用户名: 密码: 验证码:
高温低压应力下2.25Cr1Mo钢中P的晶界贫化及晶界脆性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
元素(特别是微量元素)在晶界上的偏聚对工程材料的力学行为有着深刻的影响,因此研究元素在晶界上的偏聚有着重要的实际意义。而溶质原子的晶界偏聚可分为平衡晶界偏聚和非平衡晶界偏聚两大类,本文以2.25Cr-1Mo钢为试验材料,借助Gleebl-1500热模拟实验机,俄歇电子能谱仪,扫描电子显微镜,冲击试验机等研究P原子在晶界处的非平衡晶界贫化规律,及P原子的偏聚对试验材料韧脆转变温度的影响。
     试验材料在520℃,40 MPa的压应力下时效不同时间后经AES检测发现,P原子在晶界处发生了明显的非平衡晶界贫化现象,其临界时间为30 min,此时晶界处P原子的偏聚量达到最小值14.18%(at.)。运用Xu模型,计算得出在贫化阶段P-空位复合体的扩散系数数量级为10-21 m~2·s~(-1);在反贫化阶段,P原子的扩散系数数量级为10-15 m~2·s~(-1)。相较于无应力下的扩散系数,压应力使复合体的扩散系数降低了5个数量级,而磷原子的扩散系数则增加4个数量级。且俄歇试样的冲击断口形貌与晶界处P原子的偏聚量有很好的对应关系。Xu模型能很好解释P原子的非平衡晶界贫化。
     而试样经650℃,560℃及480℃时效不同时间后,进行系列冲击试验,得到各时效温度下试样的韧脆转变温度。通过冲击试验结果及断口扫描照片分析,随着时效温度的降低,2.25Cr-1Mo钢的韧脆转变温度逐渐升高。根据平衡晶界偏聚理论,随着时效温度的降低,磷的平衡偏聚量逐渐升高。这说明时效温度越低,磷的平衡偏聚量越大,晶界脆性越大,而对应材料的韧脆转变温度越高。
The segregation of elements, especially the trace elements at grain boundaries, has animportant influence on the mechanical behavior of engineering materials. So it has basilicpractical meaning to study the segregation of elements at the grain boundaries. The segregationof solute atoms at grain boundaries may be classified into equilibrium segregation and nonequilibriumsegregation. In the present work, a 2.25Cr-1Mo steel was selected as theexperimental material. The non-equilibrium grain boundaries dilution of phosphorus at grainboundaries and the influence of phosphorus segregation on the ductile-to-brittle transitiontemperature (DBTT) were investigated in virtue of Gleeble-1500 thermal simulation machine,AES, SEM and impact machine, et al.
     The non-equilibrium dilution of phosphorous at the grain boundaries occurs obviously byAES after experimental materials ageing different times at 520℃and 40MPa compressivestress. And the critical time for this non-equilibrium segregation is 30 min. At this time, thesegregation concentration of phosphorus achieves minimal value 14.18at.%. Calculated by Xu’smodel, the order of diffusion coefficients of phosphorous-vacancy complexes are 10-21 m~2·s~(-1) indilution process. The order of diffusion coefficients of phosphorous are 10-15 m~2·s~(-1) in dedilutionprocess. Compared with the diffusion coefficients under no external stress, it is foundthat the compressive stress decreases the diffusion coefficient of phosphorous-vacancycomplexes by 5 order of magnitude and increases the diffusion coefficient of phosphorous by 4orders of magnitude. And the fracture appearances of AES samples correspond to the grainboundaries segregation results of phosphorus. Xu’s model can effectively explain the nonequilibriumgrain boundaries dilution of phosphorus.
     Series of Charpy impact tests are carried after samples respectively ageing at 650℃, 560℃and 480℃, and ductile-to-brittle transition temperature is known. By the values of impact testand the analysis on SEM pictures of impact fracture, the DBTT of 2.25Cr1Mo increases withthe reduce of ageing temperature. According to equilibrium grain boundary segregation theory,the segregation concentration of phosphorus increases with the descending of ageingtemperature. So we can conclude that the lower the aging temperature, the greater theequilibrium segregation concentration of phosphorus and the brittleness of grain boundaries is,and the DBTT of materials is higher.
引文
[1] Mclean D,Grain Boundaries in Metals [M]. London:Oxford University Press,1957.
    [2] Seah M.P. Grain boundary segregation and the T-t dependence of temper brittleness[J]. ActaMetallurgica,1977,25(3):345-357.
    [3] Guttmann M. Equilibrium segregation in a ternary solution: A model for temperembrittlement [J]. Surface Science,1975,53:213-227.
    [4] Aust K.T.,Hanneman R.E.,Niessem P. Solute induced hardening near grain boundaries inzone refined metals[J]. Acta Metallurgica,1968,16(3):291-302.
    [5]Anthony T.R. Solute segregation in vacancy gradients generated by sintering and temperaturechanges[J]. Acta Metallurgica,1969,17(5): 603-609.
    [6] Faullkner R.G. Non-equilibrium grain-boundary segregation in austenitic alloys[J]. Journalof Material Science,1981,16:373-379.
    [7] Xu Tingdong. Non-equilibrium grain-boundary segregation kinetics[J]. Journal of MaterialScience,1987,22:337-245.
    [8] Xu Tingdong. The critial time and critical cooling rate of non-equilibrium grain-boundarysegregation[J]. J Mater Sci Lett,1988,7:241-242.
    [9] Song Shenhua, Xu Tingdong, Yuan Zexi. Determination of critical time and critical coolingrate of non-equilibrium grain-boundary segregation[J]. Acta Metallurgica,1989,37(1):319-323.
    [10] Xu Tingdong, Song Shenhua. A kinetic model of non-equilibrium grain-boundarysegregation[J]. Acta Metallurgica,1989,37(9):2499-2506.
    [11] 冯端. 结构与缺陷. 科学出版社. 1998: 445.
    [12] 沈冬冬. P 的晶界偏聚对2.25Cr-1.0Mo 钢热塑性及回火脆性的影响. 武汉科技大学硕士论文. 2002.3
    [13] J.R.Cowan. P.H.D Thesis. School of metallurgy and materials university of birmingham.1997.
    [14] M.P.Seah, E.D.Hondros.Use of a “BET” analogue equation to describe grain boundarysegregation,1973,7:735-737.
    [15] M.P.Seah, E.D.Hondros. Grain boundary activity measurements by auger electronspectroscopy[J]. Scripta Metallurgica,1972,6:1007-1012.
    [16] M.P.Seah. Interface adsorption, embrittlement and fracture in metallurgy: A review.Surface Science,1975,53:168-212.
    [17] E.D.Hondros, M.P.Seah. The intergranular fragility index-an engineering materialsparameter,Materials Science and Engineering,1980,42:233-244.
    [18] E.D.Hondros, M.P.Seah. Theory of grain boundary segregation in terms of surfaceabsorption analogues. Metallurgical Transactions A,1977,8A:1363~1371.
    [19] R.H.Fowler and E.A.Guggen heim. Statistical Thermodymamic. pp:421~451.
    [20] G..Rowlands and P.P.Woodruff. Kinetics of surface and grain boundary segregation inbinary and ternary systems. Philosophical Magazine A: Physics of Condensed Matter,Defects and Mechanical Properties. 1979,40( 4):459-476.
    [21] W.R.Tyson. Acta Met. 1978, 26:1471.
    [22] M.Militzer, J.Wieting. Theory of segregation kinetics in ternary systems. Acta Metallurgica.1986,34(7):1229-1236
    [23] 金国, 郑卫, 张涛. 12Cr2Mo 和12Cr1MoV 钢的回火脆性研究. 研究探讨. 2003.5
    [24] Karelsson.L. Ph.D.Thesis. Chalmers University of Technology, Gateborg, Sweden. 1986
    [25] Xu Tingdong. A kinetic Model of Non-equilibrium Segregation.Mater.Sci. 1987, 22:337
    [26] Balluffi R.W. Grain-Boundary Structure and Kinetics. Metals Park. Chio: AsM. 1980:297
    [27] T.R.Authony, W.Thompson. Comments on “grain size effects on fatigue of constantan”.Materials Science and Engineering. 1976,26:289
    [28] S.J.Bercovic etal. Mater. Science. 1970,51:326
    [29] P.Doig and P.E.J.Flewitt. Segregation of Chromium to Prior Austenite Boundaries duringQquenching of a 2.25Cr1Mo Steel. Acta Metallurgica. 1981,29:1831~1841
    [30] 宋申华, 徐庭栋, 袁泽喜等. 硼的晶界非平衡偏聚临界时间和临界冷却速度的确定.武汉钢铁学院报. 1991, 14(3):258
    [31] Shinoda T,Nakamura T. The Effects of Applied Stresson the Intergranular PhosphorusSegregation in a Chromiun Steel [J] Acta Matall,1981,29:1631-1636.
    [32] Misra RDK.Issues Concerning the Effects of Applied Tensile Stress on IntergranularSegregation in a Low Alloy Steel [J]. Acta Mater,1996,44(3):885-890.
    [33] Misra RDK, Balasubramanian T V. Co-Operative and Site-Competitve Interaction Processesat the Grain Boundaries of a Ni-Cr-Mo-V Steel [J], Acta Metall, 1989, 37(5):1475-1483.
    [34] Xu Tingdong. A Model for Intergranular Segregation/Dilution Induced by Applied Stress [J].J Mater Sci,2000,35:5621-5628.
    [35] 徐庭栋,李庆芬,杨尚林. 低作用应力引起的溶质在晶界非平衡偏聚或贫化[J].钢铁研究学报,2001,13(4): 28-33.
    [36] J.-R. LEE and Y.-M. CHIANG, Materials. Science. Forum 207-209(1996)129.
    [37] Chisholm M F, Maiti A, Pennycook S J, et al Vacancy Formation and Vacancy inducedStructural Transformation in Si Grain Boundaries [J], Mater Sci Forum, 1999, 294-296:161-164.
    [38] E. D. Hondros, M. P. Seah, S. Hofmann, et al. Theory of Grain Boundary Segregation inTerms of Surface Adsorption Analogues. Metallurgical Transactions. 1977,8(9) :1363~1371
    [39] M. P. Seah. Adsorption Induced Interface Decohesion. Acta Metallurgica. 1980, 28:45~48
    [40] J. Bernardini, Ch. Girardeaux and A. Rolland. Effect of Grain Boundary Segregation andMigration on Diffusion Profiles: Analysis and Experiments. Interface Science.2003,86(11):33~40
    [41] Y. Q. Fen,C. Yu. Electronic Effect of Nitrogen and Phosphorus on Iron Grain BoundaryCohension. Computional Materials Science. 2001,35(20): 48~56
    [42] 李永红. 工业用钢2.25Cr1Mo 性能分析. 机械研究与应用. 2006,4(19): 42~45
    [43] 孙长辉,王红. 钢的两类回火脆性综述. 矿山机械. 2003,(7):75~78
    [44] 赵萍. 加氢反应器用2.25Cr1Mo 钢回火脆性分析. 河南石油. 2002,3(16): 53~55
    [45] 杨宇峰,郭晓岚. Cr-Mo 钢高温反应器的回火脆性及控制. 2005,1(34): 64~66
    [46] 王大友,高温和低张应力作用下钢中磷的非平衡晶界偏聚及其动力学模拟。哈尔滨工业大学硕士论文。2006,6。
    [47] Davis LE, McDonald MC, Palmberg PW, et al. Handbook of Auger Electron Spectroscopy,2nd ed. Physical Electronics Division, Perkin-Elmer Corporation, Minnesota, 1976.
    [48] S.–H. Song, Z.-X. Yuan, D.-D. Shen, J. Liu and L.-Q. Weng. Grain boundary segregation ofphosphorus and molybdenum in a Cr-Mo low alloy steel. Materials Science and Technology.January 2004 Vol.20 117~120.
    [49] P.Sevc, J.Janovec, M.Koutnik, et al. Acta metall, mater. 1994,43(1): 251~258.
    [50] D.D. Shen, S.H. Song, Z.-X. Yuan, et al. Effect of Solute Grain Boundary Ssegregation andHardness on the Ductile-to-brittle Transition for a Cr-Mo Low Alloy Steel. MaterialsScience and Engineering A. 2005,394:53~59.
    [51] J.Janovec, D.Grman, J.Perhacova, et al. Thermodynamics of Phosphorus Grain BoundarySegregation in 17Cr12Ni Austenitic Steel. Surf. Interface Anal. 2000,30: 354~358.
    [52] Wu J, Song SH, et al. An Auger electron spectroscopy study of phosphorus and molybdenumgrain boundary segregation in a 2.25Cr1Mo steel [J]. Mater Charact, 2007,59(3): 261-265.
    [53] 徐庭栋.非平衡晶界偏聚动力学和晶间脆性断裂,科学出版社,2006:126-129.
    [54] Vorlicek V, Flewitt P E J. Cooling Induced Segregation of Impurity Elements to GrainBoundaries in Fe-3 wt%Ni Alloys, 2.25 wt%Cr-1 wt%Mo Steel and Submerged ARC WeldMetal [J]. Acta Metall Mater, 1994, 42(10): 3309-3320.
    [55] Faulkner R G. Non-equilibrium grain boundary segregation in austenitic alloys[J]. MaterSci, 1981, 16:373-383.
    [56] Xu Tingdong, Song Shenhua. A kinetic model of non-equilibrium grain boundarysegregation [J]. Acta Metall, 1989, 37(9):2499-2506.
    [57] S.H.Song, J. Wu, D.Y.Wang, et al. Stress-induced non-equilibrium grain boundarysegregation of phosphorus in a Cr–Mo low alloy steel[J]. Materials Science andEngineering A. 2006, 430:320–325
    [58] 徐庭栋. 高温和低张应力引起的非平衡晶界偏聚动力学(Ⅰ) [J].钢铁研究学报,2003,15(3):30-33.
    [59] 徐庭栋,焦兰英. 高温和低张应力引起的非平衡晶界偏聚动力学(Ⅱ) [J].钢铁研究学报,2003,15(4):33-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700