    [115]Nguyen BN, Onck PR, Van Der Giessen E. On higher-order crack-tip fields in creeping solids [J]. Journal of Applied Mechanics.2000,67(2):372-382.
    [116]Chao YJ, Zhang L. Tables of plane strain crack tip fields:HRR and higher order terms. Department of Mechanical Engineering, University of South Carolina,1997.
    [117]Xiang MJ, Yu ZB, Guo WL. Characterization of three-dimensional crack border fields in creeping solids [J]. International Journal of Solids and Structures.2011,48(19): 2695-2705.
    [118]Xiang M, Guo W. Formulation of the stress fields in power law solids ahead of three-dimensional tensile cracks [J]. International Journal of Solids and Structures.2013, 50(20):3067-3088.
    [119]Sun PJ, Wang GZ, Xuan FZ, et al. Quantitative characterization of creep constraint induced by crack depths in compact tension specimens [J]. Engineering Fracture Mechanics.2011,78(4):653-665.
    [120]李炳奎.不同加载方式试样的蠕变裂尖拘束及其与管道裂尖拘束的相关性[D].上海:华东理工大学,2011.
    [121]孙朋娟.试样几何引起的蠕变拘束效应及其定量化表征[D].上海:华东理工大学,2011.
    [122]Sun PJ, Wang GZ, Xuan FZ, et al. Three-dimensional numerical analysis of out-of-plane creep crack-tip constraint in compact tension specimens [J]. International Journal of Pressure Vessels and Piping.2012,96-97:78-89.
    [123]Wang GZ, Li BK, Xuan FZ, et al. Numerical investigation on the creep crack-tip constraint induced by loading configuration of specimens [J]. Engineering Fracture Mechanics.2012,79:353-362.
    [124]Wang YJ, Wang GZ, Xuan FZ, et al. Creep constraint analysis of axial semi-elliptic surface cracks in pipelines [J]. International Journal of Pressure Vessels and Piping.2014. (Submit).
    [125]刘小莉25Cr2NiMo1V钢蠕变性能试验及拘束效应有限元模拟[D].上海:华东理工大学,2009.
    [126]Nikbin K. Justification for meso-scale modelling in quantifying constraint during creep crack growth [J]. Materials Science and Engineering:A.2004,365(1-2):107-113.
    [127]BS7910. Guide on methods for assessing the acceptability of flaws in fusion welded structures [S]. London:British Standards Institutions.1999
    [128]Cocks ACF, Ashby MF. Intergranular fracture during power-law creep under multiaxial stresses [J]. Metal Science.1980,14:395-402.
    [129]Spindler MW. The multiaxial creep ductility of austenitic stainless steels [J]. Fatigue & Fracture of Engineering Materials & Structures.2004,27(4):273-281.
    [130]Hayhurst DR. Creep rupture under multi-axial states of stress [J]. Journal of the Mechanics and Physics of Solids.1972,20(6):381-382.
    [131]Nikbin KM, Smith DJ, Webster GA. Prediction of Creep Crack Growth from Uniaxial Creep Data [J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences.1984,396(1810):183-197.
    [132]Davies CM, Dean DW, Yatomi M, et al. The influence of test duration and geometry on the creep crack initiation and growth behaviour of 316H steel [J]. Materials Science and Engineering:A.2009,510-511:202-206.
    [133]Yatomi M, O'Dowd NP, Nikbin KM. Computational modelling of high temperature steady state crack growth using a damage-based approach [C]. ASME 2003 Pressure Vessels and Piping Conference. Cleveland, Ohio, USA,2003.
    [134]Yatomi M, Tabuchi M. Issues relating to numerical modelling of creep crack growth [J]. Engineering Fracture Mechanics.2010,77(15):3043-3052.
    [135]Yatomi M, Nikbin KM. Numerical prediction of constraint effect of creep crack growth [C]. Proceeding of the ASME 2009 Pressure Vessels and Piping Disvision Conference. Prague, Czech Republic,2009. PVP2009-78032.
    [136]Oh CS, Kim NH, Kim YJ, et al. Creep failure simulations of 316H at 550℃:Part Ⅰ-A method and validation [J]. Engineering Fracture Mechanics.2011,78(17):2966-2977.
    [137]Davies CM, Mehmanparast A. Creep crack growth modelling in 316H stainless steel [J]. Advanced Materials Modelling for Structures, Advanced Structured Materials.2013,19: 109-120.
    [138]Kim NH, Oh CS, Kim YJ, et al. Creep failure simulations of 316H at 550℃:Part Ⅱ-Effects of specimen geometry and loading mode [J]. Engineering Fracture Mechanics. 2013,105:169-181.
    [139]Wen JF, Tu ST, Gao XL, et al. Simulations of creep crack growth in 316 stainless steel using a novel creep-damage model [J]. Engineering Fracture Mechanics.2013,98: 169-184.
    [140]Hosseini E, Holdsworth SR, Mazza E. Stress regime-dependent creep constitutive model considerations in finite element continuum damage mechanics [J]. International Journal of Damage Mechanics.2013,22(8):1186-1205.
    [141]Hyde CJ, Hyde TH, Sun W, et al. Damage mechanics based predictions of creep crack growth in 316 stainless steel [J]. Engineering Fracture Mechanics.2010,77(12): 2385-2402.
    [142]Hyde TH, Saber M, Sun W. Testing and modelling of creep crack growth in compact tension specimens from a P91 weld at 650℃ [J]. Engineering Fracture Mechanics.2010, 77(15):2946-2957.
    [143]Zhao L, Jing HY, Xu LY, et al. Numerical investigation of factors affecting creep damage accumulation in ASME P92 steel welded joint [J]. Materials & Design.2012,34: 566-575.
    [144]Yuan H, Brocks W. Quantification of constraint effects in elastic-plastic crack front fields [J]. Journal of the Mechanics and Physics of Solids.1998,46(2):219-241.
    [145]Davies CM, Kourmpetis M, O'Dowd NP, et al. Experimental evaluation of the J or C* Parameter for a range of cracked geometries [J]. Fatigue and Fracture Mechanics.2006, 3(4):321-340.
    [146]Tabuchi M. Results of round robin tests for creep crack growth of Gr.91 steel and weld under JST Japan-China-Korea cooperative research program [C]. The 8th China-Japan Bilateral Symposium on High Temperature Strength of Materials. Wikipedia, Japan, 2013.
    [147]Langdon TG. Identifiying creep mechanisms at low stresses [J]. Materials Science and Engineering:A.2000,283:266-273.
    [148]Asadi M, Hegde SR, Sawatzky T, et al. Constructing a validation deformation mechanisms map using low temperature creep strain accommodation processes for nickel-base alloy 718 [C]. Proceedings of the ASME 2012 Pressure Vessels and Piping Division Conference. Toronto, Ontario, Canada,2012. PVP2012-78092.
    [149]Hales R. The role of cavity growth mechanisms in determining creep-rupture under multiaxial stresses [J]. Fatigue & Fracture of Engineering Materials & Structures.1994, 17(5):579-591.
    [150]Beremin FM, Pineau A, Mudry F, et al. A local criterion for cleavage fracture of a nuclear pressure vessel steel [J]. Metallurgical transactions A.1983,14(11):2277-2287.
    [151]Chiesa M, Nyhus B, Skallerud B, et al. Efficient fracture assessment of pipelines. A constraint-corrected SENT specimen approach [J]. Engineering Fracture Mechanics. 2001,68(5):527-547.
    [152]Nyhus B. Oseberg hyperbaric welding procedure development. Fracture mechanics testing and EC A analysis. SINTEF report. Unrestricted,1998.
    [153]Nyhus B. Oseberg gas transportation-OGT repair welding. SINTEF Report, STF24 F [R],1999.
    [154]Nyhus B, Ostby E, Thaulow C, et al. SENT testing and the effect of geometry constraint in high strength steel [C]. International Symposium High Strength Steel. Verdal, Norway, 2002.
    [155]Nyhus B, Polanco ML,(?)rjas(?)ther O. SENT specimens an alternative to SENB specimens for fracture mechanics testing of pipelines [C]. Proceedings of OMAE03, 22nd International Conference on Offshore Mechanics and Arctic Engineering. Cancun, Mexico,2003. OMAE2003-37370.
    [156]Nyhus B, Polanco ML, Orjasather O. Experimental studies on the effect of crack length and asymmetric geometries on the ductile tearing resistance [C]. Proceedings of OMAE2005, the 24th international conference on offshore mechanics and arctic engineering. Halkidiki, Greece,2005.
    [157]Cravero S, Ruggieri C. Correlation of fracture behavior in high pressure pipelines with axial flaws using constraint designed test specimens-Part Ⅰ:Plane-strain analyses [J]. Engineering Fracture Mechanics.2005,72(9):1344-1360.
    [158]Silva LAL, Cravero S, Ruggieri C. Correlation of fracture behavior in high pressure pipelines with axial flaws using constraint designed test specimens. Part Ⅱ:3-D effects on constraint [J]. Engineering Fracture Mechanics.2006,73(15):2123-2138.
    [159]王钟羡.缺口应力预测和裂纹尖端约束评估[D].南京:南京理工大学,2008.
    [160]Recommended practice DNV-RP-F108. Fracture control for pipeline installation methods introducing cyclic plastic strain [S]:DET Norske Veritas.2006
    [161]Hibbitt, Karlsson, Sorensen. ABAQUS 6.5 [M]. Hibbitt, Karlsson & Sorensen, Inc. 2005.
    [162]Hutchinson JW. Singular behaviour at the end of a tensile crack in a hardening material [J]. Journal of the Mechanics and Physics of Solids.1968,16:13-31.
    [163]Rice JR, Rosengren GF. Plane strain deformation near a crack tip in a power-law hardening material [J]. Journal of the Mechanics and Physics of Solids.1968,16:1-12.
    [164]Dodds Jr RH, Shih CF, Anderson TL. Continuum and micromechanics treatment of constraint in fracture [J]. International Journal of Fracture.1993,64(2):101-133.
    [165]Jeon JY, Lee YS, Yu J. Creep crack growth in brittle materials [J]. International Journal of Fracture.2000,101(3):203-214.
    [166]Anderson TL. Fracture mechanics:fundamentals and applications [M]. Third Edition ed. Florida:CRC press,2005.
    [167]Davies CM, O'Dowd NP, Dean DW, et al. Failure assessment diagram analysis of creep crack initiation in 316H stainless steel [J]. International Journal of Pressure Vessels and Piping.2003,80(7-8):541-551.
    [168]胡正飞,杨振国,何国求,et al.超期服役马氏体耐热钢主蒸汽管的损伤和评价[J].金属热处理.2007,32(z1):270-274.
    [169]牛小驰,巩建鸣,姜勇,et a1.基于损伤力学的电厂主蒸汽管道蠕变损伤有限元分析[J].中国电机工程学报.2008,28(20):32-37.
    [170]Zhu SJ, Zhao J, Wang FG. Creep crack growth of HK40 steel:microstructural effects [J]. Metallurgical transactions A.1990,21(8):2237-2241.
    [171]孙欣.裂纹尖端弹塑性变形场和约束效应的有限元分析[D].镇江:江苏大学,2007.
    [172]Clausmeyer H, Kussmaul K, Roos E. Influence of stress state on the failure behavior of cracked components made of steel [J]. Applied Mechanics Reviews.1991,44:77-92.
    [173]Pavankumar TV, Chattopadhyay J, Dutta BK, et al. Transferability of specimen J-R curve to straight pipes with throughwall circumferential flaws [J]. International Journal of Pressure Vessels and Piping.2002,79(2):127-134.
    [174]Tan JP, Tu ST, Wang GZ, et al. Effect and mechanism of out-of-plane constraint on creep crack growth behavior of a Cr-Mo-Ⅴ steel [J]. Engineering Fracture Mechanics. 2013,99:324-334.
    [175]Tan JP, Wang GZ, Xuan FZ, et al. Correlation of creep crack-tip constraint between axially cracked pipelines and test specimens [J]. International Journal of Pressure Vessels and Piping.2012,98:16-25.
    [176]Ainsworth R. The initiation of creep crack growth [J]. International Journal of Solids and Structures.1982,18:873-881.
    [177]Faleskog J. Effects of local constraint along three-dimensional crack fronts-a numerical and experimental investigation [J]. Journal of the Mechanics and Physics of Solids.1995,43(3):447-493.
    [178]Zhu XK, Jang SK, Chen YF. A modification of J-Q theory and its applications [J]. International Journal of Fracture.2001,111(3):47-52.
    [179]Ainsworth RA, Hooton DG, Green D. Failure assessment diagrams for high temperature defect assessment [J]. Engineering Fracture Mechanics.1999,62:95-109.
    [180]Zhu XK, Leis BN. Bending modified J-Q theory and crack-tip constraint quantification [J]. International Journal of Fracture.2006,141(1-2):115-134.
    [181]Liu S, Wang GZ, Xuan FZ, et al. Characterization of creep constraint in test specimens and constraint-dependent creep crack growth rate of 316H steel [J]. International Journal of Pressure Vessels and Piping.2014. (Submit).
    [182]Narasimhan R, Rosakis AJ. Three dimensional effects near a crack tip in a ductile three point bend specimen. Part Ⅰ. A Numerical Investigation [J]. Journal of Applied Mechanics.1988,57:607-617.
    [183]Kim Y, Zhu XK, Chao YJ. Quantification of constraint on elastic-plastic 3D crack front by the J-A2 three-term solution [J]. Engineering Fracture Mechanics.2001,68(7): 895-914.
    [184]Kim Y, Chao YJ, Zhu XK. Effect of specimen size and crack depth on 3D crack-front constraint for SENB specimens [J]. International Journal of Solids and Structures.2003, 40(23):6267-6284.
    [185]Matvienko YG, Shlyannikov VN, Boychenko NV. In-plane and out-of-plane constraint parameters along a three-dimensional crack-front stress field under creep loading [J]. Fatigue & Fracture of Engineering Materials & Structures.2013,36(1):14-24.
    [186]Tan JP, Tu ST, Wang GZ, et al. Load-independent creep constraint parameter and its application [J]. Engineering Fracture Mechanics.2014,116:41-57.
    [187]Nibkin KM, Radon JC. Meso-fracture of creep crack initiation and growth of engineering materials [J]. Theoretical and applied fracture mechanics.1997,26:41-45.
    [188]Moulin D, Drubay B, Acker D, et al. A practical method based on stress evaluation (σd criterion) to predict initiation of crack under creep and creep-fatigue conditions [J]. Journal of Pressure Vessel Technology.1995,117(4):335-340.
    [189]Tan M, Celard NJC, Nikbin KM, et al. Comparison of creep crack initiation and growth in four steels tested in HIDA [J]. International Journal of Pressure Vessels and Piping. 2001,78(11):737-747.
    [190]Dogan B, Nikbin K, Petrovski B, et al. Code of practice for high-temperature testing of weldments [J]. International Journal of Pressure Vessels and Piping.2006,83(11-12): 784-797.
    [191]轩福贞,涂善东,王正东.高温含缺陷结构与时间相关的失效评定图[J].核动力工程.2004,24(6):508-513.
    [192]轩福贞,涂善东,王正东.材料的蠕变断裂韧性及影响因素分析[J].中国机械工程.2005,16(5):456-460.
    [193]Ainsworth RA. The use of a failure assessment diagram for initiation and propagation of defects at high temperatures [J]. Fatigue & Fracture of Engineering Materials & Structures.1993,16(10):1091-1108.
    [194]涂善东.高温结构完整性原理[M].北京:科学出版社,2003.
    [195]Tan JP, Wang GZ, Xuan FZ, et al. Creep crack growth in a Cr-Mo-V type steel: experimental observation and prediction [J]. Acta Metallurgica Sinica (English Letters). 2011,24(2):81-91.
    [196]Zhang JW, Wang GZ, Xuan FZ, et al. Effects of stress-regime dependent creep model and ductility on creep crack growth rate [J]. Fatigue & Fracture of Engineering Materials & Structures.2014. (Submit).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700