用户名: 密码: 验证码:
银基纳米结构材料的制备及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境污染与能源短缺是当今世界面临的两个重大挑战。光催化既能直接利用太阳光催化降解水和空气中的污染物,也能通过染料敏化太阳能电池将低密度的太阳能转化为高密度的电能,是解决环境污染与能源危机的重要手段。传统光催化材料(如Ti02)具有光响应区间窄和量子产率低的缺点,极大的限制了其在社会生活和工业生产中的实际应用。近年来的研究发现,银类光催化剂(如AgX(X=Cl、Br、I)、Ag3P04、Ag20、银-半导体等)具有可见光响应和量子产率较高等优点,在光催化领域受到广泛关注并且有着广阔的应用前景。为了满足实际应用的需求,进一步提高银类光催化剂的光催化效率非常有必要。本论文从三个层面进行了一些探索:1)构建Ag8W4016/Ag2S复合光催化剂;2)构建大比表面积Ag/ZnO光催化剂;3)构建具有特殊结构的Ag20光催化剂。具体工作如下:
     第一,以Ag8W4016纳米棒为模板,通过加入Na2S溶液利用阴离子原位交换法制备了Ag8W4016/Ag2S核壳纳米棒结构。探讨了Na2S的浓度对Ag8W4016/Ag2S核壳纳米棒的形貌和微观结构的影响,并且提出了Ag8W4016/Ag2S核壳纳米棒的形成机理:S2-与W042-通过原位离子交换反应优先发生在Ag8W4016纳米棒的表面,使Ag2S纳米粒子均匀地包覆在Ag8W4016纳米棒的表面,通过调节Na2S的浓度可以对Ag2S壳层进行有效的调控。光催化活性实验结果表明,当Na2S溶液浓度为0.5mM时,AgsW4016/Ag2S(Ag2S wt%=1.24wt%)核壳纳米棒复合光催化剂具有最好的可见光光催化活性,其反应速率常数(k=2.08×10-2min-1)分别是Ag8W4016纳米棒和Ag2S纳米颗粒的4.5和41.5倍。
     第二,通过一种简单的低温湿化学方法合成了Ag改性的ZnO (Ag/ZnO)纳米晶。采用X射线衍射(XRD)、场发射扫描电镜(FESEM)、高分辨透射电镜(TEM)、N2吸附-脱附等温线(BET)、紫外可见漫反射(UV-vis)和荧光光致激发(PL)对所制样品的相结构、微观形态和光学性质进行表征。室温下通过紫外光降解甲基橙水溶液来检测样品的光催化活性。实验结果表明,所制备的ZnO纳米晶的尺寸大约为5nm,具有良好的光催化活性,降解甲基橙溶液的表观速率常数(k)为1.57×10-2mmin-1;当Ag的负载量为3at%时,Ag/ZnO表现出最好的光催化活性,其速率常数(k)为5.45×10-2min-1,分别是ZnO和商业P25的3.5和2.5倍。
     第三,通过室温沉淀法合成了立方体、边角切削八面体和八面体结构Ag20纳米晶体。对所制备的样品进行了一系列的表征(XRD、SEM、TEM、UV-vis、BET和XPS),表明立方体结构Ag2O纳米晶体主要以{100}面为主,而八面体结构的Ag2O纳米晶体以{111}面为主。光催化实验发现,在光降解的前90分钟里,{111}面为主的八面体较{100}面为主的立方体表现出更好的可见光光催化活性,其反应速率常数是后者的2.58倍。由于{111}面上存在着未与O配位多余的Ag+而带正电,而{100}面上Ag原子与O原子刚好完全配位呈电中性。在可见光照射下{111}面相比于{100}面更易于接受光生电子且产生更多的金属Ag,从而更加有利于光生电子与空穴的分离,从而具有更好的光催化活性。但当Ag的含量达到一定的程度,Ag20难以继续分解,最终形成了具有稳定的光催化活性的Ag20/Ag体系。
Environmental pollution and energy shortage are the two major challenges that the current world faced with. Photocatalysis can not only degrade pollutants in the water and air directly by using sunlight, but can also convert solar energy with low density into electric energy with high density through dye-sensitized solar cells. Photocatalysis is an important approach to solve the two problems:energycrisis and environmental pollution. However, most traditional photocatalysts (such as TiO2) are not suitable for large-scal practical applications in the social life and industrial production, due to their limited visible-light absorption and low quantum efficiency. Recently, It was found that many Ag-based photocatalysts (such as AgX (X=Cl、Br、 I)、Ag3PO4、Ag2O、Ag-semiconductor) showed obviously higher photocatalytic under visible-light irradiation than the traditional photocatalysts, thus Ag-based photocatalysts have recived extensive attentions and applications in various fields. It is necessary to improve the photocatalytic activity of Ag-based photocatalysts to achieve the needs of practical applications. In this dissertation, valuable explorations have been carried out as follows:(1) construction of Ag8W4O16/Ag2S composite photocatalyst;(2) construction of Ag/ZnO photocatalyst with large specific surface area;(3) construction of Ag2O photocatalyst with unique structures. The main points could be summarized as follows:
     1. Ag8W4O16/Ag2S core-shell nanorods were formed on the surface of Ag8W4O16nanorods by a simple in situ anion-exchange route. The effect of concentrations of Na2S on the morphology and micro-structures of Ag8W4O16/Ag2S core-shell heterostructures were explored. It was found that the anion exchange reaction between S2-and WO42-was preferable to occur on the surface of Ag8W4O16,/Ag2S nanords rather than in the bulk solution, resulting in the formation of core-shell nanorods. The Ag2S nanoparticles coated on the surface of Ag8W4O16nanorods uniformLy, and it could be easily controlled by adjusting the concentration of Na2S solution. According to the results of photocatalytic activity experiments under visible-light irradiation, when the Na2S solution concentration is0.5mM, the core-shell nanorods exhibited the highest photocatalytic activity with the reaction rate constant k value of2.08×10-2min-1, which is41.5and4.5times more than Ag2S nanoparticles and Ag8W4O16nanorods, respectively.
     2. Ag modified ZnO (Ag/ZnO) nanocrystals were prepared by a facile and low temperature wet chemical method. The phase structures, morphologies, and optical properties of the as-prepared samples were characterized by XRD, FESEM, HRTEM, BET, UV-vis and PL, respectively. The photocatalytic performance of Ag/ZnO with diffent Ag contents was measured with the degradation of methyl orange (MO) at room temperature under UV light irradiation. The results indicated that the well-crystalline ZnO nanocrystals with a size of ca.5nm exhibited a high photocatalytic activity for the degradation of MO with the apparent rate constant (k) of1.57×10-2min-1, and the photocatalytic activities of ZnO were further enhanced by modification with silver. When the Ag loading was3at%, Ag/ZnO showed the highest photocatalytic acitivity with a k value of5.45X10-2min-1, which is3.5and2.5time more than that of ZnO and commercial P25, respectively.
     3. Ag2O nanocrystals with systematic shape evolution from cubic to edge-and corner-truncated octahedral and octahedral were prepared by a facile and room temperature precipitation method. The as-prepared Ag2O nanocrystals were characteriaed by XRD, SEM, TEM, BET, UV-vis and XPS. Our results demonstrated that cubic Ag2O nanocrystals are bounded by the {100} facets and octahedral Ag2O nanocrystals are bounded by the {111} facets, respectively. According to the results of photocatalytic activity experiments under visible-light irradiation, Ag2O nanocrystals with {111} facet exhibited higher photocatalytic activity than {100} facet. Because {111} facets contain positively Ag+which are not matched with O2-at the sufaces, wheras the {100} facets are electrically neutral. So {111} facets could accept more photogenerated electrons and easier to form metal Ag than {100} facets, resulting in the higher separation efficiency of photogenerated electron-hole and better photocatalytic activity. However, Ag2O nanocrystals stop to decompose after formation of partial Ag on the surface of Ag2O, the Ag2O/Ag composite can work as a stable visible-light photocatalyst.
引文
[1]A.Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238:37-38.
    [2]J. H. Carey, J. Laurence, H. M. Tosine. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bulletin of Environmental Contamination and Toxicology,1976, 16:697-701.
    [3]S. N. Frank, A. J Bard. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder[J]. Journal of the American Chemical Society,1977,99: 303-304.
    [4]Leland J. K, Bard A. J. Photochemistry of colloidal semiconducting iron oxide polymorphs[J]. Journal of Physical Chemistry,1987,91(19):5076-5083.
    [5]高濂,郑珊,张青红著.纳米氧化钛光催化材料应用[M].北京:化学元素工业出版社,2002.
    [6]A. Fujishima, T. N. Rao, D. A. Tryk. Titanium dioxide photocatalysis[J]. J. Photochemistry and Photobiology C,2000,1:1-21.
    [7]A. V. Vorontsov, I. V. Stoyanova, D. V. Kozlov. Kinetics of the photocatalytic oxidation of gaseous acetone over platinized titanium dioxide[J]. Journal of Catalysis,2000,189:360-369.
    [8]F. B. Li, X. Z. Li, M. F. Hou. Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+-Ti02 suspension for odor control[J]. Applied Catalysis B:Environmental,2004,48:185-194
    [9]R. Wang, K. Hashimoto, A. Fujishima. et al. Photogenration of highly amphiphilic TiO2 surfaces[J]. Advanced Materials,1998,10:135-138.
    [10]A. L. Linsebigler, G. Lu, J. T. Jr. Yates. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results[J]. Chemical Reviews,1995,95,:735-758.
    [11]Hoffmann M. R, Martin S. T, Choi W, et al. Environmental applications of Smeiconductor photocatalsis[J]. Chemical Reviews,1995,95(1):69-96.
    [12]Fox, M. A.; Dulay, M. T. Heterogenous photocatalysis[J]. Chemical Reviews,1993,93:341-357.
    [13]A. Hagfeldt, M. Gratzel. Light-induced redox reactions in nanocrystalline systems[J]. Chemical Reviews,1995,95:49-68.
    [14]R. Asahi, T. Huisman, A. Reller. Photoinduced reactivity of titanium dioxide[J]. Progress in Solid State Chemistry,2004,32:33-177.
    [15]K. Lee, N. H. Lee, S. H. Shin, et al. Hydrothermal synthesis and photocatalytic characterizations of transition metals doped nano TiO2 Sols[J]. Materials Science and Engineering: B, 2006,129:109-115.
    [16]S. U. M. Khan, M. A. Shahry, W. B. Ingler Jr. Efficient photocaemical water splitting by a chemically modified in n-TiO2[J]. Science,2002,297:2243-2245.
    [17]T. Umebayashi, T. Yamaki, S. Yamamoto, et al. Sulfur-doping of rutile-titanium dioxide by ion implantation:photocurrent spectroscopy and first-principles band calculation studies[J]. Journal of Applied Physics,2003,93:5156-5160.
    [18]T. Umebayashi, T. Yamaki, S. Tanaka, et al. Visible light-induced degradation of methylene blue on S-doped TiO2[J]. Chemical Physics Letters,2003,32:330-331.
    [19]Y. A. Cao, X. T. Zhang, W. S. Yang, et al., A bicomponent TiO2/SnO2 particulate film for Photocatalysis[J]. Chemistry of Materials,2000,12:3445-3448.
    [20]W. Ho, J. C. Yu. Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO2 nanoparticles[J]. Journal of Molecular Catalysis A: Chemical,2006,247; 269-274.
    [21]V. Keller, P. Benlllardt, F. Garin. Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts[J]. Journal of Catalysis,2003,215:129-138.
    [22]T. Hirakawa, P. V. Kamat. Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation[J]. Journal of the American Chemical Society,2005,127: 3928-3934.
    [23]V. Subramanian, E. E. Wblf, R. V. Kamat. Catalysis with TiO2/gold nanocomposites. Effect of metal Particle size on the Fermi level equilibration[J]. Journal of the American Chemical Society, 2004,126:4943-4950.
    [24]B. O. Regan, M. Gratzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Natrue,1991,24:737-740.
    [25]曹锡章,宋天佑,王杏乔.无机化学[M].北京:高等教育出版社,1994.
    [26]Charles F, Heinig J. O3 or O2 and Ag-new catalyst technolgy for Aqueous Phase Sanitation[J].0 zone science and engineering,1993,15:533-546.
    [27]Baur E., Rebmann A. The photolysis of water[J]. Helvetica Chimica Acta,1921,4(1):256-262.
    [28]Schurch D., Currao A., Sarkar S., et al. The silver chloride photoanode in photoelectrochemical water splitting[J]. Journal of Physical Chemistry B,2002,106(49):12764-12775.
    [29]Baciocchi E., Rosato G. C, Rol C., et al. TiO2-catalyzed photooxygenation of methylaromatic compounds in the presence of Ag2SO4 in CH3CN[J]. Tetrahedron Letters,1992,33(37):5437-5440.
    [30]Baciocchi E., Rol C., Rosato G. C., et al. Titanium dioxide photocatalysed oxidation of benzyltrimethylsilanes in the presence of silver sulfate[J]. Journal of the Chemical Society, Chemical Communications,1992,1:59-60.
    [31]Sakthivel S, Shankar M. V., Palanichamy M.,et al. Enhancement of photocatalytic activity by metal deposition:characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst[J]. Water research,2004,38(13):3001-3008.
    [32]Xin B. F., Jing L. Q., Ren Z. Y., et al. Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2[J]. Joural of Physical Chemistry B,2005,109(7): 2805-2809.
    [33]Yu J., Xiong J., Cheng B.,et al. Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity[J]. Applied Catalysis B: Environmental,2005,60(3-4):211-221.
    [34]Zheng, Y., Zheng, L., Zhan, Y. et al. Ag/ZnO Heterostructure Nanocrystals Synthesis, Characterization, and Photocatalysis[J]. Inorganic Chemistry,2007,46 (17):6980-6986.
    [35]Sun. S., Wang. W., Zeng. S., et al. Preparation of ordered mesoporous Ag/WO3 and its highly efficient degradation of acetaldehyde under visible-light irradiation[J]. Journal of Hazardous Materials, 2010,178(1-3):427-433.
    [36]Zhu. G., Que. W., Zhang. J. Synthesis and photocatalytic performance of Ag-loaded β-Bi2O3 microspheres under visible light irradiation[J]. Journal of Alloys and Compounds,2011,509(39): 9479-9486.
    [37]Tian Y., Tatsuma T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles[J]. Journal of the American Chemical Society,2005,127(20): 7632-7637.
    [38]Awazu K., Fujimaki M., Rockstuhl C., et al. Aplasmonic photocatalyst consisting of sliver nanoparticales embedded in titaniumdioxide[J]. Journal of the American Chemical Society,2008, 130(5):1676-1680.
    [39]Height. M. J., Pratsinis. S. E., Mekasuwandumrong. O., et al. Ag-ZnO catalysts for UV-Photodegradation of methylene blue[J]. Applied Catalysis B: Environmental,2006,63(3-4):305-312.
    [40]Xiang Q. J., Yu J. G., Cheng B., et al. Microwave-hydrothermal preparation and visible-light photoactivity of plasmonic photocatalyst Ag-TiCO2 nanocomposite hollow spheres[J]. Chemistry-an Asian Journal 2010,5(6):1466-1474.
    [41]Logar.M., Jancar. B. T., Sturm. S. O., et al. Weak polyion multiayer-assisted in situ synthesis as a route toward a plasmonic Ag/TiO2 photocatalyst[J]. Langmuir,2010,26(14):12215-12224.
    [42]Wang P., Huang B., Qin X., et al. Ag@AgCl:A Highly Efficient and Stable Photocatalyst Active under Visible Light[J]. Angewandte Chemie International Edition,2008,47(41):7931-7933.
    [43]Li Y, Ding Y. Porous AgCl/Ag Nanocomposites with Enhanced Visible Light Photocatalytic Properties[J]. Journal of Physical Chemistry C,2010,114(7):3175-3179.
    [44]Kuai L., Geng B., Chen X., et al. Facile Subsequently Light-Induced Route to Highly Efficient and Stable Sunlight-Driven Ag-AgBr Plasmonic Photocatalyst[J]. Langmuir,2010,26(24): 18723-18727.
    [45]Hu C, Peng T., Hu X., et al. Plasmon-Induced Photodegradation of Toxic Pollutants with Ag-AgI/Al2O3 under Visible-Light Irradiation[J]. Journal of the American Chemical Society,2009, 132(2):857-862.
    [46]Hu, X., Hu, C, Peng, T., et al. Plasmon-Induced Inactivation of Enteric Pathogenic Microorganisms with Ag-AgI/Al2O3 under Visible-Light Irradiation [J]. Environmental Science & Technology 2010,44 (18):7058-7062.
    [47]Yi Z. G., Ye J. H., Kikugawa N., et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation[J]. Natre Materials,2010,9(7):559-564.
    [48]Hong X., Wu X., Zhang., et al. Hydroxyapatite supported Ag3PO4 nanoparticles with higher visible light photocatalytic activity[J]. Applied Surface Science,2012,258(10):4801-4805.
    [49]Liu Y., Fang., Lu H., et al. Highly efficient and stable Ag/Ag3PO4 plasmonic photocatalyst in visibal light[J]. Catalysis Communications,2012,17:200-204.
    [50]Wang X., Li S., Yu H., et al. Ag2O as a New Visible-Light Photocatalyst:Self-Stability and High Photocatalytic Activity [J]. Chemisty-A European Journal,2011,17(28):7777-7780.
    [51]Zhou X. E, Hu C., Hu X., et al. Plasmon-assisted degradation of toxic pollutants with Ag-AgBr/Al2O3 under visible-light irradiation[J]. Journal of Physical Chemistry C,2010,114(6): 2746-2750
    [52]Wang P., Huang B. B., Lou Z., et al. Synthesis of Highly Efficient Ag@AgCl Plasmonic Photocatalysts with Various Structures[J]. Chemistry-A European Journal,2010,16(2):538-544.
    [53]An C., Peng S., Sun Y. Facile synthesis of sunlight-driven AgCl: Ag plasmonic nanophotocatalyst[J]. Advanced Materials,2010,22(23):2570-2574.
    [54]Bi Y. P., Ye J. H. In situ oxidation synthesis of Ag/AgCl sore-shell nanowires and their photocatalytic properties[J]. Chemical Communication,2009,43:6551-6553.
    [55]Bi Y. P., Ye J. H. Heteroepitaxial growth of platinum nanocrystals on AgCl nanotubes via galvanic replacement reaction[J]. Chemical Communication,2010,46(9):1532-1534.
    [56]Wang X., Li S., Yu H. In situ anion-exchange synthesis and photocatalytic activity of Ag8W4O16/AgCl-nanoparticles core-shell nanorods[J]. Journal of Molecular Catalysis A: Chemical, 2011,334(1-2):52-59.
    [57]Jang J. S., Kim H. G., Joshi U. A., et al. Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation[J]. International Journal of Hydrogen Energy,2008,33(21):5975-5980.
    [58]Jang J. S., Ji S. M., Bae S. W., et al. Optimization of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (λ≧420 nm) [J]. Journal of Photochemistry and Photobiology a-Chemistry,2007,188(1): 112-119.
    [59]Xu H., Xu Y., Li H., et al. Synthesis, characterization and photocatalytic property of AgBr/BiPO4 heterojunction photocatalyst[J]. Dalton Transactions,2012,41(12):3387.
    [60]Cheng H., Huang B. B., Dai Y., et al. One-step Synthesis of the Nanostructured AgI/BiOI Composites with Highly Enhanced Visible-Light Photocatalytic Performances[J]. Langmuir,2010, 26(9):6618-6624.
    [61]Zang Y, Farnood R. Photocatalytic activity of AgBr/TiO2 in water under simulated sunlight irradiation[J]. Applied Catalysis B:Environmental,2008,79(4):334-340.
    [62]Zhou W., Liu H., Wang J., et al. Ag2O/TiOa Nanobelts Heterostructre with Enhanced Ultraviolet and Visible Photocatalytic Activity[J]. ACS Applied Materials & Interfaces,2010,2(8):2385-2392.
    [63]Fang F., Li Q., Shang J. K. Enhanced visible-light absorption from Ag2O nanoparticles in nitrogen-doped TiO2 thin films[J]. Surface and Coatings Technology,2011,205(8-9):2919-2923.
    [64]Rawal S. B., Sung S. D., Lee W. I. Novel Ag3PO4/TiO2 composites for efficient decomosition of gaseous 2-propanol under visible-light irradiation[J]. Catalysis Communications,2012,17:131-135.
    [65]Liu S., Yu J., Jaroniec M. Anatase TiO2 with Dominant High-Energy{001} Facets:Synthesis, Properties, and Applications [J]. Chemistry of Materials,2011,110727080616006.
    [66]Liu S., Yu J., Jaroniec M. Tunable Photocatalytic Selectivity of Hollow TiO2 Microspheres Composed of Anatase Polyhedra with Exposed{001} Facets[J]. Journal of the American Chemistry Society,2010,132(34):11914-11916.
    [67]Bi Y., Ouyuang S., Umezawa N., et al. Facet Effect of Single-Crystalline Ag3PO4 Sub-microcrystals on Photocatalytic Properties[J]. Journal of the American Chemical Society,2011, 133(17):6490-6492.
    [68]Lou Z., Huang B. B., Qin X., et al. One-step synthesis of AgCl concave cubes by preferential overgrowth along{111} and{110} directions[J]. Chemical Communications,2012,48(29):3488.
    [69]Wang H., Gao J., Guo T., et al. Facile synthesis of AgBr nanoplates with exposed{111} facets and enhanced photocatalytic properties[J]. Chemical Communication,2012,48(2):275.
    [70]Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58.
    [71]Morales A. M., Lieber C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires[J]. Science,1998,279(5348):208-211.
    [72]Pan Z. W., Dai Z. R., Wang Z. L. Nanobelts of semiconducting oxides[J]. Science,2001, 291(5510):1947-1949.
    [73]刘春艳.纳米光催化及光催化环境净化材料[M].北京:化学工业出版社,2008.
    [74]Henglein A. Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles[J]. Chemical Reviews,1989,89(8):1861-1873.
    [75]Georgekutty R., Seery M. K., Pillai S. C. A Highly Efficient Ag-ZnO Photocatalyst:Synthesis, Properties, and Mechanism[J]. The Journal of Physical Chemistry C,2008,112(35):13563-13570.
    [76]Chakrabarti, S. & Dutta, B. K. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst[J]. Journal of Hazardous Materials,2004,112:269-278.
    [77]Xiong H. M., Xu Y., Ren Q. G. Stable Aqueous ZnO@Polymer Core-Shell Nanoparticles with Tunable Photoluminescence and Their Application in Cell Imaging[J]. Journal of the American Chemical Society,2008,130:7522-7523.
    [78]Carotta M. ZnO gas sensors: a comparison between nanoparticles and nanotetrapods-based thick films[J]. Sensors and Actrators B: Chemical,2009,137:164-169.
    [79]Saito M. & Fujihara S. Large photocurrent generation in dye-sensitized ZnO solar cells[J]. Energy & Environmental Science,2008,1:280-283.
    [80]Chu D. W., Masuda Y., Ohji T. Formation and Photocatalytic Application of ZnO Nanotubes Using Aqueous Solution[J]. Langmuir,2010,26:2811-2815.
    [81]Yu J. G., Yu X. X. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres[J]. Environmental Science & Technology,2008,42:4902-4907.
    [82]Li D., Haneda H. Morphologies of zinc oxide particles and their effects on photocatalsis[J]. Chemosphere,2003,51:129-137.
    [83]Wang X., Wang W., Liu, P. Photocatalytic degradation of E. coli membrane cell in the presence of ZnO nanowires[J]. Journal of Wuhan University of Technology-Materials Science Edition,2011,26: 222-225.
    [84]Liu B., Zeng H. C. Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures[J]. Langmuir,2004,20:4196-4204.
    [85]Deng Z. W., Chen M., Gu G. X. A facile method to fabricate ZnO hollow spheres and their photocatalytic property[J]. Journal of Physical Chemistry B,2008,112:16-22.
    [86]Lao J. Y., Wen J. G., Ren Z. F. Hierarchical ZnO nanostructures[J]. Nano letter,2002,2:1287-1291.
    [87]Xie W., Li Y, Sun W., et al. Surface modification of ZnO with Ag improves its photocatalytic efficiency and photostability[J]. Journal of Photochemistry and Photobiology A: Chemistry,2010, 216(2-3):149-155.
    [88]Subramanian V., Wolf E. E., Kamat P. V. Green Emission to Probe Photoinduced Charging Events in ZnO-Au Nanoparticles. Charge Distribution and Fermi-Level Equilibration[J]. The Journal of Physical Chemistry B,2003,107(30):7479-7485.
    [89]Georgekutty R., Seery M. K., Pillai S. C. A Highly Efficient Ag-ZnO Photocatalyst:Synthesis, Properties, and Mechanism[J]. The Journal of Physical Chemistry C,2008,112(35):13563-13570.
    [90]Lai Y., Meng M., Yu Y. One-step synthesis, characterizations and mechanistic study of nanosheets-constructed fluffy ZnO and Ag/ZnO spheres used for Rhodamine B photodegradation[J]. Applied Catalysis B:Environmental,2010,100 (3-4):491-501.
    [91]Gao S., Jia X., Yang S., et al. Hierarchical Ag/ZnO micro/nanostructure:Green synthesis and enhanced photocatalytic performance[J]. Journal of Solid State Chemistry,2011,184(4):764-769.
    [92]Zhen Y., Zheng L., Zhan Y., et al. AgZnO Heterostructure Nanoctrystals Synthesis, Characterization, and Photocatalysis[J]. Inorganic Chemistry,2007,46(17):6980-6986.
    [93]Li G., Dimitrijevic N. M., Chen, L. The Important Role of Tetrahedral Ti4+ Sites in the Phase Transformation and Photocatalytic Activity of TiO2 Nanocomposites[J]. Journal of the American Chemical Society,2008,130 (16):5402-5403.
    [94]Wang J., Tafen D. N., Lewis, J. P. Origin of Photocatalytic Activity of Nitrogen-Doped TiO2 Nanobelts[J]. Journal of the American Chemical Society,2009,131(34):12290-12297.
    [95]Liu G., Yang H. G., Wang X. Visible Light Responsive Nitrogen Doped Anatase TiO2 Sheets with Dominant{001} Facets Derived from TiN[J]. Journal of the American Chemical Society,2009, 131(36):12868-12869.
    [96]Ho J. Y., Huang M. H. Synthesis of Submicrometer-Sized Cu2O Crystals with Morphological Evolution from Cubic to Hexapod Structures and Their Comparative Photocatalytic Activity[J]. The Journal of Physical Chemistry C,2009,113(32):14159-14164.
    [97]Hua Q., Shang D., Zhang W. Morphological Evolution of Cu2O Nanocrystals in an Acid Solution:Stability of Different Crystal Planes[J]. Langmuir,2010,27(2):665-671.
    [98]Huang W. C, Lyu.L. M., Yang Y. C, et al. Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity[J]. Journal of the American Chemical Society,2011,111214152154005.
    [99]Lyu L.M., Wang W. C, Huang M. H. Synthesis of Ag2O Nanocrystals with Systematic Shape Evolution from Cubic to Hexapod Structrues and Their Surface Properties[J]. Chemistry-A European Journal,2010,16(47):14167-14174.
    [100]Wang X., Wu H. F., Kuang Q, et al. Shape-Dependent Antibacterial Activities of Ag2O Polyhedral Particles[J]. Langmuir,2010,26(4):2774-2778.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700