用户名: 密码: 验证码:
PPARγ和PGC-1α协同调节Nrf2和γ-GCS在慢性阻塞性肺疾病中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】研究PPARγ、PGC-1α、Nrf2及γ-GCS-HS在慢性阻塞性肺疾病(COPD)大鼠及患者肺组织中的表达变化关系,探讨PPARγ及其激活剂罗格列酮(RGZ)、PGC-1α对Nrf2、γ-GCS-HS基因表达的影响及它们在COPD发病中的作用,为COPD的防治提供新的理论依据。
     【方法】分为动物实验和临床实验两部分。(1)动物实验:健康雄性SD大鼠36只,随机分为对照组、COPD模型组和RGZ干预组,每组12只。采用每日熏香烟和两次气管内滴入脂多糖(LPS)法制作大鼠COPD模型,同时利用PPARγ激活剂RGZ对其进行干预。测定大鼠肺功能并观察大鼠肺组织病理形态学改变;原位杂交和逆转录-聚合酶链反应(RT-PCR)检测大鼠肺组织中PPARγ、PGC-1α、Nrf2、γ-GCS–HS mRNA的表达。免疫组化和免疫印迹(western blot)分析大鼠肺组织中PPARγ、PGC-1α、Nrf2、γ-GCS-HS的蛋白表达水平。(2)临床实验:手术切除肺癌患者肺组织标本40例,所有患者术前均行肺功能检测,分为对照组、轻度COPD组、中度COPD组和重度COPD组,各COPD组患者均按照中华医学会2007年版COPD诊治指南进行严重程度分级,原位杂交分析各组患者肺组织中PPARγ、PGC-1α、Nrf2和γ-GCS-HS mRNA水平,免疫组织化学检测各组患者肺组织中PPARγ、PGC-1α、Nrf2和γ-GCS-HS蛋白的表达。
     【结果】
     1.动物实验结果:
     (1)大鼠肺功能指标(FEV0.3、FEV0.3/FVC%、PEF)在COPD组较对照组显著降低(P<0.01),RGZ干预组较对照组降低(P<0.01),较COPD组明显增高(P<0.01)。COPD组大鼠肺部病理改变符合COPD的形态学特征,而RGZ干预组大鼠肺组织病理改变较COPD模型组明显改善。
     (2)ROS含量在COPD组较对照组显著增高(P<0.01),在RGZ干预组较COPD组显著降低(P<0.01)。γ-GCS-HS活性在COPD组和RGZ干预组均较对照显著升高(均P<0.01),RGZ干预组较COPD组进一步增高(P<0.01)。
     (3)原位杂交结果显示PPARγ、PGC-1α、Nrf2和γ-GCS-HS mRNA在三组大鼠肺组织中的表达部位基本一致,主要见于肺泡、细支气管上皮细胞、支气管平滑肌细胞和部分血管平滑肌细胞。免疫组化结果显示PPARγ、PGC-1α、Nrf2、γ-GCS-HS蛋白主要表达于支气管、细支气管上皮细胞、肺泡上皮细胞,PPARγ、PGC-1α、Nrf2以胞核表达为主,γ-GCS-HS在胞浆胞核均有免疫着色。
     (4)大鼠肺组织中PPARγ、PGC-1α和γ-GCS-HS mRNA在COPD组和RGZ干预组均显著高于对照组(P<0.01),而在RGZ干预组明显高于COPD组(P<0.05);Nrf2 mRNA在COPD组和对照组均呈阳性表达,两组比较差异无统计学意义(P>0.05),而在RGZ干预组呈强阳性表达且较对照组和COPD组明显增高(P<0.01)。
     (5)大鼠肺组织中PPARγ、PGC-1α、Nrf2、γ-GCS-HS蛋白表达在COPD组和RGZ干预组均显著高于对照组(均P<0.01),而在RGZ干预组均较COPD组进一步增高(均P<0.05)。
     (6)SPSS13.0软件进行直线相关分析,在动物实验中PPARγ、PGC-1α蛋白表达与Nrf2蛋白及mRNA表达均呈正相关(均P<0.01),PGC-1α蛋白表达与ROS含量呈正相关(P<0.01),PPARγ、Nrf2蛋白表达与ROS含量无明显相关性(P>0.05)(Tab 8)。PPARγ、PGC-1α、Nrf2蛋白表达与γ-GCS-HS mRNA、蛋白表达、酶活性均呈正相关(均P<0.01)。
     2.临床实验结果
     (1)轻度COPD患者肺组织中PPARγ、PGC-1α和γ-GCS-HS mRNA呈强阳性表达,较对照组明显增高(均P<0.01),而在中度COPD和重度COPD患者肺组织中PPARγ、PGC-1α和γ-GCS-HS mRNA表达呈进行性下降,较对照组和轻度COPD组明显降低(均P<0.01)。Nrf2 mRNA在各组COPD患者和对照组的肺组织中均呈阳性表达,各组比较差异无统计学意义(P>0.05)。
     (2)PPARγ、PGC-1α、Nrf2和γ-GCS-HS蛋白在轻度COPD患者肺组织中呈强阳性表达,较对照组明显增高(均P<0.01),而在中度COPD和重度COPD患者肺组织中表达呈进行性下降,较对照组和轻度COPD组明显降低(均P<0.01)。
     (3)直线相关分析显示在临床实验中PPARγ、PGC-1α、Nrf2、γ-GCS-HS蛋白表达与FEV1(%)均呈正相关(均P<0.01),与FEV1/FVC(%)无明显相关性(P>0.05)。PPARγ、PGC-1α蛋白表达与Nrf2蛋白、γ-GCS-HS mRNA及蛋白表达均呈明显正相关(均P<0.01),而与Nrf2 mRNA表达无明显相关性(P>0.05)。
     【结论】
     1.在COPD早期阶段抗氧化酶γ-GCS可能代偿性上调以抵抗氧化应激,而随着COPD严重程度的加深γ-GCS逐渐失代偿呈进行性下调。
     2. PPARγ和PGC-1α通路活化可能减轻COPD氧化/抗氧化失衡,两者可能通过上调γ-GCS的酶活性和基因表达及减少ROS的含量而发挥抗氧化保护作用,参与COPD的进展过程,对COPD的防治具有重要意义。
     3.在COPD发病过程中,氧化应激可能主要诱导Nrf2的蛋白表达,而PPARγ和PGC-1α通路活化可能通过影响Nrf2 mRNA及蛋白表达水平而上调γ-GCS,从而增加GSH合成,对抗氧化应激。
【Objective】To evaluate the expression patterns and their relationship of PPARγ、PGC-1α、Nrf2 andγ-GCS-HS in lungs of rats and patients with COPD,to investigate effects of PPARγand its agonist RGZ、PGC-1αon gene expression of Nrf2 andγ-GCS-HS, and its role in the pathophysiological course of chronic obstructive pulmonary disease,and provide a new theoretical basis for the prevention and treatment of COPD
     【Methods】The study was composed of two parts: animal experiment and clinical trial. (1)Thirty six adult male Sprague- Dawley(SD) rats were randomly divided into control group、COPD model and RGZ-treated group with twelve rats in each group. The rat COPD model was established by intratracheal instillation of lipopolysaccharide twice and exposed to cigarette smoke daily. The lung function measurements were carried out , and the pathological changes were observed. mRNAs expression of PPARγ、PGC-1α、Nrf2、γ-GCS-HS in lung tissue of rats was measured by in site hybridization (ISH) and reverse transcription-polymerase chain reaction (RT-PCR) . Proteins expression of PPARγ、PGC-1α、Nrf2、γ-GCS-HS were observed by immunohistochemistry(IH) and western blot.(2) Clinical peripheral lung tissue samples were obtained from forty patients undergoing resection for lung cancer, and all patients were were measured lung function prior to they were operated.Those patients were divided into four groups: controls, Mild COPD group、Moderate COPD group、Severe COPD group. COPD classification based on the Chinese Medical Association established standards in 2007. mRNA expression of PPARγ、PGC-1α、Nrf2、γ-GCS-HS in clinical lung tissue was measured by in site hybridization (ISH) . Protein expression of PPARγ、PGC-1α、Nrf2、γ-GCS-HS in clinical lung tissue were observed by immunohistochemistry(IH).
     【Results】
     1. Animal experiments:
     (1)The results of rats pulmonary function showed: forced expiratory volume in first 0. 3 second(FEV0.3)、percentage of forced expiratory volume in first 0. 3 second to forced vital capacity (FEV0.3/FVC%) and peak expiratory flow (PEF) were all obviously decreased in COPD group compared with control group (P<0.01) and which were all significantly improved in RGZ-treated group compared with COPD model group (all P < 0.01).Lung pathological changes in COPD model group conformed morphological character of COPD,however, pathological changes of rats lung tissue in RGZ-treated group markedly reduced compared with COPD model group.
     (2)In COPD model group, ROS levels was markedly raised compared to controls(P<0.01), whereas in RGZ-treated group, ROS levels was remarkably reduced compared to COPD model group(P<0.01).γ-GCS-HS activity assay showed that, in COPD model group and RGZ-treated group,γ-GCS-HS activity was all observably increased compared to controls(all P<0.01), and which was further increased in RGZ-treated group compared to COPD model group(P<0.01).
     (3)In situ hybridization showed that the position of PPARγ、PGC-1α、Nrf2 andγ-GCS-HS mRNAs expression are basically consistent in the lung tissue of three group rats, which were mainly located in alveolar epithelial cells、bronchial epithelial cells、bronchial smooth muscle cells and part of the vascular smooth muscle cells. proteins expression of PPARγ、PGC-1α、Nrf2 was mainly found in the nucleus of alveolar epithelial cells and bronchial epithelial cells of rats in each group, while, staining ofγ-GCS-HS proteins was found not only in the nucleus but also in the cytoplasm of alveolar epithelial cells and bronchial epithelial cells of rats in each group
     (4)PPARγ、PGC-1αandγ-GCS-HS mRNAs in rat lung tissues were significantly higher in COPD model group than those in controls(P<0.01), and those were further elevated in RGZ-treated group than those in COPD model group(P<0.05). mRNA expression of Nrf2 were positive in COPD model group and control group,and there were no significant difference between the two groups(P>0.05),while mRNA expression of Nrf2 were strongly positive in RGZ-treated group,and there were significant differences compared with COPD model group and control group(P<0.01).
     (5)Proteins expression of PPARγ、PGC-1αandγ-GCS-HS in rat lung tissues were significantly higher in COPD model group and RGZ-treated group than those in controls(P<0.01), and those were manifestly increased in RGZ-treated group compared with COPD model group(P<0.05).
     (6)Linear correlation analysis showed that proteins expression of PPARγ、PGC-1αwere positively correlated with Nrf2 mRNA and protein(all P<0.01), proteins expression of PGC-1αwas positively correlated with ROS contents(P<0.01), and expression of PPARγ、Nrf2 were no significantly correlated with ROS contents(P>0.05). proteins expression of PPARγ、PGC-1α、Nrf2 were positively correlated withγ-GCS-HS activity、mRNA and protein (all P<0.01).
     2. Clinical experiments:
     (1)mRNAs expression of PPARγ、PGC-1α、γ-GCS-HS were strongly positive in lungs of patients with Mild COPD, and which were markedly increased compared with normal control subjects(all P<0.01), and showed a progressive decrease in lungs of patients with Moderate and Severe COPD,and were obviously decreased compared with normal control subjects and patients with Mild COPD(all P<0.01). mRNA expression of Nrf2 Showed weakly positive in lungs of each group patients with COPD and normal control subjects,and there are no significant differences between groups(P>0.05).
     (2)Proteins expression of PPARγ、PGC-1α、Nrf2、γ-GCS-HS were strongly positive in lungs of patients with Mild COPD, and which were markedly increased compared with normal control subjects(all P<0.01), and showed a progressive decrease in lungs of patients with Moderate and Severe COPD, and which were obviously decreased compared with normal control subjects and patients with Mild COPD(all P<0.01).
     (3)Linear correlation analysis showed proteins expression of PPARγ、PGC-1α、Nrf2、γ-GCS-HS were positively correlated with FEV1(%)(all P<0.01),were no significantly correlated with FEV1/FVC(%)(P>0.05). Proteins expression of PPARγ、PGC-1αwere positively correlated with Nrf2 protein、γ-GCS-HS mRNA and protein(all P<0.01), and were no significantly correlated with Nrf2 mRNA(P>0.05).
     【Conclusions】
     1. Antioxidant enzymeγ-GCS may be compensatory up-regulate to against oxidative stress in the early stage of COPD, but which maybe a progressive decompensation with increasing COPD severity.
     2. Activation of the PPARγand PGC-1αpathway may reduce the extent of COPD oxidant/antioxidant imbalance , and they both may protect against COPD progression by up-regulatingγ-GCS enzyme activity and gene expression as well as relieving ROS levels.
     3. In the pathogenesis of COPD, oxidative stess may mainly induce expression of Nrf2 protein,however,activation of the PPARγand PGC-1αpathway may up-regulatingγ-GCS to increase GSH synthesis against oxidative stress by influencing levels of Nrf2 mRNA and protein.
引文
[1]中华医学会呼吸病学分会慢性阻塞性肺疾病学组.慢性阻塞性肺疾病诊治指南(2007年修订版)[J].中华结核和呼吸杂志, 2007,30(1):8-17.
    [2] Yoshida T, Tuder R M. Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease[J]. Physiol Rev, 2007,87(3):1047-1082.
    [3] Mroz R M, Szulakowski P, Pierzchala W,et al. [Pathogenesis of chronic obstructive pulmonary disease. Cellular mechanisms (part I)][J]. Wiad Lek, 2006, 59(1-2):92-96.
    [4] Rangasamy T, Misra V, Zhen L,et al. Cigarette smoke-induced emphysema in A/J mice is associated with pulmonary oxidative stress, apoptosis of lung cells, and global alterations in gene expression[J]. Am J Physiol Lung Cell Mol Physiol, 2009,296(6):L888-900.
    [5] Domej W, Foldes-Papp Z, Flogel E,et al. Chronic obstructive pulmonary disease and oxidative stress[J]. Curr Pharm Biotechnol, 2006,7(2):117-123.
    [6] van der Toorn M, Smit-de Vries M P, Slebos D J,et al. Cigarette smoke irreversibly modifies glutathione in airway epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol, 2007,293(5):L1156-1162.
    [7] Rahman I, Li X Y, Donaldson K,et al. Glutathione homeostasis in alveolar epithelial cells in vitro and lung in vivo under oxidative stress[J]. Am J Physiol, 1995,269(3 Pt 1):L285-292.
    [8]林书典,周巧玲,戴爱国. GSH在COPD大鼠肺内合成机制和作用的研究[J].中国热带医学, 2007,7(7):1071-1072.
    [9] Hibi T, Nii H, Nakatsu T,et al. Crystal structure of gamma-glutamylcysteine synthetase: insights into the mechanism of catalysis by a key enzyme for glutathione homeostasis[J]. Proc Natl Acad Sci U S A, 2004,101(42):15052- 15057.
    [10] Huang C S, Chang L S, Anderson M E,et al. Catalytic and regulatory properties of the heavy subunit of rat kidney gamma-glutamylcysteine synthetase[J]. J Biol Chem, 1993,268(26):19675-19680.
    [11] Huang C S, Anderson M E, Meister A. Amino acid sequence and function of the light subunit of rat kidney gamma-glutamylcysteine synthetase[J]. J Biol Chem, 1993,268(27):20578-20583.
    [12] Ray S, Watkins D N, Misso N L,et al. Oxidant stress induces gamma- glutamylcysteine synthetase and glutathione synthesis in human bronchial epithelial NCI-H292 cells[J]. Clin Exp Allergy, 2002,32(4):571-577.
    [13] Rahman I, Smith C A, Antonicelli F,et al. Characterisation of gamma- glutamylcysteine synthetase-heavy subunit promoter: a critical role for AP-1[J]. FEBS Lett, 1998,427(1):129-133.
    [14] Janowiak B E, Hayward M A, Peterson F C,et al. Gamma-glutamylcysteine synthetase-glutathione synthetase: domain structure and identification of residues important in substrate and glutathione binding[J]. Biochemistry, 2006,45 (35):10461- 10473.
    [15]林书典,戴爱国,唐朝克.γ谷氨酰半胱氨酸合成酶在大鼠慢性阻塞性肺疾病中的表达[J].中华结核和呼吸杂志, 2004,27(5):348-349.
    [16]江刚.香烟烟雾对大鼠气道上皮细胞γ谷氨酰半胱氨酸合成酶表达的调控作用[J].中华结核和呼吸杂志, 2007,30(9):710-712.
    [17] Jeyapaul J, Jaiswal A K. Nrf2 and c-Jun regulation of antioxidant response element (ARE)-mediated expression and induction of gamma-glutamylcysteine synthetase heavy subunit gene[J]. Biochem Pharmacol, 2000,59(11):1433-1439.
    [18]陈林,戴爱国,胡瑞成.核因子相关因子2及其蛋白激酶与γ谷氨酰半胱氨酸合成酶在慢性阻塞性肺疾病大鼠肺组织的表达[J].中华结核和呼吸杂志, 2006,29(7):487-488.
    [19]江刚,戴爱国,胡瑞成.核因子相关因子2调节大鼠气道上皮细胞γ-谷氨酰半胱氨酸合成酶表达[J].中国生物化学与分子生物学报, 2010,26(2):150-156
    [20] Kliewer S A, Umesono K, Noonan D J,et al. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors[J]. Nature, 1992,358(6389):771-774.
    [21] Fuenzalida K, Quintanilla R, Ramos P,et al. Peroxisome proliferator-activated receptor gamma up-regulates the Bcl-2 anti-apoptotic protein in neurons andinduces mitochondrial stabilization and protection against oxidative stress and apoptosis[J]. J Biol Chem, 2007,282(51):37006-37015.
    [22] Ahn K O, Lim S W, Yang H J,et al. Induction of PPAR gamma mRNA and protein expression by rosiglitazone in chronic cyclosporine nephropathy in the rat[J]. Yonsei Med J, 2007,48(2):308-316.
    [23] Yu X, Shao X G, Sun H,et al. Activation of cerebral peroxisome proliferator- activated receptors gamma exerts neuroprotection by inhibiting oxidative stress following pilocarpine-induced status epilepticus[J]. Brain Res, 2008,1200(20): 146-158.
    [24] Li Y, Kovach A, Suino-Powell K,et al. Structural and biochemical basis for the binding selectivity of peroxisome proliferator-activated receptor gamma to PGC-1alpha[J]. J Biol Chem, 2008,283(27):19132-19139.
    [25] Valle I, Alvarez-Barrientos A, Arza E,et al. PGC-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells[J]. Cardiovasc Res, 2005,66(3):562-573.
    [26] St-Pierre J, Drori S, Uldry M,et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators[J]. Cell, 2006,127 (2):397-408.
    [27] Leone T C, Lehman J J, Finck B N,et al. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis[J]. PLoS Biol, 2005,3(4):e101.
    [28] Clark J, Simon D K. Transcribe to survive: transcriptional control of antioxidant defense programs for neuroprotection in Parkinson's disease[J]. Antioxid Redox Signal, 2009,11(3):509-528.
    [29] Garcia-Lujan R, Conde-Gallego E, Lopez-Rios F,et al. Analysis of the molecular expression profile of non small cell lung carcinoma associated to chronic obstructive pulmonary disease[J]. Histol Histopathol, 2009,24(4):417-423.
    [30] Wang I M, Stepaniants S, Boie Y,et al. Gene expression profiling in patients with chronic obstructive pulmonary disease and lung cancer[J]. Am J Respir Crit Care Med, 2008,177(4):402-411.
    [31]林书典,戴爱国,徐平.慢性阻塞性肺疾病患者γ谷氨酰半胱氨酸合成酶活性及表达的变化[J].中华结核和呼吸杂志, 2005,28(2):97-101.
    [32]宋一平,王德良.慢性阻塞性肺疾病大鼠模型的建立及药物干预的影响[J].中华内科杂志, 2000,39(8):556-557.
    [33]许建英,照鸣武,廖松林,等. SO2熏吸法制备大鼠慢性阻塞性肺疾病模型及其病理改变的研究[J].中华结核和呼吸杂志, 1999,22(7):425-546.
    [34] Seelig G F, Simondsen R P, Meister A. Reversible dissociation of gamma- glutamylcysteine synthetase into two subunits[J]. J Biol Chem, 1984,259 (15):9345-9347.
    [35] Cavalcante A G, de Bruin P F. The role of oxidative stress in COPD: current concepts and perspectives[J]. J Bras Pneumol, 2009,35(12):1227-1237.
    [36] Huang M F, Lin W L, Ma Y C. A study of reactive oxygen species in mainstream of cigarette[J]. Indoor Air, 2005,15(2):135-140.
    [37] Langen R C, Korn S H, Wouters E F. ROS in the local and systemic pathogenesis of COPD[J]. Free Radic Biol Med, 2003,35(3):226-235.
    [38] Haddad el B, McCluskie K, Birrell M A,et al. Differential effects of ebselen on neutrophil recruitment, chemokine, and inflammatory mediator expression in a rat model of lipopolysaccharide-induced pulmonary inflammation[J]. J Immunol, 2002,169(2):974-982.
    [39] Rahman I, MacNee W. Lung glutathione and oxidative stress: implications in cigarette smoke-induced airway disease[J]. Am J Physiol, 1999,277(6):L1067- 1088.
    [40] Cortes-Wanstreet M M, Giedzinski E, Limoli C L,et al. Overexpression of glutamate-cysteine ligase protects human COV434 granulosa tumour cells against oxidative and gamma-radiation-induced cell death[J]. Mutagenesis, 2009,24(3): 211-224.
    [41] Rangasamy T, Cho C Y, Thimmulappa R K,et al. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice[J]. J Clin Invest, 2004,114(9):1248-1259.
    [42]江刚. Nrf2调控γ-谷氨酰半胱氨酸合成酶表达与慢性阻塞性肺疾病[J].国际呼吸杂志, 2007,27(4):265-269.
    [43] Nguyen T, Yang C S, Pickett C B. The pathways and molecular mechanisms regulating Nrf2 activation in response to chemical stress[J]. Free Radic Biol Med, 2004,37(4):433-441.
    [44] Adair-Kirk T L, Atkinson J J, Griffin G L,et al. Distal airways in mice exposed to cigarette smoke: Nrf2-regulated genes are increased in Clara cells[J]. Am J Respir Cell Mol Biol, 2008,39(4):400-411.
    [45]高军丽. Bach1与Nrf2调控γ-谷氨酰半胱氨酸合成酶对大鼠慢性阻塞性肺疾病的作用[J].中国生物化学与分子生物学报, 2008,24(7):649-655.
    [46]贾宇锋,郭连英,沈洁,等. PPARγ激活剂rosiglitazone对大鼠慢性阻塞性肺疾患的防治作用[J].中国病理生理杂志, 2006,22(7):1435-1436、1439.
    [47] Okuno Y, Matsuda M, Miyata Y,et al. Human Catalase Gene is Regulated by Peroxisome Proliferator Activated Receptor-gamma through a Response Element Distinct from That of Mouse[J]. Endocr J, 2010,57(4):303-309.
    [48] Park E Y, Cho I J, Kim S G. Transactivation of the PPAR-responsive enhancer module in chemopreventive glutathione S-transferase gene by the peroxisome proliferator-activated receptor-gamma and retinoid X receptor heterodimer[J]. Cancer Res, 2004,64(10):3701-3713.
    [1] Van Eeden SF, Sin DD. Chronic obstructive pulmonary disease: a chronic systemic inflammatory disease[J]. Respiration, 2008,75(2):224-38.
    [2] Anghel SI, Bedu E, Vivier CD, et al.Adipose tissue integrity as a prerequisite for systemic energy balance: a critical role for peroxisome proliferator-activated receptor gamma. J Biol Chem, 2007,282(41):29946-57.
    [3] Mohapatra S K, Guri A J, Climent M, et al. Immunoregulatory actions of epithelial cell PPAR gamma at the colonic mucosa of mice with experimental inflammatory bowel disease[J]. PLoS One, 2010,5(4):e10215.
    [4] Liu Y, Shi J, Lu J,et al. Activation of peroxisome proliferator-activated receptor- gamma potentiates pro-inflammatory cytokine production, and adrenal and somatotropic changes of weaned pigs after Escherichia coli lipopolysaccharide challenge[J]. Innate Immun, 2009,15(3):169-178.
    [5] Okuno Y, Matsuda M, Miyata Y, et al. Human Catalase Gene is Regulated byPeroxisome Proliferator Activated Receptor-gamma through a Response Element Distinct from That of Mouse[J]. Endocr J, 2010,57(4):303-309.
    [6] Blanquicett C, Kang B Y, Ritzenthaler J D,et al. Oxidative stress modulates PPAR gamma in vascular endothelial cells[J]. Free Radic Biol Med, 2010,48(12): 618-1625.
    [7] Chopra B, Georgopoulos N T, Nicholl A,et al. Structurally diverse peroxisome proliferator-activated receptor agonists induce apoptosis in human uro-epithelial cells by a receptor-independent mechanism involving store-operated calcium channels[J]. Cell Prolif, 2009,42(5):688-700.
    [8] Hart CM, Roman J, Reddy R, et al.PPARgamma: a novel molecular target in lung disease[J].J Investig Med, 2008,56(2):515-7.
    [9] Marx N,Duez H,Fruchart JC,et a1.Peroxisome proliferators activated receptors and atherogenesis:regulators of gene expression in vascular cells[J]. Circ Res, 2004,94(9):1168-1178.
    [10] Standiford TJ, Keshamouni VG, Reddy RC. Peroxisome proliferators-activated as a Regulator of Lung inflammation and Repair[J]. proc Am Thorax, 2005, 3(2): 226-231.
    [11] Benayoun L, Letuve S, Druilhe A, et al. Regulation of peroxisome proliferator- activated receptorγexpression in human asthmatic airways: relationship with proliferation, apoptosis, and airway remodeling [J]. American Journal of Respiratory and Critical Care Medicine, 2001,164(8):1487-1494
    [12] Lee KS, Park SJ, Hwang PH, et al. PPAR-γmodulates allergic inflammation through up-regulation of PTEN[J]. The FASEB Journal, 2005,19(8):1033-1035
    [13] Kim SR, Lee KS, Park HS, et al. Involvement of IL-10 in peroxisome proliferator-activated receptorγ-mediated anti-inflammatory response in asthma [J]. Molecular Pharmacology, 2005,68(6):1568-1575
    [14] Ward JE, Tan X. Peroxisome Proliferator Activated Receptor Ligands as Regulators of Airway Inflammation and Remodelling in Chronic Lung Disease[J]. PPAR Res, 2007,1155(10):14983-14995
    [15] Vercauteren K, Gleyzer N, Scarpulla RC. PGC-1-related coactivator complexes with HCF-1 and NRF-2beta in mediating NRF-2(GABP)-dependent respiratory gene expression[J]. J Biol Chem, 2008,283(18):12102-12111.
    [16] Puigserver P, Bruce M. Spiegelman. Peroxisome Proliferator-Activated Receptor -Coactivator 1 (PGC-1): Transcriptional Coactivator and Metabolic Regulator[J]. Endocrine Reviews, 2003,24(1):78-90
    [17] Wu Z, Boss O. Targeting PGC-1 alpha to control energy homeostasis [J]. Expert Opin Ther Targets, 2007,11(10):1329-38
    [18] Lin J D. Minireview: the PGC-1 coactivator networks: chromatin-remodeling and mitochondrial energy metabolism[J]. Mol Endocrinol, 2009,23(1):2-10.
    [19] Fuenzalida K, Quintanilla R, Ramos P,et al. Peroxisome proliferator-activated receptor gamma up-regulates the Bcl-2 anti-apoptotic protein in neurons and induces mitochondrial stabilization and protection against oxidative stress and apoptosis[J]. J Biol Chem, 2007,282(51):37006-15.
    [20] Sung B, Park S, Yu BP, et al. Amelioration of age-related inflammation and oxidative stress by PPARgamma activator: suppression of NF-kappaB by 2,4-thiazolidinedione[J]. Exp Gerontol, 2006,41(6):590-9.
    [21] Tao L, Liu H R, Gao E,et al. Antioxidative, antinitrative, and vasculoprotective effects of a peroxisome proliferator-activated receptor-gamma agonist in hypercholesterolemia[J]. Circulation, 2003,108(22):2805-2811.
    [22] Yousefipour Z, Oyekan A, Newaz M. Interaction of oxidative stress, nitric oxide and peroxisome proliferator activated receptor gamma in acute renal failure[J]. Pharmacol Ther, 2010,125(3):436-445.
    [23]李洁,戴爱国,胡瑞成,等. PPARγ影响γ-谷氨酰半胱氨酸合成酶活性及表达在大鼠慢性阻塞性肺疾病中的作用[J].中国病理生理杂志,2010,26(2): 302-308.
    [24] Wang L S, Huang Y W, Liu S,et al. Conjugated linoleic acid induces apoptosis through estrogen receptor alpha in human breast tissue[J]. BMC Cancer, 2008,24 (8):208.
    [25] Zhang H J, Tian Y D, Guo Y M,et al. Dietary conjugated linoleic acid improves antioxidant capacity in broiler chicks[J]. Br Poult Sci, 2008,49(2):213-221.
    [26] Bassaganya R J, Reynolds K, Martino C S,et al. Activation of PPAR gamma and delta by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease[J]. Gastroenterology, 2004,127(3): 777-791.
    [27] Bergamo P, Luongo D, Maurano F, et al. Conjugated linoleic acid enhancesglutathione synthesis and attenuates pathological signs in MRL/MpJ-Fas(lpr) mice [J]. J Lipid Res, 2006,47(11):2382-91.
    [28] Stachowska E, Ba?kiewicz-Masiuk M, Dziedziejko V,et al. Conjugated linoleic acid increases intracellular ROS synthesis and oxygenation of arachidonic acid in macrophages[J]. Nutrition, 2008,24(2):187-99.
    [29] Kim HK, Kim SR, Ahn JY, et al. Dietary conjugated linoleic acid reduces lipid peroxidation by increasing oxidative stability in rats [J]. J Nutr Sci Vitaminol, 2005,51(1):8-15
    [30] Lim SY, Jang JH, Na HK,et al. 15-Deoxy-Delta12,14-prostaglandin J(2) protects against nitrosative PC12 cell death through up-regulation of intracellular glutathione synthesis. J Biol Chem, 2004,279(44):46263-70.
    [31] Levonen AL, Dickinson DA, Moellering DR, et al. Biphasic Effects of 15- Deoxy-12,14-Prostaglandin J2 on Glutathione Induction and Apoptosis in Human Endothelial Cells[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21(2):1846
    [32] Straus DS, Pascual G, Li M, et al. 15-deoxyΔ12, 14- prostaglandin J2 inhibits multiple steps in the NF-κB signaling pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000,97(9):4844-4849. [ 33 ] Kim EH, Surh YJ. 15-deoxy-Delta12, 14-prostaglandin J2 as a potential endogenous regulator of redox-sensitive transcription factors[J]. Biochem Pharmacol, 2006,72(11):1516-28.
    [34] Yu X, Shao XG, Sun H, et al. Activation of cerebral peroxisome proliferator- activated receptors gamma exerts neuroprotection by inhibiting oxidative stress following pilocarpine-induced status epilepticus[J]. Brain Res, 2008,1200C:146- 58.
    [35]杜洋,刘栩晗,郭莲英,等.过氧化物酶体增生物激活的受体γ活化对慢性阻塞性肺疾病大鼠肺中性粒细胞趋化因子表达的影响[J].中华结核和呼吸杂志, 2005,28(1):274-275.
    [36] Ceolotto G, Gallo A, Papparella I, et al. Rosiglitazone reduces glucose-induced oxidative stress mediated by NAD(P)H oxidase via AMPK-dependent mechanism[J]. Arterioscler Thromb Vasc Biol, 2007,27(12):2627-2633.
    [37] Hwang J , Kleinhenz DJ , Rupnow HL , et al. The PPARgamma ligand,rosiglitazone, reduces vascular oxidative stress and NADPH oxidase expression in diabetic mice[J]. Vascul Pharmacol, 2007,46(6):456-62.
    [38] Caito S, Yang SR, Kode A, et al. Rosiglitazone and 15 -deoxy- Delta 12,14 -prostaglandin J2, PPARgamma agonists, differentially regulate cigarette smoke-mediated pro-inflammatory cytokine release in monocytes/ macrophages [J]. Antioxid Redox Signal, 2008,10(2):253-60.
    [39] Marwick JA, Kirkham PA, Stevenson CS, et al. Cigarette smoke alters chromatin remodeling and induces proinflammatory genes in rat lungs[J]. Am J Respir Cell Mol Biol, 2004,31(6): 633-642.
    [40] Ito K, Hanazawa T, Tomita K, et al. Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression: role of tyrosine nitration[J]. Biochem Biophys Res Commun, 2004,315(1):240-245.
    [41] Arsenijevic, D., Onuma, H., Pecqueur, C., et al. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production.Nat[J]. Genet, 2000,26(4),435-439.
    [42] Echtay, K.S., Roussel, D., St-Pierre, J., et al. Superoxide activates mitochondrial uncoupling proteins[J]. Nature, 2002,415(8):96-99.
    [43] St-Pierre J, Drori S, Uldry M, et al.Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators[J]. Cell, 2006,127 (2):397-408
    [44] Teresa C L, John J L, Brian N F, et al. PGC-1αDeficiency Causes Multi-System Energy Metabolic Derangements: Muscle Dysfunction, Abnormal Weight Control and Hepatic Steatosis[J]. PLoS Biol, 2005,3(4):e101.
    [45] Marmolino D, Manto M, Acquaviva F,et al. PGC-1alpha down-regulation affects the antioxidant response in Friedreich's ataxia[J]. PLoS One, 2010,5(4):e10025.
    [46] Adhihetty P J, Uguccioni G, Leick L, et al. The role of PGC-1alpha on mitochondrial function and apoptotic susceptibility in muscle[J]. Am J Physiol Cell Physiol. 2009,297(1):C217-225.
    [47] Uldry M, Yang W, St-Pierre J, et al. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation[J]. Cell Metab, 2006,3(1):333-341.
    [48] Miwa S, Brand MD. Mitochondrial matrix reactive oxygen species production isvery sensitive to mild uncoupling[J]. Biochem Soc Trans, 2003,31(6):1300-1.
    [49] Irrcher I, Ljubicic V, Hood D A. Interactions between ROS and AMP kinase activity in the regulation of PGC-1alpha transcription in skeletal muscle cells[J]. Am J Physiol Cell Physiol, 2009,296(1):C116-123.
    [50] Zhong N, Xu J. Synergistic activation of the human MnSOD promoter by DJ-1 and PGC-1alpha: regulation by SUMOylation and oxidation[J]. Hum Mol Genet, 2008,17(21):3357-3367.
    [51] Ali F, Ali N S, Bauer A,et al. PPARdelta and PGC1alpha act cooperatively to induce haem oxygenase-1 and enhance vascular endothelial cell resistance to stress[J]. Cardiovasc Res, 2010,85(4):701-710.
    [52]李洁,戴爱国,王梅芳,等. PGC-1a与Nrf2协同调控γ-谷氨酰半胱氨酸合酶对大鼠慢性阻塞性肺疾病的作用[J].中国呼吸与危重监护杂志, 2009, 8(6):528-533
    [53] Olmos Y, Valle I, Borniquel S, et al. Mutual dependence of Foxo3a and PGC-1 alpha in the induction of oxidative stress genes[J]. J Biol Chem, 2009,284 (21):14476-14484.
    [54] Clark J, Simon D K. Transcribe to survive: transcriptional control of antioxidant defense programs for neuroprotection in Parkinson's disease[J]. Antioxid Redox Signal, 2009,11(3):509-528.
    [55] Park SJ, Lee YC. Peroxisome proliferator-activated receptor gamma as a novel therapeutic target in asthma[J]. J Asthma, 2008,45(1):1-8.
    [56] Sime PJ. The antifibrogenic potential of PPARgamma ligands in pulmonary fibrosis[J]. J Investig Med, 2008,56(2):534-538
    [57] Hart CM. The Role of PPARgamma in pulmonary vascular disease[J]. J Investig Med, 2008,56(2):518-521.
    [58] Remels AH, Schrauwen P, Broekhuizen R, et al. Peroxisome proliferator- activated receptor expression is reduced in skeletal muscle in COPD[J]. Eur Respir J, 2007,30(2):245-252.
    [59] Remels AH, Gosker HR, Schrauwen P, et al. Peroxisome proliferator-activated receptors: a therapeutic target in COPD[J]. Eur Respir J, 2008,31(3):502-508.
    [60]贾宇锋,郭连英,沈洁,等. PPARγ激活剂rosiglitazone对大鼠慢性阻塞性肺疾患的防治作用[J].中国病理生理杂志, 2006, 22 (7):1435-1436、1439

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700