用户名: 密码: 验证码:
KCNQ1通道突变致病机制及乙醇作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子通道是一种能够调节细胞膜两侧离子流的融合蛋白,它是神经、肌肉和其它组织细胞膜兴奋的基础,也是生物电活动的基础。钾离子通道是迄今为止类型最多的一类离子通道,它们广泛地分布于骨骼肌、神经、心脏、血管、气管、胃肠道、血液、内分泌和腺体等细胞。KCNQ基因编码的钾离子通道家族是电压门控钾离子通道的一个重要分支,在心脏中大量表达,在内耳也有分布。KCNQ1及其辅助亚基minK形成的KCNQ1/minK复合体能够产生延迟外向整流钾电流I_(KS),该电流帮助终结心肌细胞中的动作电位,KCNQ1基因若发生突变,就会引起该通道的功能紊乱,从而引起心脏长QT综合征,即LQTS,最终导致严重的心律不齐,室颤甚至心脏休克。目前发现许多疾病与KCNQ基因突变或其编码的钾离子通道功能失调有关,鉴于这些原因,弄清楚KCNQ1通道的相关特性,无论对于离子通道学,还是临床医学都会具有很大的贡献。
     本文在HEK293细胞上研究了KCNQ1突变基因L191P导致LQT1的机制。在KCNQ1基因中有超过100种突变是引发1型LQTS(LQT1)的主要原因,有报道发现,位于1 91位点的亮氨酸突变L1 91 P能够直接引发LQT1,该突变点位于KCNQ1基因的S2-S3连接区域,大约有16%的LQTS突变点位于该区域中。在电生理实验结果中,我们发现L1 91 P/minK产生的电流远远小于正常的WT/minK的电流,电流-电压(IV)曲线中显示L191 P/minK的电流减少到WT/minK的电流的一半以下,但是电导-电压(GV)曲线中显示没有明显的变化。在免疫荧光成像结果中,我们却发现L191 P使得正常的KCNQ1蛋白上膜量大大降低,因此推断该突变通道因上膜量剧烈变化使得心肌钾电流I_(Ks)大大减小,从而影响动作电位复极化,导致LQTS的产生。
     为了更进一步了解这种上膜量的变化原因,我们将这个点的氨基酸残基Leu突变成疏水性不同的氨基酸(Phe>Leu>Val>Trp>Ala>Pro>Lys>Asp),发现这些突变随着其疏水性的减弱,其上膜能力也逐渐减弱。通过建立E(?)M模型,我们归纳出这一规律遵循的波尔兹曼公式,应用于因能量变化而改变膜蛋白上膜效率的情况。同时,通过建立二项式分布模型,我们解释了dominant-negative效应的存在是LQT1表型存在的本质。
     本文还在非洲爪蟾Xenopus laevis卵母细胞上研究了乙醇(酒精)阻断KCNQ1通道的机制。乙醇对人体具有广泛的药理学影响,研究者们知道乙醇对脑、心脏和肝脏等的功能会产生不良影响,但不了解它起作用的机制。我们通过双电极电压钳检测,结果表明乙醇能够特异性阻断I_(Ks)电流,与其类似的其它直链烷醇亦能够阻断该通道,而且烷醇链长越长,相同浓度下阻断能力越强。这种阻断效果不仅具有电压依赖性,还同时兼具关闭态阻断和开放态阻断的特点,说明酒精阻断KCNQ1通道的作用位点可能既存在于细胞外,也存在于细胞内。通过突变扫描比对,我们还发现KCNQ1上氨基酸Ile257在酒精等烷醇对KCNQ1通道的阻断过程中起着重要的作用。
     我们还借助MedLab生物信号采集处理系统,连续测量注射不同浓度乙醇的小鼠心电图,结果表明一定浓度下乙醇(较低或者很高浓度)能够阻断心肌钾离子通道,从而延迟动作电位的复极化,进而延缓心率;而某一特定浓度下的乙醇(较高安全浓度)能够刺激心肌钾离子通道的开放,从而加速动作电位的复极化,进而加速心率。我们利用了“口袋”模型进一步阐明烷醇和KCNQ1通道相互作用机制,这对以KCNQ1通道为靶点的药物研究有着重要意义。
Ion channel, a fusion protein regulating transmembrane ion flux, is the basis of bio-electrical activity and the membrane excitablity of nerve, muscle and other tissu. Potassium channels are the most various ion channels, and widely exist in skeletal muscle, nerve, heart, vessels, trachea, gastrointestinal tract, blood and endocrine gland cells. KCNQ1 channel, which is an important branch of voltage-gated potassium channels, has a large distribution in the heart, as well as the inner ear. Combined with its auxiliary subunit minK, KCNQ1/minK complex can generate a delayed outward rectifier K~+ current, Iks. to end the action potential in myocardial cells, therefore, KCNQ1 mutations would cause a dysfunction of the channel, thus give rise to the long QT syndrome (LQTS), eventually lead to serious arrhythmias, ventricular fibrillation and cardiac shock. Mutations in KCNQ gene can lead to many diseases, thus, it is very contributing to clarify the characteristics of KCNQ1 channels, both for the ion channel research and clinical medicine.
     We studied the mechanism of LQT1 arising from one KCNQ1 mutation, L191P, in HEK293 cells. Over 100 KCNQ1 mutantions can lead to the type-1 LQTS (LQT1). It is reported that KCNQ1-Leu191, which locates in the intracellular S2-S3 linker of KCNQ1, can lead to LQT1 directly, and~16% LQTS-related mutations mustered in this region. By electrophysiological method, we found the currents of L191P/minK channel were much smaller than those of KCNQ1/minK channels. Although the average currents of L191P/minK were reduced to more than half compared with those of WT/minK, but there was no shift in the G-V curves. By immunofluorescence method, we also found L191P channels causing a trafficking deficiency, leading to the minishing of I_(Ks) and then, LQTS.
     We found the surface expression decreased with decreasing hydrophobicity of the middle residue 'X' of the RXR motif. Establishing a model of E(?)M, we generalize the Boltzmann formula to explain the results, and we got the essence of LQT1 phenotype through the binomial distribution model, that is the dominant-negative effect.
     We also studied the blocking mechanism of ethanol (alcohol) on KCNQ1 in Xenopus laevis oocytes. Ethanol has a wide range of pharmacological effects on the human body, but researchers do not understand the mechanism it works. Using two-electrode voltage clamp, we showed that ethanol blocked specificly I_(Ks), even the straight-chain n-alcohol also blocked the channel. The chain length was longer, the same concentration blocked stronger. The voltage-dependent and bio-states blocking showed us that ethanol blocked the channel both from outside and inside. Through mutation scanning, we also found that amino acid Ile257 of KCNQ1 played an important role in the blocking.
     We also used the Medlab bio-signal acquisition and processing system to measure the ECG of the injected mice, and results showed that a certain concentration of ethanol blocked cardiac potassium channels, which delayed action potentials repolarization and thus slowed down the heart rate; and a particular concentration of ethanol (higher over security levels) stimulated the cardiac potassium ion channels opening, thus speeded up the action potential repolarization, thus speeded up the heart rate. We used a "pocket" model to further clarify the interaction beteween n-ethanol and KCNQ1 channel, which will make a graet sense to the study of the pathogenic mechanisms related to heart disease.
引文
[1] Hille Bertil. Ion channels of excitable membranes, third edition, Sunderland, Mass: Sinauer Associates, 2001.
    [2] Wang W. Renal potassium channels: recent developments. Curr Opin Nephrol Hypertens, 2004, 13(5): 549-555.
    [3] Melman YF, Urn SY, Krumerman A, et al. KCNE1 binds to the KCNQ1 pore to regulate potassium channel activity. Neuron, 2004, 42(6): 927-937.
    [4] Korovkina VP and England SK. Molecular diversity of vascular potassium channel isoforms.Clin Exp Pharmacol Physiol, 2002, 29(4): 317-323.
    [5] Kuo A, Gulbis JM, Antcliff JF, et al. Crystal structure of the potassium channel KirBac1,1 in the closed state. Science, 2003, 300(5627):1922-1926.
    [6] McCleverty CJ, Koesema E, Patapoutian A, et al. Crystal structure of the human TRPV2 channel ankyrin repeat domain. Protein Sci, 2006, 15(9):2201-2206.
    [7] Craven KB and Zagotta WN. CNG and HCN channels: two peas, one pod.Annu Rev Physiol, 2006, 68:375-401.
    [8] Bright JN, Shrivastava IH, Cordes FS, et al. Conformational dynamics of helix S6 from Shaker potassium channel: simulation studies. Biopolymers,2002, 64(6): 303-313.
    [9] Zhou M, Morais-Cabral JH, Mann S, et al. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature, 2001,411(6838): 657-661.
    [10] Lopez-Bameo J and Castellano A. Multiple facets of maxi-K~+ channels: the heme connection. J Gen Physiol, 2005, 126(1): 1-5.
    [11] Chung KF. Current and future prospects for drugs to suppress cough. IDrugs,2003,6(8):781-786.
    [12] Gribkoff VK and Winquist RJ.Voltage-gated cation channel modulators for the treatment of stroke.Expert Opin Investig Drugs,2005,14(5):579-592.
    [13] 杨宝峰.离子通道药理学.第一版.北京:人民卫生出版社,2005.
    [14] Navarro-Antol(?)n J,Levitsky KL,Calder(?)n E,et al.Decreased expression of maxi-K~+ channel beta1-subunit and altered vasoregulation in hypoxia.Circulation,2005,112(9):1309-1315.
    [15] Melman A,Bar-Chama N,McCullough A,et al.The first human trial for gene transfer therapy for the treatment of erectile dysfunction:preliminary results.Eur Urol,2005,48(2):314-318.
    [16] Young RC,Schumann R and Zhang P.Intracellular calcium gradients in cultured human uterine smooth muscle:a functionally important subplasmalemmal space.Cell Calcium,2001,29(3):183-189.
    [17] Nehrke K,Quinn CC and Begenisich T.Molecular identification of Ca2~+-activated K~+ channels in parotid acinar cells.Am J Physiol Cell Physiol,2003,284(2):C535-546.
    [18] Oshiro T,Takahashi H,Ohsaga A,et al.Delayed expression of large conductance K~+ channels reshaping agonist-induced currents in mouse pancreatic acinar cells.J Physiol,2005,563(Pt 2):379-391.
    [19] Deutsch C.The Birth of a Channel.Neuron 2003,40:265-276.
    [20] Lovett PS and Rogers EG.Ribosome regulation by the nascent peptide.Microbiol Rev,1996,60(2):366-85.
    [21] Morris DR and Geballe AP.Upstream open reading frames as regulators of mRNA translation.Mol Cell Biol,2000,20(23):8635-42.
    [22] Ehrenberg M and Tenson T.A new beginning of the end of translation.Nat Struct Biol,2002,9(2):85-7.
    [23] Crowley KS,Liao S,Worrell VE et al.Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore. Cell, 1994,78(3): 461-71.
    [24] Fedorov AN and Baldwin TO. Contribution of cotranslational folding to the rate of formation of native protein structure. Proc Natl Acad Sci U S A,1995,92(4): 1227-31.
    [25] Makeyev EV, Kolb VA, and Spirin AS. Enzymatic activity of the ribosome-bound nascent polypeptide. FEBS Lett, 1996, 378(2): 166-70.
    [26] Schulteis CT, Nagaya N and Papazian DM. Subunit folding and assembly steps are interspersed during Shaker potassium channel biogenesis. J Biol Chem, 1998, 273(40): 26210-7.
    [27] Margeta-Mitrovic M, Jan YN and Jan LY. A trafficking checkpoint controls GABA(B) receptor heterodimerization. Neuron, 2000, 27(1): 97-106.
    [28] Scott SP, Weber IT, Harrison RW, et al. A functioning chimera of the cyclic nucleotide-binding domain from the bovine retinal rod ion channel and the DNA-binding domain from catabolite gene-activating protein. Biochemistry,2001, 40(25): 7464-7473.
    [29] Standley S, Roche KW, McCallum J, et al. PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron, 2000,28(3): 887-898.
    [30] Zerangue N, Schwappach B, Jan YN, et al. A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels.Neuron, 1999, 22(3): 537-548.
    [31] Wang JM, Zhang L, Yao Y, et al. A transmembrane motif governs the surface trafficking of nicotinic acetylcholine receptors. Nat Neurosci, 2002,5(10): 963-970.
    [32] Ma D, Zerangue N, Lin YF, et al. Role of ER export signals in controlling surface potassium channel numbers. Science, 2001, 291(5502): 316-319.
    [33] Sharma N, Crane A, Clement JP 4th, et al. The C terminus of SUR1 is required for trafficking of KATP channels. J Biol Chem, 1999, 274(29):20628-20632.
    [34] Stockklausner C, Ludwig J, Ruppersberg JP, et al. A sequence motif responsible for ER export and surface expression of Kir2. 0 inward rectifier K(+) channels. FEBS Lett, 2001, 493(2-3): 129-133.
    [35] XiaH, Hornby ZD and Malenka RC.An ER retention signal explains differences in surface expression of NMDA and AMPA receptor subunits.Neuropharmacology, 2001, 41(6): 714-723.
    [36] Tiffany AM, Manganas LN, Kim E, et al. PSD-95 and SAP97 exhibit distinct mechanisms for regulating K(+) channel surface expression and clustering.J Cell Biol, 2000, 148(1): 147-158.
    [37] Babenko AP, Aguilar-Bryan L, and Bryan J. A view of sur/KIR6. X, KATP channels. Annu Rev Physiol, 1998, 60: 667-87.
    [38] Gilbert A, Jadot M, Leontieva E, et al. Delta F508 CFTR localizes in the endoplasmic reticulum-Golgi intermediate compartment in cystic fibrosis cells. Exp Cell Res, 1998, 242(1): 144-52.
    [39] Shi XP, Yin KC, Zimolo ZA, et al. The subcellular distribution of eukaryotic translation initiation factor, elF-5A, in cultured cells. Exp Cell Res, 1996,225(2): 348-56.
    [40] Goldstein SA, Bockenhauer D, O'Kelly I,et al. Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci, 2001, 2(3):175-84.
    [41] Lesage F and Lazdunski M.Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol, 2000,279(5):F793-801.
    [42] Gray PC, Scott JD and Catterall WA. Regulation of ion channels by cAMP-dependent protein kinase and A-kinase anchoring proteins. Curr Opin Neurobiol, 1998, 8(3): 330-4.
    [43] Ficker E, Jarolimek W, and Brown AM. Molecular determinants of inactivation and dofetilide block in ether a-go-go (EAG) channels and EAG-related K (+) channels. Mol Pharmacol, 2001, 60(6): 1343-8.
    [44] Wang Q, Curran ME, Splawski I,et al.Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias.Nat Genet, 1996, 12:17-23.
    [45] Barhanin J, Lesage F, Guillemare E, et al. K_((V))LQT1 and I_(sK) (minK) proteins associate to form the I_(Ks) cardiac potassium current. Nature, 1996, 384:78-80.
    [46] Sanguinetti MC, Curran ME, Zou A, et al. Coassembly of K_((V))LQT1 and minK (IsK) proteins to form cardiac I_(Ks) potassium channel. Nature, 1996,384: 80-83.
    [47] Lee MP,Hu RJ, Johnson LA, et al. Human KVLQT1 gene shows tissue-specific imprinting and encompasses Beckwith-Wiedemann syndrome chromosomal rearrangements. Nat Genet, 1997, 15:181-185.
    [48] Splawski I,Shen J, Timothy KW,et al. Genomic structure of three long QT syndrome genes: KVLQT1, HERG, and KCNE1. Genomics, 1998, 51:86-97.
    [49] Yang WP, Levesque PC, Little WA, et al. KvLQT1,a voltagegated potassium channel responsible for human cardiac arrhythmias. Proc Natl Acad Sci USA, 1997, 94:4017-4021.
    [50] Schmitt N, Schwarz M, Peretz A, et al. A recessive C-terminal Jervell and Lange-Nielsen mutation of the KCNQ1 channel impairs subunit assembly.EMBO J,2000, 19:332-340.
    [51] Schwake M, Pusch M, Kharkovets T, et al. Surface expression and single channel properties of KCNQ2/KCNQ3, M-type K~+ channels involved in epilepsy. J Biol Chem,2001, 275:13343-13348.
    [52] AbbottG W, Sesti F, Splawski I,et al.MiRP1 forms I_(Kr) potassium channels with HERG and is associated with cardiaca rrhythmia.Cell, 1999,97(2):175-187.
    [53] Abbott GW,Butler MH, Bendahhou S, et al. MiRP2 fonns potassium channels in skeletal muscle with Kv3.4 andis as sociatedw ithp eirodicp aralysis. Cell, 2001, 104(2):217-231.
    [54] Teng S, Ma L, Zhen Y, et al. Novel gene hKCNE4 slows the activation of the KCNQ1 channel.Biochem Biophys Res Commun, 2003, 303(3):808-813.
    [55] Mclbnald TV, Yu Z, Ming Z, et al. A MinK-HERG complex regulates the cardiac potassium current I_(Kr).Nature, 1997, 388(6639):289-292.
    [56] Biervert C, Schroeder, BC, Kubisch C, et al. A potassium channel mutation in neonatal epilepsy. Science, 1998, 279:403-406.
    [57] Schroeder BC, Kubisch C, Stein V, et al. Moderate loss of function of cyclic-AMP-modulated K~+ channels causes epilepsy. Nature, 1998,396:687- 690.
    [58] YangWP, Levesque PC, Little WA, et al. Functional expression of two KvLQT1-related potassium channels responsible for an inherited idiopathic epilepsy. J Biol Chem, 1998, 273:19419-19423.
    [59] Wang HS, Pan Z, Shi W,et al. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel.Science, 1998,282:1890-1893.
    [60] Selyanko AA, Hadley JK, Wood IC,et al. Inhibition of KCNQ1-4 potassium channels expressed in mammalian cells via M1 muscarinic acetylcholine receptors. J Physiol (Lond), 2001, 522:349-355.
    [61] Hadley JK. Identification of channels underlying the M-like potassium current in NG108-15 neuroblastoma cells. Ph.D. Thesis, University of London. 2000.
    [62] Shapiro MS, Roche JP,Kaftan EJ, et al.Reconstitution of muscarinic modulation of the KCNQ2/KCNQ3 K~+ channels that underlie the neuronal M current. J Neurosci, 2000, 20: 1710-1721.
    [63] Franqueza L, Lin M,Shen J, et al. Long QT syndrome-associated mutations in the S4-S5 linker of KvLQT1 potassium channels modify gating and interaction with minK subunits. J Biol Chem, 1999, 274:21063-21070.
    [64] Seebohm G, Sanguinetti MC, and Pusch M.Tight coupling of rubidium conductance and inactivation in human KCNQ1 potassium channels. J Physiol, 2003, 552:369-378.
    [65] Seebohm G, Westenskow P, Lang F, et al. Mutation of colocalized residues of the pore helix and transmembrane segments S5 and S6 disrupt deactivation and modify inactivation of KCNQ1 K~+ channels. J Physiol, 2005,563:359-368.
    [66] Schroeder BC, Hechenberger M, Weinreich F, et al. KCNQ5, a novel potassium channel broadly expressed in brain mediates M-type currents. J Biol Chem, 2000, 275:24089-24095.
    [67] Schroeder BC, Waldegger S, Fehr S, et al. A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature, 2000, 403:196-199.
    [68] Kubisch C, Schroeder BC, Friedrich T, et al. KCNQ5, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell, 1999, 96:437- 446.
    [69] Lerche C, Scherer C, Seebohm G, et al. Molecular cloning and functional expression of KCNQ5, a potassium channel subunit that may contribute to neuronal M-current diversity. J Biol Chem, 2000, 275:22395-22400.
    [70] Angelo K, Jespersen T, Grunnet M, et al. KCNE5 induces time- and voltage-dependent modulation of the KCNQ1 current. Biophys J, 2002, 83:1997-2006.
    [71] Grunnet M, Jespersen T, Rasmussen HB, et al. KCNE4 is an inhibitory subunit to the KCNQ1 channel. J Physiol, 2002, 542: 119-130.
    [72] Nicolas M, Dememes D, Martin A, et al. KCNQ1/KCNE1 potassium channels in mammalian vestibular dark cells. Hear Res, 2001, 153:132-145.
    [73] Tinel N, Diochot S, Borsotto M, et al. KCNE2 confers background current characteristics to the cardiac KCNQ1 potassium channel. EMBO J, 2000,19:6326-6330.
    [74] McCrossan ZA and Abbott GW.The MinK-related peptides.Neuropharmacology, 2004, 47: 787-821.
    [75] Takumi T, Ohkubo H, and Nakanishi S. Cloning of a membrane protein that induces a slow voltagegated potassium current. Science, 1988,242:1042-1045.
    [76] Splawski I,Tristani-Firouzi M, Lehmann MH, et al. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat Genet, 1997,17:338-340.
    [77] Melman YF, Domenech A, de la LS, et al. Structural determinants of KvLQT1 control by the KCNE family of proteins. J Biol Chem, 2001, 276:6439-6444.
    [78] Wang KW and Goldstein SA. Subunit composition of minK potassium channels. Neuron, 1995, 14:1303-1309.
    [79] Wang W, Xia J, and Kass RS. MinK-KvLQT1 fusion proteins, evidence for multiple stoichiometries of the assembled IsK channel. J Biol Chem, 1998,273:34069-34074.
    [80] Dedek K and Waldegger S. Colocalization of KCNQ1/KCNE channel subunits in the mouse gastrointestinal tract. Pflugers Arch, 2001, 442: 896-902.
    [81] Jespersen T, Rasmussen HB, Grunnet M, et al. Basolateral localization of KCNQ1 potassium channels in MDCK cells: molecular identification of an N-terminal targeting motif. J Cell Sci, 2004,117: 4517-4526.
    [82] Mazhari R, Nuss HB, Armoundas AA, et al. Ectopic expression of KCNE3 accelerates cardiac repolarization and abbreviates the QT interval. J Clin Invest, 2002, 109:1083-1090.
    [83] Bendahhou S, Marionneau C, Haurogne K, et al. In vitro molecular interactions and distribution of KCNE family with KCNQ1 in the human heart.Cardiovasc Res, 2005, 67:529-538.
    [84] Grunnet M, Olesen SP, Klaerke DA, et al. hKCNE4 inhibits the hKCNQ1 potassium current without affecting the activation kinetics. Biochem Biophys Res Commun , 2005, 328:1146-1153..
    [85] Piccini M, Vitelli F, Seri M, et al. KCNE1-like gene is deleted in AMME contiguous gene syndrome: identification and characterization of the human and mouse homologs. Genomics, 1999, 60: 251-257.
    [86] Hofman-Bang J, Jespersen T, Grunnet M, et al. Does KCNE5 play a role in long QT syndrome? Clin Chim Acta, 2004, 345: 49-53.
    [87] Ravn LS, Hofman-Bang J, Dixen U, et al. Relation of 97T polymorphism in KCNE5 to risk of atrial fibrillation. Am J Cardiol, 2005, 96: 405-407.
    [88] Robbins J. KCNQ potassium channels: physiology, pathophysiology, and pharmacology. Pharmacol Ther, 2001, 90:1-19.
    [89] Smith JS., lannotti CA, Dargis P, et al. Differential expression of kcnq2 splice variants: implications to m current function during neuronal development. J Neurosci, 2001, 21:1096-1103.
    [90] Jentsch C. Ion channel diseases. Human Molecular Genetics, 2002,11:2435.
    [91] Lerche H, Weber YG, Jurkat-Rott K, et al.Ion channel defects in idiopathic epilepsies. Curr Pharm Des,2005,11:2737-2752.
    [92] Kananura C, Biervert C, Hechenberger M, et al. The new voltage gated potassium channel KCNQ5 and neonatal convulsions. Neuroreport, 2002,11:2063-2067.
    [93] Cooper EC. Potassium channels: how genetic studies of epileptic syndromes open paths to new therapeutic targets and drugs. Epilepsia 42,2001, Suppl 5, 49-54.
    [94] Biervert C and Steinlein OK. Structural and mutationalanalysis of KCNQ2,the major gene locus for benign familial neonatal convulsions. Hum Genet,1999, 104(3):234-240.
    [95] Lee WL, Biervert C, Hallmann K, et al. A KCNQ2 splice site mutation causing benign neonatal convulsions in a Scottish family. Neuropeidatrics,2000, 31(1):9-12.
    [96] Lee MP,Ravenel JD, Hu RJ, et al. Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. J Clin Invest, 2000, 106:1447-1455.
    [97] Jervell A and Lange-Nielsen F. Congenital deafmutism,functional heart disease with prolongation of the Q-T interval and sudden death. Am Heart J,1957,54:59-68.
    [98] Neyroud N, Tesson F, Denjoy I,et al. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet, 1997, 15:186-189.
    [99] Casimiro MC, Knollmann BC, Ebert SN, et al. Targeted disruption of the Kcnq1 gene produces a mouse model of Jervell and Lange-Nielsen Syndrome. Proc Natl Acad Sci USA, 2001, 98: 2526-2531.
    [100] Schwartz PJ, Priori SG, Spazzolini C, et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation, 2001, 103: 89-95.
    [101] Di Diego JM, Belardinelli L, and Antzelevitch C. Cisaprideinduced transmural dispersion of repolarization and torsade de pointes in the canine left ventricular wedge preparation during epicardial stimulation. Circulation,2003, 108: 1027-1033.
    [102] Chen YH, Xu SJ, Bendahhou S, et al.KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science, 2003, 299: 251-254.
    [103] Yang Y, Xia M, Jin Q, et al. Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation. Am J Hum Genet, 2004, 75:899-905.
    [104] Yang P, Kanki H, Drolet B, et al. Allelic variants in long-QT disease genes in patients with drugassociated torsades de pointes. Circulation, 2002,105:1943-1948.
    [105] Grahammer F, Herling AW, Lang HJ, et al. The cardiac K~+ channel KCNQ1 is essential for gastric acid secretion. Gastroenterology, 2001,120:1363-1371.
    [106] Grahammer F, Warth R, Barhanin J, et al. The small conductance K~+ channel, KCNQ1: expression, function, and subunit composition in murine trachea. J Biol Chem,2001, 276:42268-42275.
    [107] Heitzmann D, Grahammer F, von Hahn T, et al. Heteromeric KCNE2/KCNQ1 potassium channels in the luminal membrane of gastric parietal cells. J Physiol, 2004, 561: 547-557.
    [108] Kottgen M,Hoefer A, Kim SJ, et al. Carbachol activates a K~+ channel of very small conductance in the basolateral membrane of rat pancreatic acinar cells.Pfl(u|¨)gers Arch,1999, 438: 597-603.
    [109] Sunose H, Liu J, and Marcus DC. cAMP increases K~+ secretion via activation of apical IsK/KvLQT1 channels in strial marginal cells. Hear Res,1997,114:107-116.
    [110] Demolombe S, Franco D,de Boer P, et al.Differential expression of KvLQT1 and its regulator IsK in mouse epithelia. Am J Physiol Cell Physiol,2001, 280:C359-C372.
    [111] Horikawa N, Suzuki T, Uchiumi T, et al. Cyclic AMPdependent Cl~- secretion induced by thromboxane A2 in isolated human colon. J Physiol, 2005, 562:885-897.
    [112] Kunzelmann K, Hubner M, Schreiber R, et al. Cloning and function of the rat colonic epithelial K~+ channel KVLQT1. J Membr Biol, 2001, 179:155-164.
    [113] Cuthbert AW and MacVinish LJ. Mechanisms of anion secretion in Calu-3 human airway epithelial cells by 7,8-benzoquinoline. Br J Pharmacol, 2003,140:81-90.
    [114] Leroy C, Dagenais A, Berthiaume Y, et al. Molecular identity and function in transepithelial transport of K_(ATP) channels in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol, 2004, 286: L1027-L1037.
    [115] Lock H and Valverde MA. Contribution of the IsK (MinK) potassium channel subunit to regulatory volume decrease in murine tracheal epithelial cells. J Biol Chem, 2000, 275: 34849-34852.
    [116] Mall M, Wissner A, Schreiber R, et al. Role of K(V)LQT1 in cyclic adenosine monophosphate-mediated Cl~(-) secretion in human airway epithelia. Am J Respir Cell Mol Biol, 2000, 23: 283-289.
    [117] Kim SJ and Greger R. Voltage-dependent, slowly activating K~+ current (I(Ks)) and its augmentation by carbachol in rat pancreatic acini. Pflugers Arch, 1999, 438:604-611.
    [118] Lee JE, Park HS, Uhm DY, et al. Effects of KCNQ1 channel blocker, 293B,on the acetylcholine-induced Cl~- secretion of rat pancreatic acini. Pancreas,2004, 28: 435-442.
    [119] Warth R, Garcia AM, Kim JK, et al. The role of KCNQ1/KCNE1 K~(+)
    channels in intestine and pancreas: lessons from the KCNE1 knockout mouse. Pfl(u|¨)gers Arch, 2002, 443: 822-828.
    [120] Vallon V, Grahammer F, Richter K, et al. Role of KCNE1-dependent K~+ fluxes in mouse proximal tubule. J Am Soc Nephrol, 2001, 12: 2003-2011.
    [121] Lee MP, DeBaun MR., Mitsuya K, et al. Loss of imprinting of a paternally expressed transcript, with antisense orientation to KvLQT1,occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. Proc Natl Acad Sci USA, 1999, 96:5203-5208.
    [122] Smilinich NJ, Day CD, Fitzpatrick GV, et al. A maternally methylated CpG island in KvLQTI is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome. Proc Natl Acad Sci USA, 1999,96:8064-8069.
    [123] Potet F, Scott JD, Mohammad-Panah R, et al. AKAP proteins anchor cAMPdependent protein kinase to KvLQT1/lsK channel complex. Am J Physiol Heart Circ Physiol, 2001, 280:H2038-H2045.
    [124] Marx SO, Kurokawa J, Reiken S, et al. Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science, 2002, 295: 496-499.
    [125] Kurokawa J, Motoike HK, Rao J, et al. Regulatory actions of the A-kinase anchoring protein Yotiao on a heart potassium channel downstream of PKA phosphorylation. Proc Natl Acad Sci USA, 2004,101:16374-16378.
    [126] Loussouam G, Park KH, Bellocq C, et al. Phosphatidylinositol-4,5-bisphosphate,PIP2, controls KCNQ1/KCNE1 voltage-gated potassium channels: a functional homology between voltage-gated and inward rectifier K+ channels. EMBO J, 2003, 22: 5412-5421.
    [127] Grunnet M, Jespersen T, MacAulay N, et al. KCNQ1 channels sense small
    changes in cell volume. J Physiol, 2003, 549: 419-427.
    [128] Peretz A, Schottelndreier H, Aharon-Shamgar LB, et al.Modulation of homomeric and heteromeric KCNQ1 channels by external acidification.J Physiol, 2002, 545: 751-766.
    [129] Unsold B, Kerst G, Brousos H, et al. KCNE1 reverses the response of the human K~+ channel KCNQ1 to cytosolic pH changes and alters its pharmacology and sensitivity to temperature. Pflugers Arch, 2000, 441:368-378.
    [130] Wollnik B, Schroeder BC, Kubisch C, et al. Pathophysiological mechanisms of dominant and recessive KvLQTI K~+ channel mutations found in inherited cardiac arrhythmias. Hum Mol Genet, 1997, 6:1943-1949.
    [131] Chouabe C, Neyroud N, Guicheney P, et al. Properties of KvLQTI K~+ channel mutations in Romano-Ward and Jervell and Lange-Nielsen inherited cardiac arrhythmias. EMBO J, 1997,16:5472-5479.
    [132] Golden JB. Prioritizing the Human Genome: Knowledge Management for Drug Discovery. Curr. Opin. Drug. Discov. Devel,2003, 6(3): 310-316.
    [133] Hopkins AL and Groom CR. The Druggable Genome. Nature Review Drug Discov. 2002,1(9): 727-730.
    [134] Jentsch TJ. Neuronal KCNQ potassium channels: physiology and role in disease. NatRev Neurosci, 2000,1(1): 21-30.
    [135] Rennie KJ, Weng T, Correia MJ. Effects of KCNQ channel blockers on K~+ currents in vestibular hair cells. Am J Physiol Cell Physiol, 2001, 280(3):C473- C480.
    [136] Chen X, Yamakage M, Yamada Y, et al. Inhibitory effects of volatile anesthetics oncurrents produced on heterologous expression of KvLQT1 and minK in Xenopus oocytes. Vascul Pharmacol, 2002, 39(1-2):33-38.
    [137] Wang HS, Brown BS, McKinnon D, et al. Molecular basis for differential sensitivity of KCNQ and I_(Ks) channels to the cognitive enhancer XE991.Mol Pharmacol, 2000, 57 (6) : 1218-1223.
    [138] King RC. Hand book of Genetics. 1st Edition. New York: Plenum Press,1975.
    [139] Gurdon JB, Lane CD, Wood HR, et al.Use of Frog Eggs and Oocytes for the Study of Messenger RNA and Its Translation in Living Cells. Nature,1971,233:177.
    [140] Graham FL, Smiley J, Russell WC, et al. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol., 1977, 36(1):59-74.
    [141] Shaw G, Morse S, Ararat M, et al. Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells.FASEB J., 2002, 16 (8): 869-871.
    [142] Dautzenberg FM, Higelin J and Teichert U. Functional characterization of corticotropin-releasing factor type 1 receptor endogenously expressed in human embryonic kidney 293 cells. Eur. J. Pharmacol., 2000, 390 (1-2):51-59.
    [143] Meyer zu Heringdorf D, Lass H, Kuchar I,et al. Stimulation of intracellular sphingosine-1-phosphate production by G-protein-coupled sphingosine-1-phosphate receptors. Eur. J. Pharmacol., 2001, 414 (2-3):145-154.
    [144] Luo J, Busillo JM and Benovic JL. M3 muscarinic acetylcholine receptor-mediated signaling is regulated by distinct mechanisms.Mol Pharmacol. 2008, 74(2):338-347.
    [145] Zagranichnaya TK, Wu X and Villereal ML. Endogenous TRPC1,TRPC3,and TRPC7 proteins combine to form native store-operated channels in HEK-293 cells. J. Biol.Chem.,2005, 280 (33): 29559-29569.
    [146] Neher E. and Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature, 1976, 260(5554):799-802.
    [147] Kitamura K, Judkewitz B, Kano M, et al.Targeted whole-cell recordings in the mammalian brain in vivo. Neuron, 2003, 39(6): 911-918.
    [148] Hodgk AL, Huxley AF and Katz B. Measurement of current voltage relations in the membrane of the giant axon of Loligo. J. Physio I.,1952,116:424.
    [149] Attali B. Human congenital long QT syndrome: more than previously thought? Trends in Pharmacological Sciences, 2002, 23: 249-251.
    [150] Schwartz PJ, Priori SG, Bloise R, et al. Molecular diagnosis in a child with sudden infant death syndrome, Lancet, 2001, 358: 1342-1343.
    [151] Chen S, Zhang L, Bryant RM, et al. KCNQ1 mutations in patients with a family history of lethal cardiac arrhythmias and sudden death, Clin Genet.,2003, 63: 273-282.
    [152] Chouabe C, Neyroud N, Richard P, et al. Novel mutations in KvLQT1 that affect IKs activation through interactions with Isk.Cardiovasc Res, 2000, 45:971-980.
    [153] Splawski J, Shen KW, Timothy MH, et al. Spectrum of mutations in Iong-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2,Circulation, 2000, 102:1178-1185.
    [154] Bianchi L, Priori SG, Napolitano C, et al. Mechanisms of IKs suppression in LQT1 mutants, Am J Physiol Heart Circ Physiol, 2000, 279: H3003-H3011.
    [155] Gouas L, Bellocq C, Berthet M, et al. New KCNQ1 mutations leading to haploinsufficiency in a general population; Defective trafficking of a KvLQT1 mutant, Cardiovasc Res., 2004, 63: 60-68.
    [156] O'Kelly MH, Butler N, Zilberberg SA, et al. Forward transport. 14-3-3 binding overcomes retention in endoplasmic reticulum by dibasic signals, Cell, 2002, 111:577-588.
    [157] Scott DB, Blanpied TA, Swanson GT,et al.An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing, J Neurosci.,2001,21:3063-3072.
    [158] Xia XM,Ding JP, Zeng XH, et al. Rectification and Rapid Activation at Low Ca~(2+) of Ca~(2+)-Activated, Voltage-Dependent BK Currents: Consequences of Rapid Inactivation by a Novel b Subunit, The Journal of Neuroscience, 2000,20: 4890-4903.
    [159] Liu W, Yang J, Hu D, et al. KCNQ1 and KCNH2 mutations associated with long QT syndrome in a Chinese population, Hum Mutat., 2002, 20: 475-476.
    [160] Suh YH, Pelkey KA, Lavezzari G, et al. Multiple roles of phosphoinositide-specific phospholipase C isozymes,BMB Rep., 2008, 41:415-434.
    [161] Collawn JF, Stangel M, Kuhn LA, et al. Transferrin receptor internalization sequence YXRF implicates a tight turn as the structural recognition motif for endocytosis, Cell,1990, 63: 1061-1072.
    [162] Kawakami K, Takeshita F and Puri RK, Identification of distinct roles for a dileucine and a tyrosine internalization motif in the interleukin (IL)-13 binding component IL-13 receptor alpha 2 chain, Biol Chem., 2001, 276:25114-25120.
    [163] Kanki H, Kupershmidt S, Yang T, et al. A Structural Requirement for Processing the Cardiac K~+ Channel KCNQ1. The Journal of Biological Chemistry, 2004, 279: 33976-33983.
    [164] Rose GD, Geselowitz AR, Lesser GJ, et al. Hydrophobicity of amino acid residues in globular proteins, Science,1985, 229: 834-838.
    [165] Ellington J and Cherry M.Current Protocols in Molecular Biology, 2001,supplement 33: A.1C.2.
    [166] Wilson AJ, Quinn KV, Graves FM,et al. Abnormal KCNQ1 trafficking influences disease pathogenesis in hereditary long QT syndromes (LQT1),Cardiovasc Res., 2005, 67: 476-486.
    [167] Sweet RM and Eisenberg D. Correlation of sequence hydrophobicities measures similarity in three-dimensional protein structure, J Mol Biol.,1983,171:479-488.
    [168] Niu X, Qian X and Magleby KL, Linker-Gating Ring Complex as Passive Spring and Ca2+-Dependent Machine for a Voltage and Ca2+-Activated Potassium Channel, Neuron, 2004, 42: 745-756.
    [169] David A and Yost MD.Acute care for alcohol intoxication.112,Postgraduate Medicine Online. 2002.
    [170] Tomaselli GF, Beuckelmann DJ, Calkins HG,et al. Sudden cardiac death in heart failure. The role of abnormal repolarization, Circulation, 1994, 90:2534-2539.
    [171] Kass RS and Davies MP.The roles of ion channels in an inherited heart disease: molecular genetics of the long QT syndrome, Cardiovasc Res.,1996,32:443-454.
    [172] Roden DM, Lazzara R, Rosen M, et al. Multiple mechanisms in the Iong-QT syndrome. Current knowledge, gaps, and future directions. The SADS Foundation Task Force on LQTS, Circulation,1996, 94: 1996-2012.
    [173] Sesti F and Goldstein SA. Single-channel characteristics of wild-type IKs channels and channels formed with two minK mutants that cause long QT syndrome, J Gen Physiol., 1998, 112: 651-663.
    [174] Schmid SL. Clathrin-coated vesicle formation and protein sorting: an integrated process, Annu Rev Biochem.,1997, 66: 511-548.
    [175] Boggan Bill. Metabolism of Ethyl Alcohol in the Body. Chemases.com.Retrieved on 2007-09-29.
    [176] Del Re AM, Dopico AM and Woodward JJ. Effects of the abused inhalant toluene on ethanol-sensitive potassium channels expressed in oocytes. Brain Res, 2006, 1087(1):75-82.
    [177] Xu M, Chandler LJ and Woodward JJ. Ethanol inhibition of recombinant NMDA receptors is not altered by coexpression of CaMKII-alpha or CaMKII-beta. Alcohol, 2008, 42(5):425-32.
    [178] Liu J, Vaithianathan T, Manivannan K, et al.Ethanol modulates BKCa channels by acting as an adjuvant of calcium. MoI Pharmacol, 2008,74(3):628-640.
    [179] Horishita T, Harris RA. n-AIcohoIs inhibit voltage-gated Na~+ channels expressed in Xenopus oocytes. J Pharmacol Exp Ther, 2008,326(1):270-277.
    [180] Mu J, Carden WB, Kurukulasuriya NC, et al. Ethanol influences on native T-type calcium current in thalamic sleep circuitry. J Pharmacol Exp Ther,2003, 307(1):197-204.
    [181] Smith SS and Gong QH. Ethanol effects on GABA-gated current in a model of increased alpha4betadelta GABAA receptor expression depend on time course and preexposure to low concentrations of the drug. Alcohol, 2007,41(3):223-231.
    [182] Galili G, Kawata EE, Smith LD, et al. Role of the 3'-ploy (A) Sequence in Translational Regulation of mRNA in Xenopus Laevis Oocyte. J Biol Chem,1998, 263(12):5764-5770.
    [183] Barry J. Phillips and Peter Jenkinson. Is ethanol genotoxic? A review of the published data. Mutahenesis 2001 16(2):91-101
    [184] Bill Boggan. "Effects of Ethyl Alcohol on Organ Function". Chemases.com.Retrieved on 2007-09-29
    [185] Obe G, Jonas R and Schmidt S. Metabolism of ethanol in vitro produces a compound which induces sister-chromatid exchange in human peripheral lymphocytes in vitro: acetaldehyde not ethanol is mutagenic. Mutat.Res.1996, 174:47-51
    [186] Kurose I,Higuchi H, Kato S, et al. Ethanol-induced oxidative stress in the liver. Alcohol Clin. Exp. Res. 1996, 20:77A-85A;
    [187] Lieber CS, Baraona E, Leo MA, et al. Metabolism and metabolic effects of ethanol, including intemation with drugs, carcinogens and nutrition. Mutat.Res. 1987, 186:201-233.
    [188] Ishii A, Fukuma G, Uehara A, et al. A de novo KCNQ2 mutation detected in non-familial benign neonatal convulsions. Brain Dev. 2009 Jan;31(1):27-33.
    [189] Mencia A, Gonzalez-Nieto D, Modamio-H(?)ybj(?)r S,et al.A novel KCNQ4 pore-region mutation (p.G296S) causes deafness by impairing cell-surface channel expression. Hum Genet. 2008 Feb;123(1):41-53.
    [190] Uehara A, Nakamura Y, Shioya T, et al. Altered KCNQ3 potassium channel function caused by the W309R pore-helix mutation found in human epilepsy.J Membr Biol. 2008 Mar;222(2):55-63.
    [191] Bal M, Zhang J, Zaika O, et al. Homomeric and heteromeric assembly of KCNQ (Kv7) K~+ channels assayed by total internal reflection fluorescence/fluorescence resonance energy transfer and patch clamp analysis. J Biol Chem. 2008 Nov 7;283(45):30668-76

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700