用户名: 密码: 验证码:
溶剂热法合成新型光催化剂及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体光催化是一门集表面化学、材料学、光学、电化学、催化化学和环境化学于一体的综合性学科,其特征是半导体光催化剂通过吸收光能在导带和价带分别产生具有极强还原能力的光生电子和氧化能力的光生空穴,在催化剂表面发生直接或间接的还原或氧化反应。在众多的半导体光催化剂中TiO2以其无毒、化学稳定性好、催化活性高、廉价易得及可直接利用太阳光等优点受到人们的亲睐,但是较宽的禁带和较低的量子效率限制了其发展。然而研究表明,二氧化钛的光催化活性除取决于比表面积、晶相、结晶度和形貌结构外,还取决于其暴露的晶面。本实验室已从事多年的光催化剂设计和开发工作,在研究催化剂结构和暴露面与活性的内在联系方面积累了丰富的经验。针对现在光催化领域存在的实际问题和本实验室的实际情况,我们从催化剂的晶面和形貌方面入手,通过对合成条件的优化,合成了具有高能面暴露的特殊形貌结构的二氧化钛光催化剂,并研究了暴露面和结构对活性的影响,为实用性光催化技术积累了一定的经验。本论文
     主要开展了以下四方面的工作:
     1、醇热法合成高效光催化剂Bi2WO6及其光催化性能研究
     采用溶剂热方法制备了均匀球形结构的Bi2WO6可见光催化剂且具有较大比表面积可达5.0 m2/g,是固相法合成样品的10倍左右。并将其应用于含有RhB的染料废水降解实验中;同时与固相法合成的Bi2WO6光催化剂做了相应的对比。结果表明,通过溶剂热合成的Bi2WO6光催化剂具有较高的光催化活性。
     2、水热法合成{001}面暴露结构可控的二氧化钛微米球
     通过水热法以TiF4为前驱体,以蒸馏水为溶剂,通过调变陈化温度和陈化时间合成了结构可控的{001}高能面暴露的二氧化钛微米球。并采用FESEM、XRD、TEM等表征方法证明了微米球从实心到空心的结构可控性,同时还证实了微米球的外表面为{001}高能面。同时该光催化剂在甲苯的光催化选择性氧化中显示了很好的光催化活性,其活性是商业化二氧化钛P25的3倍左右。
     3、醇热法合成{001}面高暴露率的单晶微米片层状二氧化钛
     借助醇热法以TiF4为前驱体,以苯甲醇为溶剂,通过调变陈化温度和陈化时间合成了{001}高能面暴露的微米片层状二氧化钛。BET测试表明其比表面积可达16 m2/g,是现在已报道单晶氧化钛的2-3倍。采用XRD、FESEM、TEM等测试手段,对光催化剂的形貌、晶相及暴露面做了详细的证明,并计算了{001}高能面暴露率高达95 %。同时以甲苯的光催化选择性氧化为探针反应研究了其光催化活性。
     4、尺寸及{001}面暴露率可控的单晶二氧化钛的合成
     利用溶剂热,以TiF4为前驱物,苯甲醇、乙醇、异丙醇、正丁醇和叔丁醇为溶剂,通过调节不同的醇试剂包括醇试剂的种类、用量以及合成条件的优化制备了尺寸及{001}高能面暴露率可调的单晶二氧化钛。采用TEM、FESEM、XRD和XPS等测试手段,对产物形貌和组成进行详细的分析和表征并计算了{001}高能面的暴露率。通过甲苯的光催化选择性氧化研究了其光催化活性与单晶氧化钛粒径尺寸和{001}高能面暴露率的关系。
Semiconductor photocatalysis is a comprehensive discipline which combines surface chemistry,material science,optics,electrochemistry, catalysis chemistry and environmental chemistry. The semiconductor materials can absorb the optical energy and produce the photo-induced electrons and holes which have strong reducing and oxidizability power as well, thus the direct and indirect reducing and oxidation reaction can be occurred at the surface of the catalyst. Among many semiconductor photocatalysts, TiO2 owing to its cheapness, nontoxicity, structural stability,and directly using solar energy is mostly frequently employed. However, the broad band gap and low quantum efficiency confine the development of TiO2 photocatalysts. Recently, it has been shown that the photocatalytic activity of TiO2 not only depends on the surface area,crystallinity,and morphology,but also depends on the exposed crystal faces. Our group have engaged in the research areas such as designing and development of photocatalyst for many years and thus getten much experience about the interaction of the photocatalyst’s structure ,exposed crystal faces and their activities. Based on the quenstions of the photocatalytic area and the experience of our group, my works focus on the synthesis of photocatalysts with various morphologies and exposed faces through optimizing the synthesized conditions. The effect of morphology and exposed faces property to activity was explored in detail. The detail research work are listed as following:
     1.Alcoholthermal synthesis of highly active Bi2WO6 photocatalyst and photocatalytic activity
     Highly active Bi2WO6 visible photocatalyst with uniform sphere and high surface area was synthesized by alcoholthermal synthesis.The surface area of the sample was ten times more than the sample synthesized by solid state reaction.At the same time, the sample displayed high photocatalytic activity by the RhB degradation. 2.Hydrothermal synthesis of TiO2 microspheres with controllable structure and exposed {001} facets
     TiO2 microspheres with controllable structure and exposed {001} facets was synthesized by hydrothermal and using TiF4 and H2O. Based on the characterizations including XRD,FESEM and TEM,the external surface of the titania hollow microspheres was {001} facets.The titania hollow microspheres with exposed {001} facets display higher photocatalytic activity than P25 in selective oxidation of toluene. 3.Alcoholthermal synthesis of laminated microcrystal TiO2 with highly exposed {001} facets
     Laminated microcrystal TiO2 with highly exposed {001} facets was synthesized by alcoholthermal synthesis.The surface area of the single-crystal TiO2 was higher than the reported literatures. Based on the characterizations including XRD,FESEM and TEM,the exposed ratio of the {001} facets as high as 95% was the highest of the reported literatures.The single-crystal TiO2 with exposed {001} facets display higher photocatalytic activity than P25 in selective oxidation of toluene.
     4.Alcoholthermal synthesis of single-crystal TiO2 with controllable structure and {001} exposed ratio
     Single-crystal TiO2 with controllable structure and {001} exposed ratio was synthesized through TiF4 between benzal alcohol, alcohol, isopropanol, n-butyl alcohol and tert-butyl alcohol by alcoholthermal synthesis. Based on the characterizations including XRD, FESEM, TEM and XPS,we analyze the morphology, structure and {001} facets exposed ratio of various photocatalysts.The photocatalytic activity of various photocatalysts was tested by selective oxidation of toluene.
引文
1. A L Linsebigler, G Lu, T Y John, Chemical Reviews, 1995, 95, 735.
    2. O B Regan, M Gratzel, Nature, 1991, 353, 737.
    3. A Fujishima, K Honda, Nature, 1972, 238, 37.
    4. K Maeda, K Teramura, D Lu, T Takata, N Saito, Y Inoue, K Domen, Nature, 2006, 440, 295.
    5. J H Cary, J Lawrence, H M Tosine, Bulletin of Environmental Contamination and Toxicology, 1976, 16, 697.
    6. D F Ollis, E Pelizzetti, N Serpone, Environmental Science and Technology, 1991, 25, 1522.
    7. N J Peill, M R Hoffmann, Environmental Science and Technology, 1996, 30, 2806.
    8. S F Chen, M Y Zhao, Y W Tao, Microchemical Journal, 1996, 54, 54.
    9. C K Gralzel, M Jirousek, M Gralzel, Journal of Molecular Catalysis, 1990, 60, 375.
    10. K Vinodgopal, P V Kamat, Environmental Science and Technology, 1995, 29, 841.
    11. H X Li, Z F Bian, J Zhu, D Q Zhang, G S Li, Y N Huo, H Li, Y F Lu, Journal of the American Chemical Society,2007,129,8406.
    12. K Tennakone, U S Ketipearachchi, Applied Catalysis B, 1995, 5, 343.
    13. K Tennakone, Journal of Photochemistry and Photobiology A, 1993, 71, 199.
    14. J C Sjogren, R A Sierka, Applied and Environmental Microbiology, 1994, 60, 344.
    15. T Matsunaga, M Okochi, Environmental Science and Technology, 1995, 29, 501.
    16. C Wei, W Y Lin, Z Zainal, Environmental Science and Technology, 1994, 28, 934.
    17. R Cai, K Hashimoto, Y Kubota, Chemistry Letters, 1992, 21, 427.
    18. P L Yue, F Khan, L Rizzuti, Chemical Engineering Science, 1983, 38, 1893.
    19. R Wang, K Hashimoto, A Fujishima, M Chikuni, E Kojima, A Kitamura, M Shimohigoshi, T Watanabe, Nature, 1997, 388, 431.
    20. M G Kang, H Han, Journal of Photochemistry and Photobiology A, 1999, 125, 119.
    21.李芳柏,古国榜,李新军等,物理化学学报, 2000, 16, 997.
    22.陈慧,金星龙,朱琨等,中国环境科学, 2000, 20, 561.
    23. M S Jeon, W S Yoon, et al., Applied Surface Science, 2000, 165, 209.
    24. Y Sakata, T Yamamoto, H Gunji, et al., Chemistry Letters, 1998, 131.
    25.张峰,李庆霖,杨建军等,催化学报, 1995, 20, 329.
    26. H Yamashita, M Harada, J Misaka, et al., Journal of Photochemistry and Photobiology, 2002, 148, 257.
    27. O A IleperumaK, K Tennakone, W D D P Dissanayake, Applied Catalysis, 1990,
    62 (1), L1-L5.
    28. S Sato, Chemical Physics Letters, 1986, 123, 126.
    29. R Asahi, T Morikawa, T Ohwaki, K Aoki, Y Taga, Science, 2001, 293, 269.
    30. U M K Shahed, A - Mofareh, B L J William, Science, 2002, 297, 2243.
    31.吴越,催化化学. 1998:北京:科学出版社. 1346.
    32. J Yin, Z G Zou, J H Ye, The Journal of Physical Chemistry B, 2003, 107, 61.
    33. K Ikeda, K Hashimoto, A Fujishima, Journal of Electroanalytical Chemistry, 1997, 437, 241.
    34. H Maeda, K Ikeda, K Hashimoto, K Ajito, M Morita, A Fujishima, The Journal of Physical Chemistry B, 1999, 103, 3213.
    35. J F Zhi, H B Wang, A Fujishima, Industrial and Engineering Chemistry Research, 2002, 41, 726.
    36. Y Ohko, D A Tryk, K Hashimoto, A Fujishima, The Journal of Physical Chemistry B, 1998, 102, 2699.
    37. D F Wang, Z G Zou, J H Ye, Chemical Physics Letters, 2003, 373, 191.
    38. Z G Zou, J H Ye, K Sayama, E, Nature, 2001, 414, 625.
    39. J Yin, Z G Zou, J H Ye, The Journal of Physical Chemistry B, 2003, 107, 4936.
    40.沈杭燕,唐新硕,管敏远,齐卫军,分子催化, 1999, 13, 435.
    41.戴清,路春娥,袁春伟等,催化学报, 1999, 20, 313.
    42. J Li, C C Chen, J Orthman, E, Applied Catalysis B, 2002, 37, 331.
    43. P D Yang, D Y Zhao, D I Margolese, B F Chmelka, G D Stucky, Nature, 1998, 396,152.
    44. C J Brinker, Y F Lu, A Sellinger, H Y Fan, Advanced Materials, 1999, 11, 579.
    45. H X Li, J Zhu, G S Li, Y Wan, Chemistry Letters, 2004, 33, 574.
    46. H X Li, J X Li, Y N Huo, The Journal of Physical Chemistry B, 2006, 110 , 1559.
    47. H X Li, G S Li, J Zhu, Y Wan, Journal of Molecular Catalysis A, 2005, 226 ,93.
    48. D M Antonelli, J Y Ying., Angewandte Chemie International Edition, 1995, 34 ,2014.
    49. W U Huynh, J J Dittmer, A P Alivisatos, Science, 2002, 295, 2425.
    50. J Retuert, R Quijada, V Arias., Chemistry of Materials,1998,10, 3923.
    51. Z Miao, D S Xu, J H Ouyang, G L Guo, X. S. Zhao, Y Q Tang., Nano Letters, 2002, 2 , 717.
    52. H G Yang, H C Zeng., Angewandte Chemie International Edition, 2004, 43 , 5930.
    53. J C Yu, J G Yu, J C Zhao., Applied Catalysis B, 2002, 36, 31.
    54. C W Guo, Y Cao, S H Xie, W L Dai, K N Fan., Chemical Communications, 2003, 700.
    55. B Liu, H C Zeng., The Journal of Physical Chemistry B, 2004, 108, 5867.
    56. B L Cushing, V L Kolesnichenko, C J O’Connor., Chemical Reviews, 2004, 104, 3893.
    57. B M Wen, C Y Liu, Y Liu., New Journal of Chemistry, 2005, 29 ,969.
    58. A R Armstrong, G Armstrong, J Canales, P G Bruce., Advanced Materials, 2005, 17,862.
    59. D V Bavykin, J M Friedrich, F C Walsh., Advanced Materials, 2006, 18, 2807.
    60. A R Armstrong, G Armstrong, J Canales, P G Bruce., Angewandte Chemie-International Edition, 2004, 43, 2286.
    61. F Q Sun, J C Yu, X C Wang., Chemistry of Materials, 2006, 18, 3774.
    62. S Eiden-Assmann, J Widoniak, G Maret., Chemistry of Materials, 2004, 16, 6.
    63. D T Mitchell, S B Lee, L Trofin, N C Li, C R Martin., Journal of the American Chemical Society, 2002, 124, 11864.
    64. S L Xiong, B J Xi, C M Wang, D C Xu, Y T Qian., Advanced Functional Materials, 2007, 17, 2728.
    65. J H Jung, H Kobayashi, K J C Bommel, S Shinkai, T Shimizu., Chemistry of Materials, 2002, 14 ,1445.
    66. C S Kim, B K Moon, J H Park, B C Choi, H J Seo., Journal of Crystal Growth, 2003, 257, 309.
    67. N Pinna, M Niederberger., Angewandte Chemie International Edition, 2008, 47, 5292.
    68. J Y Kim, I Chung, J H Choy, G S Park., Chemistry of Materials, 2001, 13, 2759.
    69. C Zhang, Y Zhu., Chemistry of Materials, 2005, 17, 3537.
    70. M Hamada, H Tabata , T Kawai., Thin Solid Films, 1997, 306, 6.
    71. K Ishikawa, T Watanabe, H,Funakubo., Thin Solid Films., 2001,392, 128.
    72. A Kudo, S Hijii., Chemical Letters, 1999,10, 1103.
    73. J W Tang, Z G Zou, J H Ye., Catalysis Letters, 2004, 92, 53.
    74. J G Yu, J F Xiong, B Cheng, Y Yu, J B Wang., Journal of Solid State Chemistry, 2005, 178, 1968.
    75. Y Y Li, J P Liu, X T Huang, G Y Li., Crystal Growth & Design, 2007, 7, 1350.
    76. L H Zhang, W Z Wang, Z G Chen, L Zhou, H L Xu ,W Zhu., Journal of Materials Chemistry, 2007, 17,2526.
    77. H B Fu, L W Zhang, W Q Yao, Y F Zhu., Applied catalysis B, 2006, 66, 100.
    78. H B Fu, C S Pan, W Q Yao, Y F Zhu., The Journal of Physical Chemistry B, 2005, 109, 22432.
    79. S C Zhang, C Zhang, Y Man, Y F Zhu., Journal of Solid State Chemistry, 2006, 179, 62.
    80. L S Zhang, W Z Wang, L Zhou, H L Xu., Small, 2007, 3, 1618.
    81. F Caruso, R A Caruso, H Mohwald., Science 1998, 282, 1111.
    82. A Imhof., Langmuir, 2001, 17, 3579.
    83. X X Li, Y J Xiong, Z Q Li, Y Xie., Inorganic Chemistry, 2006, 45, 3493.
    84. T H Kim, K H Lee, Y K Kwon., Journal of Colloid Interface Science, 2006, 304, 370.
    85. S W Liu; J G Yu, S Mann., Nanotechnology, 2009, 20, 325606.
    86. J G Yu, S W Liu, H G Yu., Journal of Catalysis, 2007, 249, 59.
    87. H G Yang, C Sun, S Qiao, J Zou, G Liu, S C Smith, H Cheng, G Q Lu., Nature, 2008, 453, 638.
    88. H G Yang, G Liu, S Qiao, C Sun, Y Jin, S C Smith, J Zou, H Cheng, G Q Lu, Journal of the American Chemical Society, 2009, 131, 4078.
    89. B H Wu, C Y Guo, N F Zheng, Z X Xie, G D Stucky., Journal of the American Chemical Society, 2009,130,17563.
    90. X G Han, Q Kuang, M S Jin, Z X Xie, L S Zheng., Journal of the American Chemical Society, 2009, 131, 3152.
    91. X W Lou, Y Wang, C L Yuan, J Y Lee,L A Archer., Advanced Materials, 2006,
    18, 2325.
    92. W Z Ostwald., Physical Chemistry, 1897, 22, 289.
    93. W Z Ostwald., Physical Chemistry, 1900, 34, 495.
    94. Y D Yin, R M Rioux, C K Erdonmez, S Hughes, G A Somorjai, A P Alivisatos., Science, 2004, 304, 711.
    95. D Q Zhang,G S Li, X F Yang, J C Yu., Chemical Communications, 2009, 4381.
    96. O Bikondoa., Nature Materials, 2006, 5, 189.
    97. L Kavan, M Gratzel, S E Gilbert, C Klemenz, H J Scheel., Journal of the American Chemical Society, 1996, 118, 6716.
    98. X Q Gong, A Selloni., The Journal of Physical Chemistry B, 2005, 109, 19560.
    99. M Lazzeri, A Vittadini, A Selloni., Physical Review B, 2002, 65, 119901.
    100. U Diebold., Surface Science Reports, 2003, 48, 53.
    101. G Palmisano, S Yurdakal, V Augugliaro, V Loddo, L Palmisano.,Advanced Synthesis Catalysis, 2007, 349, 964.
    102. T Mallat, A Baiker., Chemical Reviews, 2004, 104, 3037.
    103. R Liu, X Liang, C Dong, X Hu., Journal of the American Chemical Society, 2004, 126, 4112.
    104. J A Mueller, M S Sigman., Journal of the American Chemical Society, 2004, 126, 9724.
    105. H Park, W Choi., The Journal of Physical Chemistry B, 2004, 108, 4086.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700