用户名: 密码: 验证码:
谷胱甘肽变化影响照射后乏氧肝癌细胞中HIF-1α表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年,随着三维适形放疗技术(three dimensional conformal radiotherapy,3DCRT)的发展,中晚期肝癌(Hepatocellular carcinoma,HCC)的放射治疗正日益引起人们的关注。然而,HCC常合并有肝硬变并具有高增殖性的特点,造成肿瘤内部乏氧细胞的存在,这些乏氧肿瘤细胞的辐射敏感性明显降低,成为肿瘤治疗失败和复发的重要原因之一。
     乏氧肿瘤细胞可通过自身内源基因的表达变化来适应乏氧微环境,其中乏氧诱导因子-1(hypoxia inducible factor-1,HIF-1)是调节肿瘤细胞对乏氧反应的重要转录因子,由α和β两个亚基组成,其中HIF-1α是HIF-1的活性调节单位,与肿瘤的复发、高侵袭性、放化疗的抵抗性以及预后不良等特点密切相关。同时,在肿瘤治疗过程中,某些药物和治疗手段也能够刺激乏氧肿瘤细胞中HIF-1α表达水平的升高,造成肿瘤疗效的降低。由于HIF-1α的表达可受到细胞内活性氧(reactive oxygen species,ROS)水平的调节,在放疗过程中,γ射线能够影响乏氧细胞内谷胱甘肽的含量,引起细胞中ROS水平的变化,从而有可能使HIF-1α的表达发生变化。因此,深入研究照射后乏氧肿瘤细胞内HIF-1α的表达变化。同时,观察放射抗拒细胞中是否存在高表达的HIF-1α及其抗性作用的相关发生机制,对于发展新的肿瘤放射治疗技术以及寻找新型肿瘤放射增敏剂的作用靶点具有重要意义。
     目的
     1谷胱甘肽变化影响乏氧肝癌细胞中HIF-1α表达的研究
     以人肝癌HepG2细胞为实验模型,观察物理和化学乏氧细胞中还原型谷胱甘肽(reduced glutathione,GSH)变化对HIF-1α表达的调节作用,并对其发生机制进行研究和探讨,为进一步研究GSH影响照射后乏氧细胞中HIF-1α的表达奠定实验基础。
     2照射后乏氧肝癌细胞中谷胱甘肽变化对HIF-1α表达的影响
     研究γ射线照射后乏氧HepG2细胞中GSH含量的变化以及对HIF-1α表达的影响,并对其发生机制进行研究和探讨。同时,观察HIF-1α的表达变化对乏氧细胞放射敏感性的影响。
     3放射抗拒细胞亚株的建立与鉴定
     诱导并筛选具有辐射抗拒作用的单克隆细胞亚株HepG2/R60,并对HepG2/R60细胞亚株进行形态学、生物学特性以及放射抗拒相关基因表达的鉴定,为进一步研究放射抗拒细胞中HIF-1α的表达变化构建实验模型。
     4放射抗拒细胞中HIF-1α的表达变化
     观察乏氧HepG2/R60细胞的放射敏感性变化,并检测乏氧HepG2/R60细胞和亲本HepG2细胞中HIF-1α的表达差异,以及细胞内GSH含量的变化,并对其发生机制进行初步研究和探讨。
     方法
     1谷胱甘肽变化影响乏氧肝癌细胞中HIF-1α表达的研究
     采用50μmol/L、100μmol/L和200μmol/L三种无毒浓度的GSH合成抑制剂—丁胱亚磺酰亚胺(buthionine sulfoximine,BSO)或BSO联合5mM的GSH前体物质N-乙酰半胱氨酸(N-Acetylcysteine,NAC)预处理HepG2细胞,检测物理和氯化钴(cobalt chloride,CoCl_2)化学乏氧4h后,细胞中GSH、氧化型谷胱甘肽(Oxidized glutathione、GSSG)以及GSH/GSSG比值。同时,通过逆转录聚合酶链式反应(Reverse transcriptasepolymerase chain reaction,RT-PCR)检测乏氧HepG2细胞中HIF-1α的mRNA表达变化。应用免疫印迹技术(Western blot)和免疫细胞化学技术(Immunocytochemistry,ICC)观察HIF-1α的蛋白质表达变化,并检测HIF-1α下游靶基因—血管内皮生长因子(VascularEndothelial Growth Factor,VEGF)的mRNA表达。为进一步研究GSH影响乏氧肝癌细胞中HIF-1α的作用机制,以2',7'-二氢二氯荧光黄双乙酸钠(2′,7′-dichlorofluoresceindiacetate,DCFH-DA)为标记探针,通过流式细胞术(Flow Cytometry,FCM)检测细胞内的平均荧光强度,观察乏氧HepG2细胞内ROS水平的变化。
     2照射后乏氧肝癌细胞中谷胱甘肽变化对HIF-1α表达的影响
     采用不同吸收剂量的~(137)Cs源γ射线照射有氧、乏氧以及BSO预处理的乏氧HepG2细胞,通过细胞克隆形成实验,以多靶单击模型(single-hit multi-tarteget model)对细胞存活分数(survival fraction,SF)进行剂量效应数据拟合,计算细胞的氧增强比(oxygenenhancement ratio,OER)、平均致死剂量(D_0)、准阈剂量(D_q),观察乏氧HepG2细胞的放射敏感性变化以及GSH变化对乏氧细胞放射敏感性的影响。同时,采用GSH和GSSG检测试剂盒检测照射后细胞中GSH、GSSG和GSH/GSSG比值,通过RT-PCR、Western blot和ICC的方法观察受照乏氧HepG2细胞中HIF-1α的mRNA和蛋白质变化,进而对VEGF的mRNA表达变化进行观察,并通过FCM检测细胞中ROS水平的变化。
     3放射抗拒细胞亚株的建立与鉴定
     模拟临床放射分割照射的方法,采用~(137)Cs源γ射线间歇照射HepG2细胞,累积剂量达到60Gy,应用Difco软琼脂法挑选单克隆细胞,继续扩大培养,传代>50代。通过倒置显微镜和透射电子显微镜(Transmission electron microscopy,TEM)观察HepG2/R60细胞的形态学和超微结构,并与亲本HepG2细胞进行比较。采用细胞计数法对HepG2/R60细胞和亲本HepG2细胞生长曲线进行测定,以细胞培养时间为横坐标,细胞数为纵坐标,绘制细胞生长曲线,根据Patterson公式计算细胞倍增时间(Population doubling time,PDT),并通过细胞克隆形成实验和FCM,计算HepG2/R60和HepG2细胞接种效率以及自发凋亡率并进行比较。为了鉴定所筛选的HepG2/R60细胞的放射敏感性,采用细胞克隆形成实验,计算不同剂量γ射线照射后HepG2/R60细胞的存活分数,以多靶单击模型拟合剂量效应曲线,计算HepG2/R60细胞的D_0和D_q值,并与HepG2细胞比较,同时采用RT-PCR比较2Gy照射后HepG2/R60细胞和HepG2细胞内放射相关抗拒基因的表达差异,从而对HepG2/R60的细胞放射敏感性进行鉴定。
     4放射抗拒细胞中HIF-1α的表达变化
     乏氧处理HepG2/R60细胞后,通过细胞克隆形成实验,计算不同剂量照射后HepG2/R60细胞的存活分数,进行剂量效应曲线拟合,计算OER、D_0和D_q值,并与相同条件下的HepG2细胞进行比较,观察乏氧HepG2/R60细胞放射敏感性的变化。采用RT-PCR和Western blot方法对乏氧HepG2/R60细胞中HIF-1α的mRNA和蛋白质表达水平进行检测,并与HepG2细胞进行比较,观察乏氧HepG2/R60细胞中HIF-1α的表达变化,并检测细胞中VEGF的mRNA表达。进而检测HepG2/R60细胞中GSH和GSSG的含量,计算GSH/GSSG比值,并与HepG2细胞进行比较,观察HepG2/R60细胞中谷胱甘肽含量的变化情况,同时,检测HepG2/R60细胞中的平均荧光强度,观察细胞内ROS含量的变化,并与HepG2细胞进行比较,对HepG2/R60细胞中HIF-1α表达变化的发生机制进行初步研究和探讨。
     结果
     1谷胱甘肽变化影响乏氧肝癌细胞中HIF-1α表达的研究
     不同浓度的BSO均可显著降低乏氧细胞中GSH的含量,并造成乏氧细胞中GSH/GSSG比值降低。当BSO浓度为100μmol/L时,乏氧细胞中GSH的含量下降约70%,用5mM浓度的NAC进一步处理后,可逆转BSO对乏氧细胞中GSH合成的抑制作用。根据RT-PCR结果,100μmol/L浓度的BSO能够降低乏氧细胞中HIF-1α的mRNA表达,当加入5mM的NAC后,能够部分逆转BSO对HIF-1αmRNA的抑制作用。Western blot和ICC检测结果显示,BSO为50μmol/L时即可有效抑制乏氧HepG2细胞中HIF-1α的蛋白表达,采用NAC处理可有效降低BSO对HIF-1α表达的抑制作用。对HIF-1α下游基因VEGF的检测结果表明,BSO为100μmol/L以上能够有效抑制乏氧细胞中VEGF的mRNA表达。并且不同作用浓度的BSO均能够显著提高乏氧细胞中的ROS水平,加入NAC后可有效降低乏氧细胞内的ROS水平。
     2照射后乏氧肝癌细胞中谷胱甘肽变化对HIF-1α表达的影响
     物理和化学乏氧均可有效降低HepG2细胞的放射敏感性,物理乏氧HepG2细胞的OER为2.71,而化学乏氧细胞的OER为2.17,采用不同浓度的BSO处理乏氧细胞后,可明显提高乏氧细胞的放射敏感性。在受到1-5Gy照射后2h,有氧和乏氧细胞中的GSH含量均有所增加,但乏氧细胞中GSH的升高明显高于有氧细胞,而有氧细胞中GSSG含量的升高超过乏氧细胞,并且有氧细胞中GSH/GSSG比值明显下降,呈剂量依赖模式。尽管乏氧细胞中GSH/GSSG的比值也有所降低,但下降水平显著低于有氧细胞,并且在1-5Gy范围内基本维持在一恒定水平,反之,采用BSO预处理乏氧细胞后进行照射,可明显降低GSH含量,导致GSH/GSSG比值降低。此外,受照乏氧细胞中HIF-1α的mRNA和蛋白质表达均明显高于未照射组,经不同浓度的BSO预处理后,照射后乏氧细胞中HIF-1α的表达受到明显抑制。同时受照乏氧细胞中VEGF的mRNA表达明显增加,并且VEGF的表达上调能够被不同浓度的BSO所抑制。FCM结果显示,照射后有氧细胞中的ROS水平明显增加,而乏氧细胞中的ROS水平则有所降低,采用BSO处理可明显提高乏氧受照细胞中的ROS水平。
     3放射抗拒细胞亚株的建立与鉴定
     经分割照射诱导筛选的HepG2/R60细胞表现出不规则形态,形状怪异,细胞折光度清晰,细胞集落生长缓慢。TEM观察显示细胞表面微绒毛明显增多,线粒体含量丰富,内质网增加,Golgi complex发达。同时,与亲本HepG2细胞比较,HepG2/R60细胞的PDT延长,自发凋亡率降低,接种效率明显提高。经不同剂量的γ射线照射后,HepG2/R60细胞D_0值为HepG2细胞的1.35倍,D_q值为HepG2细胞的1.28倍,提示放射敏感性显著低于HepG2细胞,并且照射后HepG2/R60细胞中Rad51、XRCC4和BCL-2三种放射相关抗拒基因表达升高。
     4放射抗拒细胞中HIF-1α的表达变化
     经物理和化学乏氧处理后,HepG2/R60细胞的放射敏感性进一步降低,D_0、D_q值和OER均高于亲本HepG2细胞。同时,乏氧HepG2/R60细胞中HIF-1α的mRNA和蛋白质表达水平以及VEGF表达水平均高于乏氧HepG2细胞。有氧和乏氧HepG2/R60细胞中GSH含量均有所升高,但在有氧条件下,HepG2/R60细胞的GSH/GSSG比值与HepG2细胞比较无明显差异,反之,在乏氧HepG2/R60细胞中的GSH/GSSG比值明显高于乏氧HepG2细胞,并且FCM检测结果显示,HepG2/R60细胞中的ROS水平明显降低。
     结论
     1、乏氧肝癌细胞内谷胱甘肽变化可影响HIF-1α的表达水平,其发生机制与GSH对ROS的清除能力有关。
     2、HIF-1α的表达水平可影响乏氧肝癌细胞的放射敏感性。
     3、放射可促进乏氧肝癌细胞中HIF-1α的表达,发生机制与射线造成乏氧细胞中GSH的含量变化有关。
     4、成功建立并筛选出具有放射抗拒作用的肝癌细胞亚株。
     5、乏氧可进一步降低放射抗拒细胞的放射敏感性。
     6、乏氧放射抗拒细胞中HIF-1α的表达水平升高,发生机制可能与GSH含量的变化有关。
Nowdays,radiotherapy(RT) is recognized as a potentially curative option with the development of three dimensional conformal radiotherapy(3DCRT) technique,especially on the advanced stage of HCC.However,the high proliferation of tumor cells and hepatic cirrhosis induce local hypoxia inside HCC,following by the prodution of hypoxic cells. Owing to hypoxia inducting cell resistance to radiation,the survival of these cells is considered as one of main reasons for the failure in radio-oncology and recidivation of the tumor.
     It is well-documented that hypoxic tumor cells could adapt to hypoxia microenvironment by modulating the expression of specific genes.Hypoxia inducible fator-1 (HIF-1) is the major transcription factor that induces the adaptive response of tumor cells during hypoxia.HIF-1 is a heterodimeric protein consisted by two subunits of the constitutively expressed HIF-1β/ARNT and the highly regulated HIF-1α.The overall activity of HIF-1 is represented by the intracellular level of HIF-1α.Moreover,HIF-1αplays an important role in tumor invasion,recidivation,metastasis,and insensitivity to chemo- and radio-therapy.Furthermore,some drugs and techniques may enhance HIF-1αexpression during tumor treatment stage,leading to poor response to oncologic therapy.It has been shown that reactive oxygen species(ROS) may regulate the expression of HIF-1α. Since irradiation affects the intracellular ROS level by adjusting cell microenviromental redox state,it is possible that irradiation may modulate the level of expression of HIF-1αunder hypoxia condition.It is therefore important that,under hypoxia condition,the change of HIF-1αexpression in irradiated tumor cells should be studied.Meanwhile,it should be clarified whether the levels of HIF-1αexpression were changed in radioresistant cells isolated by fractionated irradiation.Research on the fields mentioned above could be very helpful to the development of new radiotherapy techniques and for the searching of new radiosensitive targets.
     Objective
     1 The effect of glutathione on HIF-1αexpression in hypoxic hepatoma cells
     To study the effect of reduced glutathione(GSH) on HIF-1αexpression and the mechanism,the changes of HIF-1αexpression and the regulation role of GSH were explored in hepatoma cells with physical and chemical hypxia treatment.All experiments were carried on human hepatocellular carcinoma HepG2 cells.
     2 The effect of glutathione on HIF-1αin hypoxic hepatoma cells after irradiation
     To clarify the effect of glutathione on HIF-1αexpression in irradiated hypoxia cells and the regulating mechanism,the changes of GSH and HIF-1αexpression were observed in hypoxic cells exposed toγ-rays.Meanwhile,the radiosensitivities of hypoxic HepG2 cells were observed with the changes of HIF-1αexpression.
     3 Establishment and identification of radioresistant cell subline
     To further investigate the changes of HIF-1αexpression in radioresistant cells,the radioresistant monoclonal cell subline was induced and isolated by mimic clinic fractionated irradiation,temporary named as HepG2/R60.It was further identificated by cellular morphology,biology characteristics and radioresistance correlative genes.
     4 Change of HIF-1αexpression in radioresistant cells
     The radiosensitivity of HepG2/R60 cells was observed under hypoxia condition.The differences in the expression levels of HIF-1αand intracellular GSH contents between HepG2/R60 and HepG2 cells were compared to preliminary study the mechanism of change of HIF-1αexpression in radioresistant cells.
     Methods
     1 The effect of glutathione on HIF-1αexpression in hypoxic hepatoma cells
     Inhibitor of GSH synthesis-buthionine sulfoximine(BSO) with three tolerant concentrations (50μmol/L,100μmol/L,200μmol/L) and precursor of GSH-N-acetylcysteine(NAC) with 5mM concentration were pretreated to HepG2 cells.After hypoxia for 4 hours,the contents of intracellular GSH and oxidized glutathione(GSSG) and the ratios of GSH/GSSG were measured in HepG2 cells.Additionally,the changes of HIF-1αmRNA expression were observed by RT-PCR.Meanwhile,Western blot and immunocytochemistry (ICC) techniques were used to observe the expressions of HIF-1αprotein in hypoxic HepG2 cells.The changes of vascular Endothelial Growth Factor(VEGF) mRNA,as HIF-1αtargeting,were also detected by RT-PCR.In order to study the mechanism of the change of HIF-1αby GSH,2',7'-dichlorofluorescein diacetate(DCFH-DA) was used as labeling probe to measure mean fluorescene intensity in hypoxic cells through flow cytometry (FCM),followed by reflecting the levels of intracellular ROS.
     2 The effect of glutathione on HIF-1αin hypoxic hepatoma cells after irradiation
     Normoxic and hypoxic cells were exposed toγ-rays at different doses from ~(137)Cs source.Survival fractions(SF) of normoxic cells,hypoxic cells and hypoxic cells with BSO were obtained by clonogenic assay.Survival curves were then fitted with the single-hit multi-target model.Furthermore,oxygen enhancement ratio(OER),D_0 and D_q of these cells under different conditions were calculated to observe the changes of hypoxic HepG2 cells radiosensitivity and the effect of hypoxic cells radiosensitivity by BSO pretreatment.In addition,GSH and GSSG test kit was used to measure intracellular GSH and GSSG contents in irradiated hypoxia cells.The ratios of GSH/GSSG were then calculated in irradiated hypoxia cells.The changes of the levels of HIF-1αmRNA and protein in irradiated hypoxia cells were detected by RT-PCR,Western blot and ICC techniques,the expressions of VEGF mRNA were observed as well.Simultaneously,intracellular ROS levels were tested by FCM.
     3 Establishment and identification of radioresistant cell subline
     HepG2 cells were irradiated byγ-rays at the dose of 2Gy 30 times repeatedly.Total absorbed doses were 60Gy.Monoclonal cell was selected by Difco soft-agar gel method, then extensively cultured and continuously maintained>50 generations.Cellular morphology and ultrastructure of HepG2/R60 cells were observed by inverted microscopy and transmission electron microscopy(TEM),and their characteristics were compared with parental HepG2 cells.The growth curve of HepG2/R60 and HepG2 cells was drawn by counting cell number respectively.Population doubling time(PDT) was then calculated according to Patterson formula.Meanwhile,the detection of spontaneous apoptosis and seeding efficiency of two cells was accomplished by FCM and clonogenic assay respectively,followed by comparing the biologic difference between HepG2/R60 and HepG2 cells.Survival fractions of HepG2/R60 cells exposed toγ-rays at different doses were observed by clonogenic assay.Survival curves were then fitted with the single-hit multi-target model.Furthermore,the values of D_0 and D_q of cells were calculated to observe the radiosensitivity of HepG2/R60 cells.The levels of radioresistance correlative gene expressions in HepG2/R60 cells,after exposed to 2Gy irradiation,were also observed by RT-PCR,and then compared with parental HepG2 cells.
     4 Change of HIF-1αexpression in radioresistant cells
     Survival fractions of HepG2/R60 cells,under hypoxia condition,exposed toγ-rays at different doses were observed and calculated by clonogenic assay.After fitting the survival curve,the values of OER,D_0 and D_q cells were calculated to observe the radiosensitivity of hypoxic HepG2/R60 cells.The changes of HIF-1αmRNA and protein expression in hypoxic HepG2/R60 cells were detected by RT-PCR and Western blot technique,and then compared with parental HepG2 cells.Meanwhile,the changes of the levels of VEGF mRNA expression were observed in HepG2/R60 cells and HepG2 cells under hypoxia and normoxia condition.Such as above technique,intracellular GSH and GSSG contents in hypoxic and normoxic HepG2/R60 cells were tested and the ratios of GSH/GSSG were calculated to observe the change of total glutathione in HepG2/R60 cells.The levels of ROS in normoxic and hypoxic HepG2/R60 cells were further reflected by mean fluorescene intensities resulted from DCFH-DA labeling probe.
     Results
     1 The effect of glutathione on HIF-1αexpression in hypoxic hepatoma cells
     The contents of GSH in hypoxic cells were significantly reduced by different concentrations of BSO,followed by the reduction of the ratios of GSH/GSSG.The contents of GSH in hypoxic HepG2 cells with 100μmol/L BSO were decreased about 70%,whereas 5mM NAC might reverse the inhibition of GSH synthesis by BSO.According to the results from RT-PCR,the level of HIF-1αmRNA might be reduced in hypoxic HepG2 cells with 100μmol/L BSO pretreatment.Down-regulation of HIF-1αmRNA expression could be partly reversed by 5mM NAC treatment.The results from Western blot and ICC showed that the expressions of HIF-1αprotein in physical and chemical hypoxia HepG2 cells were significantly reduced by 50μmol/L BSO pretreatment.Similarly,NAC was able to increase the levels of HIF-1αprotein in hypoxic HepG2 cells by BSO pretreatment.And the levels of VEGF mRNA expression could be decreased with 100μmol/L BSO.Meanwhile, Intracellular ROS levels were up-regulated by different concentration of BSO treatment; however,the high-level of ROS induced by BSO could be inhibited by NAC treatment.
     2 The effect of glutathione on HIF-1αin hypoxic hepatoma cells after irradiation
     It is observed that cells resistance to irradiation could be greatly induced by decreasing intracellular oxygen pression with physical or chemical methods.The data from clonogenic assay showed that the OER value of HepG2 cells was 2.71 and 2.17,respectively in physical and chemical hypoxia.The radioresistance of hypoxic cells was obviously reduced with the different concentrations of BSO pretreatment.At the range of 1-5Gy,the contents of GSH in hypoxic and normoxic cells were increased at 2 hours after irradiation.Moreover, GSH contents in irradiated hypoxia cells were higher than in irradiated normoxia cells. Additionally,the levels of GSSG contents were increased in both irradiated cells,resulting to the reduction of the ratios of GSH/GSSG.However,the degree of the reduction of GSH/GSSS ratios in irradiated hypoxia cells with steady state was lower than in irradiated normoxia cells in a dose-dependent manner.The different concentrations of BSO were used to pretreat irradiated hypoxia cells,leading to the reduction of intracellular GSH contents, the enhancement of intracellular GSSG contents and the decrease of GSH/GSSG ratios.The expressions of HIF-1αmRNA were up-regulated in irradiated hypoxia cells at 1-5Gy range. Meanwhile,it was shown that the the expressions of HIF-1αprotein in irradiated hypoxia cells were higher than in non-irradiated hypoxia cells.The expressions of HIF-1αin hypoxic cells after irradiation were further obviously down-regulated by the different concentrations of BSO pretreatment.And irradiation might enhance the expression of VEGF mRNA,sequently the up-regulation inhibited by BSO.The levels of intracellular ROS were enormously enhanced in irradiated normoxia cells.However,slightly reductions of intracellular ROS levels were found in irradiated hypoxia cells.Furthermore,the levels of intracellular ROS were significantly up-regulated in irradiated hypoxia cells with BSO pretreatment.
     3 Establishment and identification of radioresistant cell subline
     Compared to parental HepG2 cells,the morphology of HepG2/R60 cells showed higher irregularity and monstrosity,the clearer appearance of cells and the slow growth of cell colony.Ultrastructural investigations showed that there were the increases of microvillus on the surfaces of HepG2/R60 cells with plenty of rough endo-plasmic reticulum,abundance of mitochondria and viable Golgi complex.Further observation found that there were PDT prolonged,the rates of spontaneous apoptosis decreased and seeding efficiencies enhanced in HepG2/R60 cells.Moreover,the radiosensitivity of HepG2/R60 cells was lower than that of parental HepG2 cells.After irradiation at different doses, survival cuver showed that HepG2/R60 cell was 1.35 and 1.28 times the values of D_0 and D_q of HepG2 cell.Additionally,the levels of three radioresistance correlative genes(Rad51, XRCC4 and BCL-2) were increased in HepG2/R60 cells by 2Gy irradiaiton.
     4 Change of HIF-1αexpression in radioresistant cells
     Along with the high-values of OER,D_0 and D_q,the radiosensitivity of HepG2/R60 cell was further decreased under hypoxia condition.The up-regulations of HIF-1αexpression and VEGF expression were found in hypoxic HepG2/R60 cells.There were not,under normoxia condition,higher GSH/GSSG ratios in HepG2/R60 cells compared with HepG2 cells;however,the significant differences of GSH/GSSG ratios were shown between the hypoxic HepG2/R60 and HepG2 cells.Furthermore,the down-regulaitons of intracellular ROS levels were observed in hypoxic HepG2/R60 cells.
     Conclusion
     1.The change of glutathione can influence the expressions of HIF-1αin hypoxic hepatoma cells and the mechanism may correlate with the clearance of intracellular ROS.
     2.The radiosensitivity of hypoxic hepatoma cells can be regulated by the levels of HIF-1αexpression.
     3.Ionize radiation can increase the levels of HIF-1αexpression in hypoxic hepatoma cells,which may be correlative with the changes of glutathione by irradiation.
     4.Radioresistant cell subline-HepG2/R60 was successfully isolated and established by fractionated irradiation.
     5.Radiosensitivity of HepG2/R60 cells was further reduced after hypoxia treatment.
     6.Up-regulations of HIF-1αexpression in hypoxic redioresistant cells may be correlative with the change of intracellular glutathione.
引文
[1]Parkin DM,Bray F,Ferlay J,et al.Global cancer statistics,2002[J].CA Cancer J Clin.2005,55(2):74-108.
    [2]张晓华,周旭宇.漫谈原发性肝癌的治疗[J].中国普通外科杂志.2006,15(7):484-486.
    [3]Jemal A,Siegel R,Ward E,et al.Cancer statistics,2007[J].CA Cancer J Clin 2007;57(1):43-66.
    [4]Hawkins MA,Dawson LA.Radiation therapy for hepatocellular carcinoma:from palliation to cure[J].Cancer 2006;106(8):1653-1663.
    [5]Cummings BJ.Is there a limit to dose escalation for rectal cancer?[J].Clin Oncol(R Coll Radiol).2007;19(9):730-737.
    [6]罗政,饶建,殷蔚伯.放疗在原发性肝癌治疗中地位和现状[J].中华放射肿瘤学杂志.2006,15(4):345-346.
    [7]Ben-Josef E,Normolle D,Ensminger WD,et al.Phase Ⅱ trial of high-dose conformal radiation therapy with concurrent hepatic artery floxuridine for unresectable intrahepatic malignancies[J].J Clin Oncol 2005;23(34):8739-8747.
    [8]Wu XZ,Xie GR,Chen D.Hypoxia and hepatocellular carcinoma:The therapeutic target for hepatocellular carcinoma.J Gastroenterol Hepatol[J].2007;22(8):1178-82.
    [9]Thomlinson RH,Gray LH.The histological structure of some human lung cancers and the possible implications for radiotherapy[J].Br J Cancer.1955;9(4):539-549.
    [10]Chung JK,Lee YJ,Kim SK,Jeong JM,Lee DS,Lee MC.Comparison of [18F]fluorodeoxyglucose uptake with glucose transporter-1 expression and proliferation rate in human glioma and non-small-cell lung cancer[J].Nucl Med Commun.2004;25(1):11-7.
    [11]Bruick,RK.,and Mcknight,SL.A conserved family of prolyl-4-hydroxylases that modify HIF[J].Science.2001;294(5445):1337-1340
    [12]Liu J,Qu R,Ogura M,et al.Real-time imaging of hypoxia-inducible factor-1 activity in tumor xenografts[J].J Radiat Res.2005(1);46:93-102.
    [13]Akakura N,Kobayashi M,Horiuchi I,et al.Constitutive expression of hypoxia-inducible factor-1 alpha renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation[J].Cancer Res.2001;61(17):6548-6554.
    [14]Semenza GL,Wang GL.A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation[J].Mol Cell Biol.1992 Dec;12(12):5447-5454.
    [15]Ziello JE,Jovin IS,Huang Y.Hypoxia-Inducible Factor(HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia[J]. Yale J Biol Med. 2007;80(2):51-60.
    [16] Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1)[J]. Mol Pharmacol. 2006; 70(5): 1469-1480.
     [17] Conaway RC, Brower CS, Conaway JW. Emerging roles of ubiquitin in transcription regulation [J]. Science. 2002;296(5571):1254-1258.
    [18] Brahimi-Horn MC, Chiche J, Pouyssegur J. Hypoxia and cancer [J]. J Mol Med. 2007; 85(12): 1301-1307.
    [19] Roberts AM, Ohh M. Beyond the hypoxia-inducible factor-centric tumour suppressor model of von Hippel-Lindau [J]. Curr Opin Oncol. 2008;20(1):83-9.
    [20] Mazure NM, Brahimi-Horn MC, Berta MA, et al. HIF-1: master and commander of the hypoxic world. A pharmacological approach to its regulation by siRNAs [J]. Biochem Pharmacol. 2004;68(6):971-80.
    [21] Semenza GL.O_2 -regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1[J ]. J Appl Physiol, 2004;96(3):l 173-1177.
    [22] Semenza GL. Targeting HIF-1 for cancer therapy[J]. Nat Rev Cancer.2003;3(10):721-732.
    [23] Minet E, Michel G, Remacle J, et al. Role of HIF-1 as a transcription factor involved in embryonic development, cancer progression and apoptosis[J]. Int J Mol Med. 2000;5(3):253-259.
    [24] Shen F, Fan Y, Su H, et al. Adeno-associated viral vector-mediated hypoxia-regulated VEGF gene transfer promotes angiogenesis following focal cerebral ischemia in mice[J]. Gene Ther. 2008; 15(1):30-39.
    [25] Lee WY, Huang SC, Hsu KF, et al. Roles for hypoxia-regulated genes during cervical carcinogenesis: somatic evolution during the hypoxia-glycolysis-acidosis sequence[J].Gynecol Oncol. 2008;108(2):377-384.
    [26] Lu S, Gu X, Hoestje S, et al. Identification of an additional hypoxia responsive element in the glyceraldehyde-3-phosphate dehydrogenase gene promoter [J]. Biochim Biophys Acta. 2002;1574(2):152-156.
    [27] Yeo EJ, Chun YS, Cho YS, et al. YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1 [J]. J Natl Cancer Inst. 2003;95(7):516-525.
    [28] Frede S, Freitag P, Otto T, et al. The proinflammatory cytokine interleukin 1beta and hypoxia cooperatively induce the expression of adrenomedullin in ovarian carcinoma cells through hypoxia inducible factor 1 activation[J]. Cancer Res. 2005; 65(11):4690-7.
    [29] Jiang Y, Dai A, Li Q, et al. Hypoxia induces transforming growth factor-beta1 gene expression in the pulmonary artery of rats via hypoxia-inducible factor-1alpha[J]. Acta Biochim Biophys Sin. 2007 ;39(1):73-80.
    [30] Akakura N, Kobayashi M, Horiuchi I, et al. Constitutive expression of hypoxia-inducible factor-1alpha renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation[J]. Cancer Res. 2001;61(17):6548-6554.
    [31] Hui EP, Chan AT, Pezzella F, et al. Coexpression of hypoxia-inducible factors lalpha and 2alpha, carbonic anhydrase IX, and vascular endothelial growth factor in nasopharyngeal carcinoma and relationship to survival [J]. Clin Cancer Res. 2002;8(8):2595-604
    [32] Kim SJ, Rabbani ZN, Dewhirst MW, et al. Expression of HIF-1alpha, CA IX, VEGF, and MMP-9 in surgically resected non-small cell lung cancer[J]. Lung Cancer.2005;49(3):325-35.
    [33] Hutchison GJ, Valentine HR, Loncaster JA, et al. Hypoxia-inducible factor lalpha expression as an intrinsic marker of hypoxia: correlation with tumor oxygen, pimonidazole measurements, and outcome in locally advanced carcinoma of the cervix[J]. Clin Cancer Res. 2004;10(24):8405-8412.
    [34] Blum R, Jacob-Hirsch J, Amariglio N, et al. Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death[J]. Cancer Res. 2005 Feb l;65(3):999-1006
    [35] Airley RE, Mobasheri A. Hypoxic regulation of glucose transport, annormoxic metabolism and angiogenesis in cancer: novel pathways and targets for anticancer therapeutics[J]. Chemotherapy. 2007;53(4):233-256.
    [36] Liao D, Johnson RS. Hypoxia: a key regulator of angiogenesis in cancer[J]. Cancer Metastasis Rev. 2007 Jun;26(2):281-90
    [37] Ma J, Zhang L, Ru GQ, et al. Upregulation of hypoxia inducible factor 1alpha mRNAis associated with elevated vascular endothelial growth factor expression and excessive angiogenesis and predicts a poor prognosis in gastric carcinoma[J]. World J Gastroenterol. 2007; 13(11): 1680-1686.
    [38] Achison M, Boylan MT, Hupp TR, et al. HIF-1alpha contributes to tumour-selective killing by the sigma receptor antagonist rimcazole[J].Oncogene.2007;26(8): 1137-46.
    [39] Blagosklonny MV, An WG, Romanova LY, et al. p53 inhibits hypoxia-inducible factor-stimulated transcription[J]. J Biol Chem. 1998; 273(20):11995-11998.
    [40] Lundgren K, Holm C, Landberg G. Hypoxia and breast cancer: prognostic and therapeutic implications[J]. Cell Mol Life Sci. 2007; 64(24):3233-3247.
    [41] Bachtiary B, Schindl M, Potter R, et al. Overexpression of hypoxia-inducible factor 1alpha indicates diminished response to radiotherapy and unfavorable prognosis in patients receiving radical radiotherapy for cervical cancer[J]. Clin Cancer Res. 2003;9(6):2234-40.
    [42] Sφndergaard KL, Hilton DA, Penney M, et al. Expression of hypoxia-inducible factor 1 alpha in tumours of patients with glioblastoma[J]. Neuropathol Appl Neurobiol. 2002;28(3):210-7.
    [43] Wartenberg M, Gronczynska S, Bekhite MM, et al. Regulation of the multidrug resistance transporter P-glycoprotein in multicellular prostate tumor spheroids byhyperthermia and reactive oxygen species[J]. Int J Cancer. 2005 Jan 10;l 13(2):229-40.
    [44] Yang ZF, Poon RT, To J, et al. The potential role of hypoxia inducible factor 1alpha in tumor progression after hypoxia and chemotherapy in hepatocellular carcinoma[J]. Cancer Res. 2004 ;64(15):5496-5503.
    
    [45] Wang Y, Minko T. A novel cancer therapy: combined liposomal hypoxia inducible factor 1 alpha antisense oligonucleotides and an anticancer drug[J]. Biochem Pharmacol. 2004;68(10):2031-2042.
    [46] Zhang X, Kon T, Wang H, et al.Enhancement of hypoxia-induced tumor cell death in vitro and radiation therapy in vivo by use of small interfering RNA targeted to hypoxia-inducible factor-1alpha [J]. Cancer Res. 2004 Nov 15;64(22):8139-42.
    [47] Aebersold DM, Burri P, Beer KT, et al.Expression of hypoxia-inducible factor-1alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer[J]. Cancer Res. 2001 Apr 1 ;61(7):2911-6.
    [48] Moeller BJ, Richardson RA, Dewhirst MW. Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment [J]. Cancer Metastasis Rev. 2007;26(2): 241-248.
    [49] Osada R, Horiuchi A, Kikuchi N, et al. Expression of hypoxia-inducible factor 1alpha, hypoxia-inducible factor 2alpha, and von Hippel-Lindau protein in epithelial ovarian neoplasms and allelic loss of von Hippel-Lindau gene: nuclear expression of hypoxia-inducible factor 1alpha is an independent prognostic factor in ovarian carcinoma[J]. Hum Pathol. 2007 Sep;38(9):1310-1320.
    [50] Palayoor ST, Burgos MA, Shoaibi A, et al. Effect of radiation and ibuprofen on normoxic renal carcinoma cells overexpressing hypoxia-inducible factors by loss of von Hippel-Lindau tumor suppressor gene function[J]. Clin Cancer Res. 2004; 10(12 Pt 1):4158-64.
    
    [51] Chadderton N, Cowen RL, Sheppard FC, et al. Dual responsive promoters to target therapeutic gene expression to radiation-resistant hypoxic tumor cells[J]. Int J Radiat Oncol Biol Phys. 2005;62(1):213-222.
    
    [52] Sasabe E, Zhou X, Li D, et al. The involvement of hypoxia-inducible factor-1alpha in the susceptibility to gamma-rays and chemotherapeutic drugs of oral squamous cell carcinoma cells[J]. Int J Cancer. 2007;120(2):268-277.
    
    [53] Alam H, Maizels ET, Park Y, et al.Follicle-stimulating hormone activation of hypoxia-inducible factor-1 by the phosphatidylinositol 3-kinase/AKT/Ras homolog enriched in brain (Rheb)/mammalian target of rapamycin (mTOR) pathway is necessary for induction of select protein markers of follicular differentiation[J]. J Biol Chem. 2004;279(19):19431-19440.
    
    [54] Lang SA, Moser C, Gaumann A, et al. Targeting heat shock protein 90 in pancreatic cancer impairs insulin-like growth factor-I receptor signaling, disrupts an interleukin-6/signal-transducer and activator of transcription 3/hypoxia-inducible factor-1alpha autocrine loop, and reduces orthotopic tumor growth[J]. Clin Cancer Res. 2007; 13(2-1 ):6459-6468.
    
    [55] Zhou J, Brune B. Cytokines and hormones in the regulation of hypoxia inducible factor-1alpha (HIF-1 alpha). Cardiovasc Hematol Agents Med Chem [J]. 2006;4(3): 189-97.
    
    [56] Belaiba RS, Bonello S, Zahringer C, et al. Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells [J]. Mol Biol Cell. 2007;18(12):4691-4697.
    
    [57] Blancher C, Moore JW, Robertson N, et al. Effects of ras and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1alpha, HIF-2alpha, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3'-kinase/Akt signaling pathway[J]. Cancer Res. 2001 Oct 1;61(19):7349-7355.
    
    [58] Biaglow JE, Miller RA. The thioredoxin reductase/thioredoxin system: novel redox targets for cancer therapy[J]. Cancer Biol Ther. 2005; 4(1):6-13.
    
    [59] Yang ZZ, Zhang AY, Yi FX, et al. Redox regulation of HIF-1alpha levels and HO-1 expression in renal medullary interstitial cells[J]. Am J Physiol Renal Physiol. 2003; 284(6):F1207-1215.
    [60] Liu LZ, Hu XW, Xia C, et al.Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1alpha expression through activation of AKT and P70S6K1 in human ovarian cancer cells[J]. Free Radic Biol Med. 2006; 41(10): 1521-1533.
    [61] Hirota K, Matsui M, Iwata S, et al. AP-1 transcriptional activity is regulated by a directassociation between thioredoxin and Ref-1. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1 [J]. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3633-3638.
    [62] Haddad JJ, Harb HL. L-gamma-Glutamyl-L-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)? [J] Mol Immunol. 2005;42(9): 987-1014.
    [63] Atkuri KR, Mantovani JJ, Herzenberg LA, et al. N-Acetylcysteine-a safe antidote for cysteine/glutathione deficiency [J]. Curr Opin Pharmacol. 2007;7(4):355-359.
    [64] Huber WW, Parzefall W. Thiols and the chemoprevention of cancer[J]. Curr Opin Pharmacol. 2007;7(4):404-409.
    [65] Powers SK, Lennon SL. Analysis of cellular responses to free radicals: focus on exercise and skeletal muscle[J]. Proc Nutr Soc. 1999;58(4):1025-1033.
    [66] Haddad JJ. Science review: Redox and oxygen-sensitive transcription factors in the regulation of oxidant-mediated lung injury: role for nuclear factor-kappaB[J]. Crit Care. 2002;6(6):481-490.
    [67] Biaglow JE, Ayene IS, Koch CJ, et al.Radiation response of cells during altered protein thiol redox[J]. Radiat Res. 2003 Apr;159(4):484-494.
    
    [68] Dutta A, Chakraborty A, Saha A, et al. Interaction of radiation- and bleomycin-induced lesions and influence of glutathione level on the interaction [J]. Mutagenesis. 2005; 20(5):329-335.
    
    [69] Tokuzumi S, Hori M, Monobe M, et al. Effect of nitric oxide on gamma-ray-induced micronucleus frequency in RAW264.7 cells[J]. Radiat Res. 2005 Dec;164(6):723-732.
    [70] Kojima S, Nakayama K, Ishida H. Low dose gamma-rays activate immune functions via induction of glutathione and delay tumor growth[J]. J Radiat Res . 2004 ;45(1): 33-39.
    
    [71] Bukan N, Guney Y, Hicsonmez A, et al. Antioxidant tolerance of kidney after irradiation[J]. Indian J Exp Biol. 2003;41(3):267-269.
    [72]Grande S,Giovannini C,Guidoni L,et al.1H MRS signals from glutathione may act as predictive markers of apoptosis in irradiated tumour cells.Radiat Prot Dosimetry.2006;122(1-4):205-206.
    [73]孔肇路,金一尊,沈芝芬,等.谷胱甘肽含量同放射敏感性的相关研究[J].放射工艺与放射研究学报.2004;22(3):161-164.
    [74]郑秀龙,金一尊,沈瑜.肿瘤治疗增敏药(修订本)[M].上海;上海科学技术文献出版社,2002,168-184.
    [75]Bildirici I,Bukulmez O,Ensari A,et al.A prospective evaluation of the effect of salpingectomy on endometrial receptivity in cases of women with communicating hydrosalpinges[J].Hum Reprod.2001;16(11):2422-2426.
    [76]Melillo G.Targeting hypoxia cell signaling for cancer therapy[J].Cancer Metastasis Rev.2007;26(2):341-352.
    [77]Schofield CJ,Ratcliffe PJ.Oxygen sensing by HIF hydroxylases[J].Nat Rev Mol Cell Biol.2004;5(5):343-54.
    [78]Ardyanto TD,Osaki M,Tokuyasu N,et al.CoCl2-induced HIF-1alpha expression correlates with proliferation and apoptosis in MKN-1 cells:a possible role for the PI3K/Akt pathway[J].Int J Oncol.2006 Sep;29(3):549-555.
    [79]Loboda A,Jazwa A,Wegiel B,et al.Heme oxygenase-1-dependent and -independent regulation of angiogenic genes expression:effect of cobalt protoporphyrin and cobalt chloride on VEGF and IL-8 synthesis in human microvascular endothelial cells[J].Cell Mol Biol(Noisy-le-grand).2005 Sep 30;51(4):347-555.
    [80]Guo S,Bragina O,Xu Y,et al.Glucose up-regulates HIF-lalpha expression in primary cortical neurons in response to hypoxia through maintaining cellular redox status[J].J Neurochem.2008.online.
    [81]Nikinmaa M,Pursiheimo S,Soitamo AJ.Redox state regulates HIF-1alpha and its DNA binding and phosphorylation in salmonid cells[J].J Cell Sci.2004 Jul 1;117(Pt 15):3201-3206.
    [82]Sommani P,Yamashita K,Miyoshi T,et al.Inhibitory effect of 6-formylpterin on HIF-1 alpha protein accumulation[J].Biol Pharm Bull.2007 Nov;30(11):2181-4.
    [83]O'Dwyer PJ,Yao KS,Ford P,et al.Effects of hypoxia on detoxicating enzyme activity and expression in HT29 colon adenocarcinoma cells[J].Cancer Res.1994;54(12):3082-3087.
    [84]Maines MD,Kappas A.Metals as regulators of heme metabolism.Science.1977;198(4323):1215-1221.
    [85]Vukovic V,Nicklee T,Hedley DW.Differential effects of buthionine sulphoximine in hypoxic and non-hypoxic regions of human cervical carcinoma xenografts[J].Radiother Oncol.2001;60(1):69-73.
    [86]Inoue H,Takemura H,Kawai Y,et al.Dexamethasone-resistant human Pre-B leukemia 697 cell line evolving elevation of intracellular glutathione level:an additional resistance mechanism[J].Jpn J Cancer Res.2002;93(5):582-90
    [87]王卫星,郭政达,张勇等.N-乙酰半胱氨酸对大鼠急性坏死性胰腺炎的作用[J].武汉大学学报(医学版)2007;28(5):608-610.
    [88]Haddad JJ,Olver RE,Land SC.Antioxidant/pro-oxidant equilibrium regulates HIF-1 alpha and NF-kappa B redox sensitivity.Evidence for inhibition by glutathione oxidation in alveolar epithelial cells[J].J Biol Chem.2000;275(28):21130-21139.
    [89]Kozhukhar AV,Yasinska IM,Sumbayev VV.Nitric oxide inhibits HIF-1 alpha protein accumulation under hypoxic conditions:implication of 2-oxoglutarate and iron[J].Biochimie.2006 May;88(5):411-418.
    [90]Callapina M,Zhou J,Schmid T,et al.NO restores HIF-lalpha hydroxylation during hypoxia:role of reactive oxygen species[J].Free Radic Biol Med.2005;39(7):925-936.
    [91]Acker T,Fandrey J,Acker H.The good,the bad and the ugly in oxygen-sensing:ROS,cytochromes and prolyl-hydroxylases[J].Cardiovasc Res.2006;71(2):195-207.
    [92]Wellman TL,Jenkins J,Penar PL,et al.Nitric oxide and reactive oxygen species exert opposing effects on the stability of hypoxia-inducible factor-1alpha(HIF-1alpha) in explants of human pial arteries[J].FASEB J.2004;18(2):379-381.
    [93]Chang TC,Huang CJ,Tam K,et al.Stabilization of hypoxia-inducible factor-1 {alpha}by prostacyclin under prolonged hypoxia via reducing reactive oxygen species level in endothelial cells[J].J Biol Chem.2005;280(44):36567-36574.
    [94]Liu Q,Berchner-Pfannschmidt U,Moller U,et al.A Fenton reaction at the endoplasmic reticulum is involved in the redox control of hypoxia-inducible gene expression[J].Proc Natl Acad Sci U S A.2004;101(12):4302-4307.
    [95]Porwol T,Ehleben W,Zierold K,et al.The influence of nickel and cobalt on putative members of the oxygen-sensing pathway of erythropoietin-producing HepG2 cells[J].Eur J Biochem.1998;256(1):16-23.
    [96]Li X,Kimura H,Hirota K,et al.Hypoxia reduces constitutive and TNF-alpha-induced expression of monocyte chemoattractant protein-1 in human proximal renal tubular cells[J].Biochem Biophys Res Commun.2005;335(4):1026-34
    [97]Liu Q,Moller U,Flugel D,et al.Induction of plasminogen activator inhibitor Ⅰ gene expression by intracellular calcium via hypoxia-inducible factor-1[J]. Blood. 2004; 104(13):3993-4001.
    [98] Werno C, Zhou J, Brune B. A23187, ionomycin and thapsigargin upregulate mRNA of HIF-1 alpha via endoplasmic reticulum stress rather than a rise in intracellular calcium[J]. J Cell Physiol. 2007. Online.
    [99] Frede S, Stockmann C, Freitag P, et al. Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-kappaB[J]. Biochem J. 2006; 396(3):517-27.
    [100] Belaiba RS, Bonello S, Zahringer C, et al. Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells[J]. Mol Biol Cell. 2007; 18(12):4691-7.
    
    [101] Liu TZ, Lee KT, Chem CL, et al. Free radical-triggered hepatic injury of experimental obstructive jaundice of rats involves overproduction of proinflammatory cytokines and enhanced activation of nuclear factor kappaB[J]. Ann Clin Lab Sci. 2001;31(4):383-390.
    
    [102] Matsumaru K, Ji C, Kaplowitz N. Mechanisms for sensitization to TNF-induced apoptosis by acute glutathione depletion in murine hepatocytes[J]. Hepatology. 2003; 37(6): 1425-34.
    [103] Lou H, Kaplowitz N. Glutathione depletion down-regulates tumor necrosis factor alpha-induced NF-kappaB activity via IkappaB kinase-dependent and -independent mechanisms[J]. J Biol Chem. 2007;282(40):29470-81.
    [104] Jimenez-Lopez JM, Wu D, Cederbaum AI. Synergistic toxicity induced by prolonged glutathione depletion and inhibition of nuclear factor-kappaB signaling in liver cells[J]. Toxicol In Vitro. 2008; 22(1):106-115.
    [105] Wu D, Cederbaum A. Glutathione depletion in CYP2E1-expressing liver cells induces toxicity due to the activation of p38 mitogen-activated protein kinase and reduction of nuclear factor-kappaB DNA binding activity[J]. Mol Pharmacol. 2004;66(3):749-60
    [106] Sandur SK, Ichikawa H, Pandey MK, et al. Role of pro-oxidants and antioxidants in the anti-inflammatory and apoptotic effects of curcumin (diferuloylmethane) [J]. Free Radic Biol Med. 2007;43(4):568-580.
     [107]Haddad JJ. Redox and oxidant-mediated regulation of apoptosis signaling pathways: immuno-pharmaco-redox conception of oxidative siege versus cell death commitment. Immunopharmacol[J]. 2004; 4(4):475-493.
    [108]Haddad JJ. Antioxidant and prooxidant mechanisms in the regulation of redox(y)- sensitive transcription factors[J].Cell Signal.2002;14(11):879-97.
    [109]Sekiya M,Ohwada A,Miura K,et al.Serum vascular endothelial growth factor as a possible prognostic indicator in sarcoidosis[J].Lung.2003;181(5):259-265.
    [110]Liu LX,Lu H,Luo Y,et al.Stabilization of vascular endothelial growth factor mRNA by hypoxia-inducible factor 1[J].Biochem Biophys Res Commun.2002 8;291(4):908-14.
    [111]Cabuk D,Basaran G,Celikel C,et al.Vascular endothelial growth factor,hypoxia-inducible factor 1 alpha and CD34 expressions in early-stage gastric tumors:relationship with pathological factors and prognostic impact on survival[J].Oncology.2007;72(1-2):111-7.
    [112]Kimura H,Ogura T,Kurashima Y,et al.Effects of nitric oxide donors on vascular endothelial growth factor gene induction[J].Biochem Biophys Res Commun.2002 30;296(4):976-82.
    [113]Chang TC,Huang CJ,Tam K,et al.Stabilization of hypoxia-inducible factor-1 {alpha}by prostacyclin under prolonged hypoxia via reducing reactive oxygen species level in endothelial cells[J].J Biol Chem.2005;280(44):36567-74.
    [114]沈瑜,糜福顺.肿瘤放射生物学.[M].北京:中国医药科技出版社,2002:14-77.
    [115]Pore N,Gupta AK,Cerniglia GJ,et al.Nelfinavir down-regulates hypoxia,inducible factor 1alpha and VEGF expression and increases tumor oxygenation:implications for radiotherapy[J].Cancer Res.2006;66(18):9252-9.
    [116]Xing D,Sun X,Li J,Cui M,et al.Hypoxia preconditioning protects corneal stromal cells against induced apoptosis[J].Exp Eye Res.2006;82(5):780-787.
    [117]Piret JP,Lecocq C,Toffoli S,et al.Hypoxia and COCl2 protect HepG2 cells against serum deprivation- and t-BHP-induced apoptosis:a possible anti-apoptotic role for HIF-1[J].Exp Cell Res.2004;295(2):340-349.
    [118]夏寿萱.放射生物学.[M].北京:军事医学科学出版社,1998:22-44.
    [119]Wang ZB,Liu YQ,Zhang Y,et al.Reactive oxygen species,but not mitochondrial membrane potential,is associated with radiation-induced apoptosis of AHH-1 human lymphoblastoid cells[J].Cell Biol Int.2007;31(11):1353-1358.
    [120]Tominaga H,Kodama S,Matsuda N,et al.Involvement of reactive oxygen species (ROS) in the induction of genetic instability by radiation[J].J Radiat Res.2004;45(2):181-188.
    [121]Oh C,Dong Y,Harman C,et al.Chronic hypoxia differentially increases glutathione content and gamma-glutamyl cysteine synthetase expression in fetal guinea pig organs[J].Early Hum Dev.2008;84(2):121-127.
    [122]Christova T,Duridanova D,Braykova A,et al.Heme oxygenase is the main protective enzyme in rat liver upon 6-day administration of cobalt chloride[J].Arch Toxicol.2001;75(8):445-51.
    [123]Brouazin-Jousseaume V,Guitton N,Legue F,Chenal C.GSH level and IL-6production increased in Sertoli cells and astrocytes after gamma irradiation[J].Anticancer Res.2002;22(1A):257-262.
    [124]孔肇路,金一尊,沈芝芬.放射增敏剂作用下SGC7901细胞内GSH含量变化与受照射剂量关系的初步研究[J].2002;20(3):216-219.
    [125]Morales A,Miranda M,Sanchez-Reyes A,et al.Transcriptional regulation of the heavy subunit chain of gamma-glutamylcysteine synthetase by ionizing radiation[J].FEBS Lett.1998;427(1):15-20
    [126]Moeller BJ,Dreher MR,Rabbani ZN,et al.Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity[J].Cancer Cell.2005;8(2):99-110
    [127]Li Q,Chen H,Huang X,Effects of 12 metal ions on iron regulatory protein 1(IRP-1)and hypoxia-inducible factor-1 alpha(HIF-lalpha) and HIF-regulated genes[J].Toxicol Appl Pharmacol.2006 Jun 15;213(3):245-255.
    [128]Moeller BJ,Cao Y,Li CY,et al.Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors:role of reoxygenation,free radicals,and stress granules[J].Cancer Cell.2004;5(5):429-441
    [129]Tacchini L,De Ponti C,Matteucci E,et al.Hepatocyte growth factor-activated NF-kappaB regulates HIF-1 activity and ODC expression,implicated in survival,differently in different carcinoma cell lines[J].Carcinogenesis.2004;25(11):2089-2100.
    [130]Sheng-Hua C,Yan-Bin M,Zhi-An Z,et al.Radiation-enhanced hepatocyte growth factor secretion in malignant glioma cell lines[J].Surg Neurol.2007;68(6):610-613;discussion 613-614.
    [131]Nordal RA,Nagy A,Pintilie M,et al.Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury:a role for vascular endothelial growth factor[J].Clin Cancer Res.2004;10(10):3342-3353.
    [132]Liu Y,Kudo K,Abe Y,et al.Hypoxia Expression in Radiation-induced Late Rectal Injury[J].J Radiat Res.2008.Online.
    [133]Barr MP,Bouchier-Hayes DJ,Harmey JJ.Vascular endothelial growth factor is an autocrine survival factor for breast tumour cells under hypoxia[J].Int J Oncol. 2008;32(1):41-48.
    [134]Zarate N,Wang XY,White EJ,et al.Low doses of ionizing radiation can prevent radiation-induced colonic epithelial hyporesponsiveness to muscarinic agonists.Int J Radiat Biol.2006 Dec;82(12):887-898.
    [135]Yanagisawa T,Urade M,Takahashi Y,et al.Isolation and characterisation of radioresistant human KB carcinoma cells in vitro[J].Oral Oncol.1998;34(1):30-38.
    [136]Mitsuhashi N,Islam MS,Sakurai H,et al.Is radiosensitive cell line cross-sensitive to heat?:Effect of heat on two rat yolk sac tumor cell lines with different radiosensitivity[J].Cancer Lett.1999;142(2):195-200.
    [137]张萍,周志国,高献书,等.放射抗拒食管癌细胞系的建立及基因表达差异分析.中华放射医学与防护杂志[J].2006.26(6):266-270.
    [138]Britten RA,Evans AJ,Allalunis-Turner MJ,et al.Intratumoral heterogeneity as a confounding factor in clonogenic assays for tumour radioresponsiveness[J].Radiother Oncol.1996 May;39(2):145-153.
    [139]Pelevina II,Gotlib Via,Kudriashova OV,et al.Properties of progeny of irradiated cells[J].Tsitologiia.1998;40(5):467-477.
    [140]Roychoudhury P,Ghosh U,Bhattacharyya NP,et al.Activation of mitochondrial promoter P(H)-binding protein in a radio-resistant Chinese hamster cell strain associated with Bcl-2[J].Biochem Biophys Res Commun.2006;350(2):272-276.
    [141]Bivona TG,Perez De Castro I,Ahearn IM,et al.Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRPI[J].Nature.2003;424(6949):694-698.
    [142]Van Veelen LR,Essers J,van de Rakt MW,et al.Ionizing radiation-induced foci formation of mammalian Rad51 and Rad54 depends on the Rad51 paralogs,but not on Rad52[J].Mutat Res,2005,574(1-2):34-49.
    [143]Kanamoto T,Hellman U,Heldin CH,et al.Functional proteomics of transforming growth factor-beta1-stimulated MvlLu epithelial cells:Rad51 as a target of TGFbeta1-dependent regulation of DNA repair[J].EMBO J,2002,21(5):1219-1230.
    [144]Richardson C.RAD51,genomic stability,and tumorigenesis[J].Cancer Lett,2005,218(2):127-139.
    [145]Russell JS,Brady K,Burgan WE,et al.Gleevec-mediated inhibition of Rad51expression and enhancement of tumor cell radiosensitivity[J].Cancer Res,2003,63(21):7377-7383.
    [146]Hansen LT,Lundin C,Spang-Thomsen M,et al.The role of RAD51 in etoposide (VP16) resistance in small cell lung cancer[J].Int J Cancer,2003,105(4):472-479.
    [147]Carlomagno F,Burnet NG,Turesson I,et al.Comparison of DNA repair protein expression and activities between human fibroblast cell lines with different radiosensitivities[J].Int J Cancer.2000;85(6):845-849.
    [148]Itsukaichi H,Mori M,Nakamura A,et al.Identification of a new G-to-A transition mutation at nucleotide position 129 of the Xrcc4 gene in ionizing radiation-hypersensitive mutant LX830 cells[J].J Radiat Res.2003;44(4):353-358.
    [149]Bertolini LR,Bertolini M,Anderson GB,et al.Transient depletion of Ku70 and Xrcc4 by RNAi as a means to manipulate the non-homologous end-joining pathway[J].J Biotechnol.2007;128(2):246-257
    [150]Rosser CJ,Reyes AO,Vakar-Lopez F,et al.Bcl-2 is significantly overexpressed in localized radio-recurrent prostate carcinoma,compared with localized radio-naive prostate carcinoma[J].Int J Radiat Oncol Biol Phys.2003;56(1):1-6.
    [151]Anai S,Shiverick K,Medrano T,et al.Downregulation of BCL-2 induces downregulation of carbonic anhydrase Ⅸ,vascular endothelial growth factor,and pAkt and induces radiation sensitization[J].Urology.2007;70(4):832-837.
    [152]Kumar P,Coltas IK,Kumar B,et al.Bcl-2 protects endothelial cells against gamma-radiation via a Raf-MEK-ERK-survivin signaling pathway that is independent of cytochrome c release[J].Cancer Res.2007;67(3):1193-1202.
    [153]刘春玲,李晓明,路秀英,等.HIF-1α反义寡核苷酸对喉鳞状细胞癌Hep-2细胞放疗的增效作用[J].临床耳鼻咽喉头颈外科杂志.2007;21(13):605-608.
    [154]Harrison L,Blackwell K.Hypoxia and anemia:factors in decreased sensitivity to radiation therapy and chemotherapy?[J]Oncologist.2004;9 Suppl 5:31-40.
    [155]Sorensen BS,Alsner J,Overgaard J,et al.Hypoxia induced expression of endogenous markers in vitro is highly influenced by pH[J].Radiother Oncol.2007;83(3):362-366.
    [156]Bache M,Holzapfel D,Kappler M,et al.Survivin protein expression and hypoxia in advanced cervical carcinoma of patients treated by radiotherapy[J].Gynecol Oncol.2007;104(1):139-144.
    [157]Hoogsteen IJ,Marres HA,van der Kogel AJ,et al.The hypoxic tumour microenvironment,patient selection and hypoxia-modifying treatments[J].Clin Oncol (R Coll Radiol).2007;19(6):385-396.
    [158]Osmak M,Miljanic S,Kapitanovic S.Low doses of gamma-rays can induce the expression of mdr gene[J].Mutat Res.1994;324(1-2):35-41.
    [159]Nielsen D,Maare C,Eriksen J,et al.Expression of P-glycoprotein and multidrug resistance associated protein in Ehrlich ascites tumor cells after fractionated irradiation[J]. Int J Radiat Oncol Biol Phys. 2001 ;51 (4): 1050-1057.
     [160] McClean S, Whelan RD, Hosking LK, et al. Characterization of the P-glycoprotein over-expressing drug resistance phenotype exhibited by Chinese hamster ovary cells following their in-vitro exposure to fractionated X-irradiation[J]. Biochim Biophys Acta. 1993; 1177(2): 117-126.
    [161] Liu L, Ning X, Sun L, et al. Involvement of MGr1-Ag/37LRP in the vincristine-induced HIF-1 expression in gastric cancer cells[J]. Mol Cell Biochem. 2007;303(1-2):151-160.
    [162] Wartenberg M, Ling FC, Muschen M, et al. Regulation of the multidrug resistance transporter P-glycoprotein in multicellular tumor spheroids by hypoxia-inducible factor (HIF-1) and reactive oxygen species[J]. FASEB J. 2003;17(3):503-505.
    [163] Akai S, Hosomi H, Minami K, et al. Knock down of gamma-glutamylcysteine synthetase in rat causes acetaminophen-induced hepatotoxicity[J]. Biol Chem. 2007; 282(33):23996-4003.
    [164] Tani M, Goto S, Kamada K, et al. Hammerhead ribozyme against gamma-glutamylcysteine synthetase attenuates resistance to ionizing radiation and cisplatin in human T98G glioblastomacells[J]. Jpn J Cancer Res. 2002;93(6):716-722
    [165] Das GC, Bacsi A, Shrivastav M, et al. Enhanced gamma-glutamylcysteine synthetase activity decreases drug-induced oxidative stress levels and cytotoxicity[J]. Mol Carcinog. 2006;45(9):635-647.
    [166] Waypa GB, Schumacker PT. Hypoxic pulmonary vasoconstriction: redox events in oxygen sensing[J]. J Appl Physiol. 2005;98(1):404-414.
    [167] White CW. Commentary on "Hypoxia, hypoxic signaling, tissue damage, and detection of reactive oxygen species (ROS)" [J]. Free Radic Biol Med. 2006;40(6): 923-927.
    [168] Galli F, Piroddi M, Annetti C, et al. Oxidative stress and reactive oxygen species[J]. Contrib Nephrol. 2005; 149:240-60.
    [169] Griguer CE, Oliva CR, Kelley EE, et al. Xanthine oxidase-dependent regulation of hypoxia-inducible factor in cancer cells[J]. Cancer Res. 66;(4):2257-2263.
    [170]Tuttle SW, Maity A, Oprysko PR, et al. Detection of reactive oxygen species via endogenous oxidative pentose phosphate cycle activity in response to oxygen concentration: implications for the mechanism of HIF-1 alpha stabilization under moderate hypoxia[J]. Biol Chem. 2007;282(51):36790-36796.
    [171] Wang H, Yang X, Zhang Z, et al. Both calcium and ROS as common signals mediate Na(2)SeO(3)-induced apoptosis in SW480 human colonic carcinoma cells[J]. J Inorg Biochem. 2003;97(2):221-230.
    
    [172] Wartenberg M, Hoffmann E, Schwindt H, et al. Reactive oxygen species-linked regulation of the multidrug resistance transporter P-glycoprotein in Nox-1 overex-pressing prostate tumor spheroids[J]. FEBS Lett. 2005;579(20):4541 -4549
    
    [173] Weir EK, Archer SL. The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels[J]. FASEB J. 1995;9(2): 183-189.
    [1]Brown LM,Cowen RL,Debray C,et al.Reversing hypoxic cell chemoresistance in vitro using genetic and small molecule approaches targeting hypoxia inducible factor-1[J].Mol Pharmacol.2006;69(2):411-418.
    [2]Moeller BJ,Dreher MR,Rabbani ZN,et al.Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity[J].Cancer Cell.2005;8(2):99-110.
    [3]Zundel W,Schindler C,Haas-Kogan D,et al.Loss of PTEN facilitates HIF-1-mediated gene expression[J].Genes Dev.2000;14(4):391-396.
    [4]Majumder PK,Febbo PG,Bikoff R,et al.mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways[J].Nat Med.2004;10(6):594-601.
    [5]Thomas GV,Tran C,Mellinghoff IK,et al.Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer[J].Nat Med.2006;12(1):122-127.
    [6]Zhong H,Chiles K,Feldser D,et al.Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/ FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics[J]. Cancer Res. 2000;60(6):1541-5.
    
    [7] Belaiba RS, Bonello S, Zahringer C, et al. Hypoxia up-regulates hypoxia-inducible factor-1 alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells [J]. Mol Biol Cell. 2007;18(12):4691-4697.
    
    [8] Alam H, Maizels ET, Park Y. et al.Follicle-stimulating hormone activation of hypoxia-inducible factor-1 by the phosphatidylinositol 3-kinase/AKT/Ras homolog enriched in brain (Rheb)/mammalian target of rapamycin (mTOR) pathway is necessary for induction of select protein markers of follicular differentiation[J]. J Biol Chem. 2004;279(19):19431-19440.
    
    [9] Lang SA, Moser C, Gaumann A, et al. Targeting heat shock protein 90 in pancreatic cancer impairs insulin-like growth factor-I receptor signaling, disrupts an interleukin-6/signal-transducer and activator of transcription 3/hypoxia-inducible factor-1 alpha autocrine loop, and reduces orthotopic tumor growth[J]. Clin Cancer Res. 2007; 13(21):6459-6468.
    
    [10] Zhou J, Brune B. Cytokines and hormones in the regulation of hypoxia inducible factor-1alpha (HIF-1alpha). Cardiovasc Hematol Agents Med Chem [J]. 2006;4(3): 189-97.
    
    [11] Blancher C, Moore JW, Robertson N, et al. Effects of ras and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1 alpha, HIF-2alpha, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3'-kinase/Akt signaling pathway [J]. Cancer Res. 2001 Oct 1;61(19):7349-7355.
    
    [12] Biaglow JE, Miller RA. The thioredoxin reductase/thioredoxin system: novel redox targets for cancer therapy[J]. Cancer Biol Ther. 2005; 4(1):6-13.
    
    [13] Del Bufalo D, Ciuffreda L, Trisciuoglio D, et al. Antiangiogenic potential of the Mammalian target of rapamycin inhibitor temsirolimus[J]. Cancer Res. 2006;66(11): 5549-5554.
    
    [14] Wan X, Shen N, Mendoza A, et al. CCI-779 inhibits rhabdomyosarcoma xenograft growth by an antiangiogenic mechanism linked to the targeting of mTOR/Hif-1alpha/VEGF signaling[J]. Neoplasia. 2006;8(5):394-401.
    
    [15] Hutson TE, Figlin RA. Evolving role of novel targeted agents in renal cell carcinoma[J]. Oncology. 2007; 21(10): 1175-1180.
    
    [16] Peng XH, Karna P, Cao Z, et al. Cross-talk between epidermal growth factor receptor and hypoxia-inducible factor-1 alpha signal pathways increases resistance to apoptosis by up-regulating survivin gene expression[J]. J Biol Chem. 2006;281(36):25903-14.
    [17] Pore N, Jiang Z, Gupta A, et al. EGFR tyrosine kinase inhibitors decrease VEGF expression by both hypoxia-inducible factor (HIF)-1-independent and HIF-1- dependent mechanisms[J]. Cancer Res. 2006;66(6):3197-3204.
    [18] Luwor RB, Lu Y, Li X, Mendelsohn J, et al. The antiepidermal growth factor receptor monoclonal antibody cetuximab/C225 reduces hypoxia-inducible factor-1 alpha, leading to transcriptional inhibition of vascular endothelial growth factor expression[J]. Oncogene. 2005 Jun 23;24(27):4433-4441.
    [19] Koukourakis MI, Simopoulos C, Polychronidis A, et al. The effect of trastuzumab/docatexel combination on breast cancer angiogenesis: dichotomus effect predictable by the HIFI alpha/VEGF pre-treatment status? [J] Anticancer Res. 2003 Mar-Apr;23(2C):1673-1680.
    [20] Mayerhofer M, Valent P, Sperr WR, et al. BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-1 alpha, through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin[J]. Blood. 2002; 100( 10):3767-3775.
    [21] Litz J, Krystal GW. Imatinib inhibits c-Kit-induced hypoxia-inducible factor-1 alpha activity and vascular endothelial growth factor expression in small cell lung cancer cells[J]. Mol Cancer Ther. 2006 Jun;5(6): 1415-1422.
    [22] Rapisarda A, Uranchimeg B, Scudiero DA, et al. Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway[J]. Cancer Res. 2002 Aug 1;62(15):4316-4324.
    [23] Rapisarda A, Uranchimeg B, Sordet O, et al. Topoisomerase I-mediated inhibition of hypoxia-inducible factor 1: mechanism and therapeutic implications [J]. Cancer Res. 2004;64(4): 1475-1482.
    [24] Rapisarda A, Zalek J, Hollingshead M, et al. Schedule-dependent inhibition of hypoxia-inducible factor-1 alpha protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts[J]. Cancer Res. 2004; 64(19):6845-6848.
    [25] Melillo G. Targeting hypoxia cell signaling for cancer therapy [J]. Cancer Metastasis Rev.2007;26(2):341-352.
    
    [26] Mabjeesh NJ, Escuin D, LaVallee TM, et al. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF[J]. Cancer Cell. 2003;3(4):363-375.
    [27] Kang SH, Cho HT, Devi S, et al. Antitumor effect of 2-methoxyestradiol in a rat orthotopic brain tumor model[J]. Cancer Res. 2006;66(24):11991-11997.
    [28] Ohta K, Okoshi R, Wakabayashi M, et al. Geldanamycin, a heat-shock protein 90-binding agent, induces thymocyte apoptosis through destabilization of Lck in presence of 12-O-tetradecanoylphorbol 13-acetate[J]. Biomed Res. 2007;28(1):33-42
    [29] Isaacs JS, Jung YJ, Mimnaugh EG, et al. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway [J]. J Biol Chem. 2002 Aug 16;277(33):29936-29944.
    [30] Mabjeesh NJ, Post DE, Willard MT, et al. Geldanamycin induces degradation of hypoxia-inducible factor 1alpha protein via the proteosome pathway in prostate cancer cells[J]. Cancer Res. 2002;62(9):2478-2482.
    [31] Georgakis GV, Younes A. Heat-shock protein 90 inhibitors in cancer therapy: 17AAG and beyond[J]. Future Oncol. 2005;l(2):273-281.
    [32] Hur E, Kim HH, Choi SM, et al. Reduction of hypoxia-induced transcription through the repression of hypoxia-inducible factor-1alpha/aryl hydrocarbon receptor nuclear translocator DNA binding by the 90-kDa heat-shock protein inhibitor radicicol[J]. Mol Pharmacol. 2002;62(5):975-82
    
    [33] Chun YS, Yeo EJ, Park JW. Versatile pharmacological actions of YC-1: anti-platelet to anticancer [J]. Cancer Lett. 2004; 207(1): 1-7.
    
    [34] Chun YS, Yeo EJ, Choi E, et al. Inhibitory effect of YC-1 on the hypoxic induction of erythropoietin and vascular endothelial growth factor in Hep3B cells[J]. Biochem Pharmacol. 2001;61(8):947-54.
    [35] Yeo EJ, Chun YS, Cho YS, et al. YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1. Natl Cancer Inst[J]. 2003;95(7):516-25.
    [36] Kim HL, Yeo EJ, Chun YS, et al. A domain responsible for HIF-1 alpha degradation by YC-1, a novel anticancer agent[J]. Int J Oncol. 2006;29(1):255-60.
    [37] Welsh S, Williams R, Kirkpatrick L, et al. Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1alpha[J]. Mol Cancer Ther. 2004;3(3):233-244
    [38] Welsh SJ, Williams RR, Birmingham A, et al. The thioredoxin redox inhibitors 1-methylpropyl 2-imidazolyl disulfide and pleurotin inhibit hypoxia-induced factor 1alpha and vascular endothelial growth factor formation[J]. Mol Cancer Ther. 2003;2(3):235-43.
    [39] Jones MK, Szabo IL, Kawanaka H, et al. von Hippel Lindau tumor suppressor and HIF-1alpha: new targets of NSAIDs inhibition of hypoxia-induced angiogenesis[J]. FASEB J. 2002; 16(2):264-266.
     [40] Palayoor ST, Tofilon PJ, Coleman CN. Ibuprofen-mediated reduction of hypoxia- inducible factors HIF-1alpha and HIF-2alpha in prostate cancer cells[J]. Clin Cancer Res. 2003 Aug 1;9(8):3150-7.
    [41] Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1)[J]. Mol Pharmacol. 2006; 70(5): 1469-1480.
    [42] Olenyuk BZ, Zhang GJ, Klco JM, et al. Inhibition of vascular endothelial growth factor with a sequence-specific hypoxia response element antagonist[J]. Proc Natl Acad Sci U S A. 2004; 101 (48): 16768-73.
    [43] Nickols NG, Jacobs CS, Farkas ME, et al. Improved nuclear localization of DNA-binding polyamides[J]. Nucleic Acids Res. 2007;35(2):363-370.
     [44] Van Dyke MM, Dervan PB. Echinomycin binding sites on DNA[J]. Science. 1984 14;225(4667): 1122-1127.
     [45] Kong D, Park EJ, Stephen AG, et al. Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity[J]. Cancer Res. 2005;65(19): 9047-55.
    [46] Conaway RC, Brower CS, Conaway JW. Emerging roles of ubiquitin in transcription regulation [J]. Science. 2002;296(5571): 1254-1258.
    [47] Brahimi-Horn MC, Chiche J, Pouyssegur J. Hypoxia and cancer [J]. J Mol Med. 2007; 85(12): 1301-1307.
    [48] Staab A, Loeffler J, Said HM, et al. Effects of HIF-1 inhibition by chetomin on hypoxia-related transcription and radiosensitivity in HT 1080 human fibrosarcoma cells[J]. BMC Cancer. 2007;7:213-220.
    [49] Kung AL, Zabludoff SD, France DS, et al. Small molecule blockade of transcriptionalcoactivation of the hypoxia-inducible factor pathway[J]. Cancer Cell. 2004;6(1):33-43.
    [50] Kaluz S, Kaluzova M, Stanbridge EJ. Proteasomal inhibition attenuates transcriptional activity of hypoxia-inducible factor 1 (HIF-1) via specific effect on the HIF-1alpha C-terminal activation domain[J]. Mol Cell Biol. 2006;26(15):5895-5907.
    [51] Yeo EJ, Ryu JH, Cho YS, et al. Amphotericin B blunts erythropoietin response to hypoxia by reinforcing FIH-mediated repression of HIF-1 [J]. Blood. 2006;107 (3):916-23.
    [52] Dai J, Fishback JA, Zhou YD, et al. Sodwanone and yardenone triterpenes from a South African species of the marine sponge Axinella inhibit hypoxia-inducible factor-1 (HIF-1) activation in both breast and prostate tumor cells[J]. Nat Prod. 2006;69(12):1715-1720.
    [53] Mohammed KA, Hossain CF, Zhang L, et al. Laurenditerpenol, a new diterpene from the tropical marine alga Laurenciaintricata that potently inhibits HIF-1 mediated hypoxic signaling in breast tumor cells[J]. J Nat Prod. 2004;67(12):2002-2007.
    [54] Zhou Y D, Kim Y P, Mohammed K A, et al. Terpenoid Tetrahydroisoquinoline Alkaloids Emetine, Klugine, and Isocephaeline Inhibit the Activation of Hypoxia- Inducible Factor-1 in Breast Tumor Cells[J].J Nat Prod.2005;68(6):947-950.
    [55] Choi H, Chun YS, Kim SW, et al. Curcumin inhibits hypoxia-inducible factor-1 by degrading aryl hydrocarbon receptor nuclear translocator: a mechanism of tumor growth inhibition[J]. Mol Pharmacol. 2006;70(5): 1664-1671.
    [56] Lin S, Tsai SC, Lee CC, et al. Berberine inhibits HIF-1 alpha expression via enhanced proteolysis[J]. Mol Pharmacol. 2004;66(3):612-619.
    [57] Li MH, Miao ZH, Tan WF, et al. Pseudolaric acid B inhibits angiogenesis and reduces hypoxia-inducible factor 1alpha by promoting proteasome-mediated degradation[J]. Clin Cancer Res. 2004 Dec 15;10(24):8266-8274.
    [58] Zhang Q, Tang X, Lu QY, et al. Resveratrol inhibits hypoxia-induced accumulation of hypoxia-inducible factor-1 alpha and VEGF expression in human tongue squamous cell carcinoma and hepatoma cells[J]. Mol Cancer Ther. 2005;4(10): 1465-1474.
    [59] Hasebe Y, Egawa K, Yamazaki Y, et al. Specific inhibition of hypoxia-inducible factor (HIF)-1 alpha activation and of vascular endothelial growth factor (VEGF) production by flavonoids[J]. Biol Pharm Bull. 2003;26(10):1379-1383.
    [1]Van Veelen LR,Essers J,van de Rakt MW,et al.Ionizing radiation-induced foci formation of mammalian Rad51 and Rad54 depends on the Rad51 paralogs,but not on Rad52[J].Mutat Res,2005,574(1-2):34-49.
    [2]Thacker J.The RAD51 gene family,genetic instability and cancer[J].Cancer Lett,2005,219(2):125-135.
    [3]Masson JY,Stasiak AZ,Stasiak A,et al.Complex formation by the human RAD51C and XRCC3 recombination repair proteins[J].Proc Natl Acad Sci U S A.,2001,98(15):8440-8446.
    [4]Lio YC,Mazin AV,Kowalczykowski SC,et al.Complex formation by the human Rad51B and Rad51C DNA repair proteins and their activities in vitro[J].J Biol Chem,2003,278(4):2469-2478.
    [5]Liu Y,Masson JY,Shah R,et al.RAD51C is required for Holliday junction processing in mammalian cells[J].Science,2004,303(5655):243-246.
    [6]Zhou C,Huang P,Liu J.The carboxyl-terminal of BRCA1 is required for subnuclear assembly of RAD51 after treatment with cisplatin but not ionizing radiation in human breast and ovarian cancer cells[J].Biochem Biophys Res Commun,2005,336(3):952-960.
    [7]Henning W,Sturzbecher HW.Homologous recombination and cell cycle checkpoints:Rad51 in tumour progression and therapy resistance[J].Toxicology,2003, 193(1-2):91-109.
    
    [8] Richardson C, Stark JM, Ommundsen M, et al. Rad51 overexpression promotes alternative double-strand break repair pathways and genome instability[J]. Oncogene, 2004,23(2):546-553.
    [9] Raderschall E, Stout K, Freier S, et al. Elevated levels of Rad51 recombination protein in tumor cells[J]. Cancer Res, 2002 , 62(1):219-225.
    [13] Slupianek A, Schmutte C, Tombline G, et al. BCR/ABL regulates mammalian RecA homologs, resulting in drug resistance[J]. Mol Cell, 2001, 8(4):795-806.
    [14] Richardson C. RAD51, genomic stability, and tumorigenesis[J]. Cancer Lett, 2005, 218(2): 127-139.
    [15] Kanamoto T, Hellman U, Heldin CH, et al. Functional proteomics of transforming growth factor-beta1-stimulated MvlLu epithelial cells: Rad51 as a target of TGFbeta1-dependent regulation of DNA repair[J]. EMBO J, 2002,21(5):1219-1230.
    [16] Raderschall E, Bazarov A, Cao J, et al. Formation of higher-order nuclear Rad51 structures is functionally linked to p21 expression and protection from DNA damage-induced apoptosis[J]. J Cell Sci, 2002, 115(Pt 1):153-164.
    [17] Margolis RL, Lohez OD, Andreassen PR. G1 tetraploidy checkpoint and the suppression of tumorigenesis[J]. J Cell Biochem, 2003, 88(4):673-683.
    [18] Hansen LT, Lundin C, Spang-Thomsen M, et al. The role of RAD51 in etoposide (VP16) resistance in small cell lung cancer[J]. Int J Cancer, 2003, 105(4):472-479.
    [19] Collis SJ, Tighe A, Scott SD, et al. Ribozyme minigene-mediated RAD51 down-regulation increases radiosensitivity of human prostate cancer cells[J]. Nucleic Acids Res, 2001, 29(7):1534-1538.
    [20] Russell JS, Brady K, Burgan WE, et al. Gleevec-mediated inhibition of Rad51 expression and enhancement of tumor cell radiosensitivity [J]. Cancer Res, 2003, 63(21):7377-7383.
    [21] Lee YJ, Sheu TJ, Keng PC. Enhancement of radiosensitivity in H1299 cancer cells by actin-associated protein cofilin[J]. Biochem Biophys Res Commun, 2005, 335(2): 286-291.
    [22] Knapp DC, Mata JE, Reddy MT, et al. Resistance to chemotherapeutic drugs overcome by c-Myc inhibition in a Lewis lung carcinoma murine model[J]. Anticancer Drugs, 2003, 14(1):39-47.
    [23] Connell PP, Siddiqui N, Hoffman S, et al. A hot spot for RAD51C interactions revealed by a peptide that sensitizes cells to cisplatin[J]. Cancer Res, 2004, 64(9):3002-3005.
    [1]Cordes N,Beinke C,Plasswilm L,et al.Irradiation and various cytotoxic drugs enhance tyrosine phosphorylation andβ1-Integrin clustering in human A549 lung cancer cells in a substratum-dependent Manner in Vitro[J].Strahlenther Onkol.2004;180:157-64.
    [2]Hynes RO.lntegrins:bidirectional,allosteric signaling machines Cell[J].2002;110:673-87.
    [3]Ridley AJ,.Schwartz MA,Burridge K,5 et al.Cell Migration:integrating signals from front to back[J].Science.2003;302:1704-9.
    [4]Martin KH,Slack JK,Boerner SA,et al.Integrin connections map:to infinity and beyond[J].Science.2002;296:1652-3.
    [5]Cordes N,Meineke V.Integrin signalling and the cellular response to ionizing radiation[J].J Mol Histol.2004;35:327-37.
    [6]Cordes N,Blaese MA,Meineke V,et al.Ionizing radiation induces up-regulattional β_1-integrin in human lung tumor cell lines in vitro[J].Int.J.Radit.Biol.20002;78:347-357.
    [7]Beinke C,Beuingen DV,Cordes N.Ionizing radiation modules of the expression and tyrosine phosphorylation of the focal adhesion-associated proteins focal adhesion kinase (FAK) and its substrates p130cas and paxillin in A549 human lung carcinoma cells in vitro[J].Int.J.Radit.Biol.2003;79:721-731.
    [8]Almeida EAC,Ilic D,Han Q,et al.Matrix survival signaling;from fibronectin via focal adhesion kinase to c-Jun NH-terminal kinase[J].J.Cell.Biol.149:741-754.
    [9]Wei L,Yang A,Zhang X,et al.Anchorage-independent phosphorylation of p130(Cas) protects lung adenocarcinoma cells from anoiks[J]. J Cell Biochem. 2002;87:439-49.
    [10] Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling[J].Prog Neurobiol. 2001 Nov;65(4):391-426
    [11] Hoeflich KP, Luo J, Rubie EA, et al. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation[J].Nature. 2000;406:86-90.
    [12] Zhang Y, Chen K, Tu Y, et al. Assembly of the PINCH-ILK-CH-ILKBP complex precedes and is essential for localization each component to cell-matrix adhesion sites[J]. J Cell Sci. 2002; 115: 4777-86.
    [13] Cordes N, Overexpression of hyperactive integrin-linked leads to increased cellular radiosensitivity[J]. Cancer Res.2004; 64: 5683-5692.
    [14] Cordes N, Meineke V. Cell adhesion-mediated radioresistance (Cam-RR): extracellular matrix-dependent improvement of cell survival in human tumor and normal cells in vitro[J]. Strahlenther Onkol.2003; 179:337-344
    [15] Cordes N, Hansmeier B, Meineke V. Irradiation differentially affects substratum-dependent survival adhesion, and invasion of glioblastoma cell lines[J]. Br J Cancer. 2003; 89: 2122-2132.
    [16] Abdollahi A, Griggs DW, Zieher H, et al. Inhibition of α_vβ_3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy[J] Clin Cancer Res. 2005; 11:6270-79.
    [17] Burke PA, Denardo SJ, Miers LA, et al. Combined modality radioimmunotherapy Combined modality radioimmunotherapy. Promise and peril. Cancer. 2002 ; 94 (4 Suppl): 1320-31.
    [18] Huber PE, Bischof M, Jenne J, et al. Trimodal cancer treatment: beneficial effects of combined antiangiogenesis , radiation, and chemotherapy [J].Cancer Res.2005;65: 3643-55.
    [19] Edwards E, Geng L, Tan J, et al. Phosphatidylinositol3-kinase/Akt signaling in the reponse of vascular endothelium to ionizing radiation[J]. Cancer Res.2002;62: 4671-4677.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700