用户名: 密码: 验证码:
分子动力学模拟方法研究铜团簇成膜及非晶化锗材料的辐照损伤
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文第一部分内容是用分子动力学模拟方法模拟计算Cu团簇沉积在Si衬底上的成膜微观过程。改变入射团簇的大小、入射能量、衬底温度、衬底晶体取向,以及沉积率等初始条件来研究沉积成膜的物理机制。模拟中采用了两组描述体系中原子间相互作用势的方案。方案(一):EAM势函数描述Cu-Cu原子间的相互作用;SW势函数描述Si-Si原子间的相互作用;LJ两体势函数描述Cu-Si原子间的相互作用。方案(二):EAM势函数描述Cu-Cu原子间的相互租用;Tersoff势函数描述Si-Si原子间的相互作用:Morse两体势函数描述Cu-Si原子间的相互作用。这部分工作主要从三个方面模拟研究了沉积成膜过程:(1)单个铜团簇沉积演化过程;(2)单个铜原子连续沉积成膜过程;(3)单个铜团簇连续沉积成膜过程。通过模拟研究得到结果如下:
     1、通过模拟计算单个Cu团簇沉积在Si衬底上的微观演化过程,研究得到:(1)两组势函数方案都能够比较准确地描述Cu-Si体系中原子间的相互作用,反映Cu团簇沉积在Si衬底上的动态演化过程;(2)在不同大小、形状团簇沉积过程中,原子间动能转化趋势基本相似。团簇越小,动能转化过程越短暂;(3)随着入射动能的增加,团簇原子的延展度增大,平均原子质心高度降低;(4)随着衬底温度的升高,团簇原子的延展度增大,较大团簇的平均原子质心高度明显下降;(5)在Si(001)衬底上,易形成Cu/Si(001)混合内界面;对于Cu13和Cu19团簇分别沉积在Si(111)衬底上,形成Cu/Si(111)混合内界面的入射动能阈值均为3.0eV/atom;对于Cu147团簇沉积在Si(111)衬底上,入射动能阈值为1.6eV/atom开始形成Cu/Si(111)混合内界面。
     2、通过模拟计算单个Cu原子连续沉积在Si衬底上的成膜过程,研究得到:(1)随着入射动能的增加,沉积薄膜表面的粗糙度降低,这有利于生长高质量的薄膜;(2)随着衬底温度的升高,沉积薄膜表面的粗糙度降低;(3)当沉积率高于5atoms/ps时,沉积薄膜中会出现孔洞。当沉积率过小时,例如2atoms/ps,沉积薄膜表面比较平滑,但是计算时间大大增加。在本文的模拟计算中,选取5atoms/ps的沉积率研究Cu原子沉积在Si衬底上成膜;(4)在相同的沉积条件下,Si(111)衬底上形成薄膜的表面较Si(001)衬底上形成薄膜的表面平滑。另外,Cu/Si(001)和Cu/Si(111)的混合界面处存在不同程度的非晶化现象。(5)在不同的初始沉积条件下,形成薄膜的结构主要以FCC结构存在,并且薄膜形成起初是以“岛状”模式生长,随着沉积原子数的增多,转为“层状”模式生长。
     3、通过模拟计算Cu团簇连续沉积在Si衬底上成膜过程,研究得到:(1)随着入射团簇动能的增加,成膜表面粗糙度减少;(2)随着衬底温度增加,成膜表面粗糙度减少,且Cu/Si混合内界面处原子的混合度增强;(3)随着入射团簇大小尺寸的增加,成膜表面粗糙度增加;(4)在相同衬底温度的条件下,在Si(111)表面上形成的薄膜表面较在Si(001)表面上形成的薄膜表面平滑;(5)团簇沉积成膜过程中,薄膜主要以“混合”模式生长。
     本文第二部分内容是用分子动力学模拟方法研究Ge材料的辐照损伤过程,并探究孔洞形成的演化过程。研究得到:(1)能量的沉积导致孔洞形成;(2)“空位团”的形成与湮灭或孔洞的形成导致Ge材料在辐照方向上的肿胀;(3)采用Tersoff-ZBL势函数研究孔洞的演化过程,观察到第一个粒子辐照之后,一个清晰的孔洞出现,然后每隔120.0ps继续第二、三……个粒子辐照,发现模拟体系中有两个清晰孔洞共存的现象。由于模拟体系尺寸的选取,随着辐照次数的增多,形成孔洞的位置和形态总是发生变化,但是孔洞的数目没有增加;(4)采用SW-Yukawa势函数研究孔洞的形成问题。研究发现,孔洞的形成过程与使用Tersoff势函数的情况相似,但是形成的孔洞尺度较大;(5)通过拓扑分析方法分析非晶Ge材料中形成的孔洞边缘及其附近的原子分布情况。研究表明,孔洞边缘及边缘附近位置处,拓扑环所包含的原子数目减少且环的数目增多。这表明,孔洞边缘及其附近的原子排布致密。
Molecular dynamics simulation is employed to investigate the film formation of Cu cluster deposition on Si substrate at different deposition conditions of cluster size, incident energy, substrate temperature, crystallographic orientation and deposition rate in the Part I. We have set the two schenmes of potential functions to describe the atoms interaction in the simulation system, one is that the interaction of Cu-Cu is described by EAM many-body potentials, one of Si-Si using SW many-body potentials, and one of Cu-Si using LJ two-body potentials; another is that likewise interaction of Cu-Cu using EAM many-body potentials, Tersoff many-body potentials is selected to describe the interaction of Si-Si, and the Morse two-body potentials is chosen for the interation of Cu-Si. The following is the main content of the study and results:
     1、As just one Cu cluster bombards on the Si surface in the microprocess, the results are:(1)The two kinds potentatial we chosed can be better to describe the interactation of atoms in the Cu-Si system and give some information about the dynamics process of Cu cluster deposition on Si substrate;(2) Under the same initial conditions, the trend of transformation of kinetic energy between cluster of different sizes, morphologies and substrate atoms is the similar. And as the number of cluster atoms is decreased, it takes long time to finish the kinetic energy transformation between atoms;(3) As the increasing of incident energy, the degree of epitaxy of cluster atoms increased, and the mean height of mass center of cluster debased. The smaller cluster prefers to diffuse toward the XY plane, while the larger cluster trends to move along the incident orientation;(4)As the substrate temperature goes up, the degree of epitaxy of cluster atom increased. And the MHMC decased apparently for larger cluster;(5)On the Si(001)surface, it is easier to appear the Cu/Si(001) interface,whereas on the Si(111)surface, as the incident energy is3.0eV/atom for Cu13and Cu19, Cu/Si(001) interface just occurences,1.6eV/atom threshold energy for Cu147, it appears Cu/Si(001)interface.
     2、As Cu atoms deposited on the Si substrate to form thin film, results are:(1) As the incident energy increases, the surface roughness decases and surface smoother.(2) As the substrate temperature goes up, deposition film becomes smoother;(3) As the deposition rate is increased, the film surface roughness increases, and above5atoms/ps, there are some voids inside or edge of deposition film. As the deposition rate is too lower (like2atoms/ps), even though the film surface is really smooth, but it will take much more time to finish film growth. So it is not the better choice in the real simulation. In our calculation, for Cu atom depositing on the Si surface, the5atoms/ps deposition rate is considered the best value to grow Cu film;(4) Under the same initial conditions, Si(111)surface is optimal; Moreover, there are some amorphous phenomenon in the interface mixing for Cu/Si(001) and Cu/Si(111);(5)The formation film maily is face-center-cubic structure, the most of them are growth Volmer-Weber model initially, then transform the FranK-vander Merwe growth model, so the main growth model is Stranski-Krastonov model.
     3、As Cu clusters deposited on the Si substrate to form thin film, results are:(1) As the incident energy increases, the surface roughness of formation film decreases;(2)As the substrate temperature rises, the mixing mode of Cu/Si(001) becomes clear;(3)As the number of cluster atoms is increased, the surface roughness of formation film increases;(4) Under the same initial conditions, the film on the Si(111) become smooher than on the Si(001);(5) For the Cu cluster deposited on Si substrate, the main growth mode is the SK mode.
     Molcular dynamics simulation studies the Ge irradiation-induced and the voids formation in the process in the Part II. We choose two schemes of potentials to investigate the void formation in a-Ge, seperarely. One is Tersoff-ZBL potentials, another is SW-Yukawa potentials. The following is the results:(1) The energy deposition leads to void formation;(2) The simulation results prove that the formation of the voids is mainly based on a shock wave mechanism and the swelling is determined by the competing processes of the formation and growth of voids on the one hand and the shrinking and annihilation of voids on the other hand;(3) In the case of Tersoff-ZBL potential, the void appears for the fisrt incident ion irradiation. Then continuing to irradiate substrate every other120.0ps, two voids coexist in simulation system at the different positions. The substrate happened swelling in the z direction. Because of the system size, even though the number of incident atoms increased, the positions and morphologies of forming voids always change, the number of voids does not increased;(4) In the case of the SW-Yukawa potential, there is a larger void formation.(5) By topological tool analysis, we come to conclustion that the density of atoms in our simulated system after irradiation is not uniformed, near the voids the rings sizes become smaller and the number of rings is increased. It is indicated that the density of atoms around the voids becomes bigger.
引文
[1]陈智涛,李瑞伟.集成电路片内铜互连金属的发展[J].微电子学.2001,31(2):239-241.
    [2]张国海,夏洋,龙世兵,等,ULSI中铜互连技术的关键工艺[J].微电子学.2001,31(2):146-149.
    [3]Mikkola R D,Jiang Q-T, Carprenter B. Copper electroplating for advance interconnect technology [J].Plating & Surface Finishing.2000,87(3):81-85.
    [4]Andricacos P C, Uzoh C J,Dukovic O, et al Damascene copper electrodeposition for chip interconnects [J]. IBM J Res Develop.1998,42(5):567-673.
    [5]Landolt D. Electrodeposition science and technology in the last quarter of the twentieth century [J]. J Electrochem Soc.2002,149(3):S9-S20.
    [6]Moffat T P, Bonevich J E, Huber W H, et al. Supper conformal electrodeposition of copper in 500-90nm feature[J].Electrochem soc.2000,147(12):4524-4535.
    [7]Georgiadou M, Veyret D, Sant R L,et al,Simulation of shape evolution during electrodeposition of copper in the presence of additive [J]. J Electrochem Soc.2001, 148(1):C54-C58.
    [8]Kelly J J, Tian C Y, West A C. Leveling and macrostructure effects of additive for copper electrodeposition [J]. J Electrochem Soc.2001,146(7):2540-245.
    [9]Brown G A, Hope G A. Confirmation of thiourea/chloride ion co-adsorption at a copper electrode by in situ SERS spectroscopy [J]. Journal of Electroanalytical Chemistry.1996,413(1-2):153-160.
    [10]Josell D,Wheeler D, Moffat T P. Super-conformal electrodeposition in vias[J]. Electrochem And Solid-State Lett.2002,5(4):C49-C58.
    [11]Josell D, Wheeler D, Huber W H, et al.A simple equation for predicting superconformal electrodeposition[J]. J Electrochem Soc.2001,148(12):C767-C773.
    [12]Josell D, Wheeler D, Huber W H, et al. Superconformal electrodeposition in submicron features [J].Phys.Rev Lett.2001,(87),016102.
    [13]Moffat T P, Wheeler D, Huber W H,et al. Superconformal electrodeposition of copper[J].Electrochem Solid-State Lett.2001,4(4):C26-C34.
    [14]Madore C, Marlosz M,Landolt D. Blocking inhibitors in cathodic leveling I. theoretical analysis [J].J Electrochem Soc.1996,143(12):3927-3935.
    [15]Oldham K B. Diffusion-controlled current densities close to a right-angled electrode edge[J]. J Electroanal Chem.1997,420(1-2):53-61.
    [16]Winand R. Electrodeposition of metals and alloys new results and perspectives [J]. Electrochem Acta.1994,39(819);1091-1105.
    [17]Famdon E E, Walsh F C. Compbell S A. Effect of thiourea, benzotriazole and 4, 5-dithiaoctane-1,8-disulphonic acid on the kinetics of copper deposition from dilute acid sulphate solutions[J]. JAppl Electrochem.1995,25(6):574-583.
    [18]Mayer L,Barbieri S. Characteristics of acid copper sulfate deposits for printed wiring board applications [J].Plat & Surf Finish.1981.68(3):46-49.
    [19]Stoychev D. On the role of ploy (ethylene glycol) in deposition of galvanic copper coating[J]. Trans Inst Metal Fin.1998,76(2):73-80.
    [20]Gu M, Huang L, Yang F Z,et al. Influence of chloride and PEG on electrochemical nucleating of copper[J]. Trans Inst Metal Fin.2002,80(6):183-186.
    [21]Songbo Wei and Tianmin Shao, Investigation of carbon nitride films deposited by ion beam-assisted deposition with kow bombarding energy of N ions.Matrials Chemistry and Physics. 2012,135(2-3):733-737.
    [22]Adrian G.Swartz, Jared J. I.Wong, Igor V. Pinchuk and Roland K.Kawakami, TiO2 as an electrostatic template for epitxial growth of EuO on MgO(001)by reactive molecular beam epitaxy. J.Appl.Phys.2012,111 (8):083912-1-6.
    [23]Po-Jui Su and Bernard Haochih Liu, Conductive atomic force microscope probes, Thin Solid Films.2013,529(1):317-321.
    [24]B.K.Kuanr, M.Buchmeier, D.E.Buergler and P.Gruenberg, Exchange Coupling of Molecular-Beam-Epitaxy-Grown Fe/Al/Fe Trilayers by Dynamics Techniques, Journal Applied Physics.2012,91(1):7209-7211.
    [25]E. Fonda and A.Traverse, Evidence of Intermixing at the Fe/Al interface in Multilayers Produced by Metal Vapor Deposition at Room Temperature, Jornal of Magnetism and Magnetic Material.2004,268(3):292-297.
    [26]Muller K H. J.Appl.Phys.1987,61(7):2516.
    [27]S.G. Lee, S.P.Kim, K.R.Lee and Y.C. Chung, Atomic-Level Investigation of Interface Structure in Ni-Al Multilayer System:Molecular Dynamics Simulation, Journal of Magnetism and Magnetic Material.2005,286(1):394-398.
    [28]S.G.Lee and Y.C. Chung, Atomic Investigation of Al/Ni(001)by MoleculR Dynamics Simulation, Japanese Journal of Applied Physics.2006,45(1):99-101.
    [29]C.Y.Chung and Y.C. Chung, Molecular Dynamics Simulation of Nano-Scale Fe-Al Thin Film Growth, Materials Letters.2006,60(1):1063-1067.
    [30]S. P. Ju, Y. C. Lo, S. J. Sun and J. G.Chang, Investigation on Structural Variation of Co-Cu Nanoparticles during the Annealing Process, Jornal of Physical Chemistry. B.2005,109(1): 20805-20809.
    [31]S. J. Sun, S. P. Ju, Y. C. Lo and J. S. Lin, An Investigation into the Magnetic Propertie of Co-Cu Nanoparticles at Different Temperature, Journal of Applied Physics.2005,97(1):094308.
    [32]R.W. Smith and D. J. Srolovitz, Void Formation during Film Growth:A Molecular Dynamics Simulation Study, Journal of Applied Physics.1996,79(1):1448-1457.
    [33]L. Dong, R.W. Smith and D. J. Srolovitz, A Two Dimensional Molecular Dynamics Simulation of Thin Film Growth by Oblique Deposition, Journal of Applied Physics.1996,80(1): 5682-5690.
    [34]S. P. Ju, C. I. Weng, J. G. Chang and C. C. Hwang, A Molecular Dynamics Study of Deposition Rate Dependence of Film Morphology in the Sputtering Process, Surface and Coatings Technology.2002,149(1):135-142.
    [35]S. P. Ju, C. I. Weng, J. G. Chang and C. C. Hwang, Topographic Study of Sputter-Deposited Film with Different Process Parameters, Journal of Applied Physics.2001,89(1):7825-7832.
    [36]L. A. Girifalco and V. G. Weizer, Application of the Morse Potential Function to Cubic Metals, Physics Review B.1959,114(3):687-690.
    [37]N. Yamaguchi, Y.Sasajima, K. Terashima and T. Yoshida, Molecular Dynamics Study of Cluster Deposition in Thermal Plasma Flash Evaporation, Thin Solid Films.1999,345(1):34-37.
    [38]Miyamoto A, Hattori T and Inui T. Applied Surface Science.1992,60(61):660.
    [39]M. S. Daw and M. I. Baskes, Semiempirical, Quantum Mechnical Calculation of Hydrogen Embrittlement in Metals, Physical Review B.1983,50(1):1285-1288.
    [40]M. S. Daw and M. I. Baskes, Embeded-Atom Method:Derivation and Application to Impurities Surfaces and Other Defects in Metals, Physical Review B.1984,29(3):6443-6543.
    [41]R. A. Johnson, Analytic Nearest-Neighbor Model for FCC Metals, Physical Review B.1988, 37(1):3924-3931.
    [42]C. J. Chu and T. C. Chen, Surface Properties of Film Deposition Using Molecular Dynamics Simulation, Surface & Coatings Technology.2006,201(1):1796-1804.
    [43]Z. B. Guvenc and R. Hippler, B. Jackson, Bombardment of Ni(100) Surface with Low-Energy Argons:Molecular Dynamics Simulations, Thin Solid Films.2004,474(1):346-357.
    [44]C. C. Hwang, J.G Chang, G. J. Huang and S. H. Huang, Investigqation of Cluster Size and Cluster Incident Energy Effect on Film Surface Roughness for Ionized Cluster Beam Deposition, Journal of Applied Physics.2001,92(1):5904-5912.
    [45]M. A Karolewski, Tight-Binding Potentials for Sputtering Simulations with FCC and BCC metals, Radiation Effects and Defects in Solids.2001,153(1):239-255.
    [46]M. H. Su and J. M. Lu, Investigation of Ar Incident Energy and Ar Incident Angle Effects on Surface Roughness of Cu Metallic Thin Film in Ion Assisted Deposition, Computational Materials Science.2006,38(l):386-394.
    [47]S. P. Ju, C. I. Weng, J. G Chang and C. C. Hwang, Molecular Dynamics Simulation of Sputter Trench-Filling Morphology in Damascence Process, Journal Vacuum Science and Technology. 2002,20(1):946-955.
    [48]D. Chocyk, T. Zientarski, A. Proszynski, T. Pienkos, L. Gladyszewski and G. Gladyszewski, Evolution of Stress and Structure in Cu Thin Film, Crystal Research and Technology.2005, 40(5):509-516.
    [49]S. Zhang, H. T. Johnson, G. J. Wagner, W. K. Liu and K. J. Hsia, Stress Generation Mechanisms in Carbon Thin Films Grown by Ion-Beam Deposition, Acta Materialia.2003, 51(1):5211-5222.
    [50]F. Ringeisen and J.Derrien, Formation and properties of the copper silicon (111)interface, J.Vac.Sci.Technol.B.1983,1(3):1-7.
    [51]C.-A. Chang,J.Appl.Phys.1989,66(l):2989-2994.
    [52]C. L. Kelchner, A.E. Depristo, Nanostructured materials.1997,8(3):253-268.
    [53]Marek Sosnowski, Hiroaki Usui and Isao Yamada, Epitaxial growth of Cu films on Si by ionzed cluster beam deposition, J.Vac.Sci.Technol.1990,8(3):1470-1473.
    [54]Shun-Fa Hwang, Yi-Huang Li and Zheng-Han Hong, Computational Matetials Science, 2012,56(l):85-94.
    [55]Navez M, Sella C and Chaperot D, C. R. Acad.Sci.1962,254(240):1-9.
    [56]Frost F, Schindler A and Bigl F, Roughness evolution of ion sputtered rotating InP surfaces: pattern formation and scaling laws Phys. Rev. Lett.2000,854(1):4116-9.
    [57]Facsko S, Dekorsy T, Koerdt C, Trappe C, Kurz H, Vogt A and Hartnagel H L, Formation of ordered nanoscale semiconductor dots by ion sputtering, Science.1999,285(1):1551-3.
    [58]Waser R, Nanoelectronics and Information Technology.2003, New York:Wiley.
    [59]Mayr S G and Averback R S, Ion-Irradiation-Induced Stresses and Swelling in amorphous Ge thin films, Phys. Rev. B.,2005,71(3):134102-134110.
    [60]Wilson I H, The effects of self-ion bombardment (30-500keV) on the surface topolography of single-crystal germanium, J. Appl. Phys.1981,53(1):1698-1705.
    [61]Stritzker B, Elliman R G and Zou J, Self-ion-induced swelling of germanium, Nucl. Instrum. Methods B.2001,175(1):193-196.
    [62]Holland O W, Appleton B R and Narayan J, Ion Implantation damage and annealing in germanium, J. Appl. Phys.1983,54(1):2295-301.
    [63]Wang L M and Birtcher R C, Radiation-induced formation of cavities in amorphous germanium, Appl. Phys. Lett.1989,55(1):2494-6.
    [64]Appleton B R, Holland O W, Narayan J, Schow O E Ⅲ, Williams J S, Short K T and Lawson E, Characterization of damage in ion implanted Ge, Appl. Phys. Lett.1982,41(1):711-2.
    [65]Chen Y J, Wilson I H, Cheung W Y, Xu J B and wong S P, Ion implanted nanostrcutures on Ge(111) surfaces observed by atomic force microscopy, J. Vac. Sci. Technol.1997,15(4): 809-813.
    [66]Ottaviano L, Verna A, Grossi V, Parisse P, Piperno S, Passacantando M, Impellizzeri G and Priolo F, Surface morphology of Mn+ implanted Ge(100):a systematic investigation as a function of the implantation substrate temperature, Surf. Sci.2007,601(1):2623-7.
    [67]Huber H, W.Assmann, S.A. Karamian et al., Voild formation in Ge induced by high energy ion irradiation, Nucl. Instrum. Methods Phys. Res. B.1997,122(3):542-546.
    [68]Kim J C, Cahill D G and Averback R S, Formation and annihilation of nanocavities during keV ion irradiation of Ge, Phys. Rev. B.2003,68(9):94109-94115.
    [69]Wang L M and Birtcher R C, Amorphization, Morphological instability and crystallization of krypton ion irradiated germanium, Phil. Mag. A.,1991,64(3):1209-23.
    [70]B.T. A. Chang and J.C.M. Li, Scr.Metall.1977,11(1):933-940.
    [71]F.P. Schimansky, and R. Gerling, and R. Wagner, Mater. Sci.Eng.1988,97(1):173-180.
    [72]R.C. Birtcher, C.W.Allen, L.E. Rehn, and G. I. Hofman, J. Nucl. Mater.1988,152(1):73-77.
    [73]W. J. Weber and H.J. Matzke, Radial. Eff.1986,98(1-4):93-99.
    [74]T. K. Chaki and J.C.M. Li, J.Nucl. Mater.1986,140(1):180-.
    [75]A.I. Gerasimov, F.V. Mikheeva, P.V. Pavlov, and D. Ⅰ. Tetebaum, Phs. Chem. Mater. Treat. 1984,18(1):173-.
    [76]1.H. Wilson, J.Appl.Phys.1982,53(1):1698-.
    [77]B.R. Appleton, O.W. Holland, J. Narayan, O.E. Schow, Ⅲ, J.S. Williams, K.T. Short, and E.M. Lawson, Appl. Phys. Lett.1982,41(1):711-.
    [78]O.W. Holland, B.R. Appleton, and J. Narayan, J. Appl. Phys.1983,54(1):2295-.
    [79JB.R. Appleton, O.W. Holland, D. B. Poker, J. Narayan, and D. Fathy, Nucl. Instrum. Methods B.1985,7(8):639-.
    [80]L.M. Wang and R. C. Birtcher, Appl.Phys.Lett.1989,55(24):2494-2496.
    [81]A. Taylor, C. W. Allen, and F.A. Ryan, Nucl.Instrum, Methods B.1987,24(25):598-.
    [82]Kun-Dar Li, Alejandro Perez-Bergquist and Lumin Wang, Computer simulation of radiation-induced nanostructure formation in amorphous materials, Nuclear Instruments and Methods in Physics Research B.2009,267(1):3063-3066.
    [83]K. Gartner, J. Johrens, T.Steinbach, C.S. Schnohr, M.C. Ridgway and W.Wesch, Phys.Rev.B. 2011,83 (1):224106-224111.
    [84]Tobias Edler and S. G. Mayr, Mechanisms of stress generation during bombardment of Ge with keV ions:experiments and molecular dynsmics simulations, New Journal of Physics. 2007,9(9):325-337.
    [85]金家炯.材料设计[M].天津:天津大学出版社,2000,12.
    [86]Arsenault R J, Beeler Jr J R. Computer Simulation in Materials Science[M], New York: ASM,1986.
    [87]Hwang R Q, Schroder J, Giinther C.[J]. Phys Rev Lett.1991,1(67):3279-3946.
    [88]曹莉霞,王崇愚,a-Fe裂纹的分子动力学研究[J],物理学报,2007,56(1):413-422.
    [89]周宗荣,王宇,夏源明, γ-TiM金属间化合物面缺陷能的分子动力学研究[J].物理学报,2007,56(3):1527-1531.
    [90]丁丽颖,耿春宇,赵月红,何险峰,温浩.I型甲烷水合物晶体稳定性的分子动力学模拟[J].计算机与应用化学,2007,24(5):569-574.
    [91]王海龙,王秀喜,梁海戈.金属cu体熔化与表面熔化行为的分子动力学模拟与分析[J].金属学报,2005,41(6):568-572.
    [92]孙贺民,白照印,宋海洋,张国香.Cu表面生长Ag薄膜过程的分子动力学模拟[J].北京理工大学学报,2005,25(9):831-834.
    [93]高虹,赵良举,曾丹苓,高丽娟.团簇在金属表面沉积过程的分子动力学模拟[J].重庆大学学报,2007,30(3):51-55.
    [94]沈海军.碳、碳化硅及硅纳米管熔化与压缩特性的分子动力学研究[J].材料科学与工程学报,2006,24(5):679-682.
    [95]赵艳红,张广财,李英骏.冲击波下金属铜的分子动力学模拟[J].聊城大学学报,2005,18(2):26-28.
    [96]J.E.Lennard-Jones, The Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature, Processdings of the Royal Society.1924, I06(A): 441-462.
    [97]L. A. Girifalco and V.G. Weizer, Application of the Morse Potential Function to Cubic Metals, Physics Review B.1959,114(3):687-690.
    [98]R. Smith, Atomic & Ion Collisions in Solids and at Surfaces, Cambridge University Press, 1997, London.
    [99]K. Maekawa and A. Itoh, Friction and Tool Wear in Nano-Scale-Machining-A Molecular Dynamics Approach, Wear.1995,188(1):115-122.
    [100]A. Anderman, Report AFCRL-66-688, Atomics Interactional,1996, Canoga Park.
    [101]D. E. Harrison Jr, Application of Molecular Dynamics Simulations to the Study of Ion-Bombarded Metal Surfaces, CRC Critical Reviews in Solid State and Materials Sciences. 1989,14(1):S.1.
    [102]F. Cleri and V. Rosato, Tight-Binding Potentials for Transition Metals and Alloys, Physics Review B.1993,48(1):22-33.
    [103]L.Colombo,A Source Code for Tight-Binding Molecular Dynamics Simulation, Computational Materials Science.1998,12(1):278-287.
    [104]F.H. Stillinger, T. A. Weber, Computer Simulation of Local Order in Condensed Phases of Silicon, Physical Review B.1985,3(2):5262-5271.
    [105]F.H. Stillinger, T.A. Weber, Fluorination of the Dimerized Si(100) Surface Studied by Molecular Dynamics Simulation, Phys. Rev. Lett.1989,62(1),:2144-2147.
    [106]S.M.Foils, M.I.Bakes, M.S.Daw, Phys.Rev.B.1986,33(1):7983-7991.
    [107]F. Cleri and V.Rosato, Tight-Binding Potentials for Transition Metals and Alloys, Phys. Rev. B.1993,48(1):22-33.
    [108]P. Sule and M.Menyhard, Strong Mass Effect on Ion-Beam Mixing in Metal Bilayers:A Ballistic Picture, Phys. Rev. B.2005,71(11):113413-113417.
    [109]P.Sule, M.Menyhard and K.Nordlund, What Is the Real Driving Force of Bilayer Ion Beam Mixing?, Nuclear Instrumeats & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms.2004, B(226):517-530.
    [110]P.Sule,M.Menyhard and K. Nordlund, Does the Thermal Spike Affect Low Energy Ion-Induced Interfacial Mixing?, Nuclear Instrumeats & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms.2003,B(211):524-532.
    [111]P.Sule, Self-Organized Transient Facilitaed Atomic Transport in Pt/Al(111), The Journal of Chemical Physics,B.2008,128(1):134708-134708-12.
    [112]M. Imafuku, Y. Sasajima, R. Yamamoto and M. Doyama, Computer Simulations of the Structures of the Metallic Superlattices Au/Ni and Cu/Ni and Their Elastic Moduli, Journal of Physics. F. Metal Physics.1986,16(1):823-829.
    [113]F.H.Stillinger, T.A.Weber, Phys.Rev.B.1985,31(1):5262-5271.
    [114]J.Tersoff, Phys Rev B.1988,37(1):6991-6999.
    [115]J.F.Ziegler,J.P. Biersack, U. Littmark, Stopping and Ranges of Ions in Matter,1985,1(3), PergamonPress.
    [116]J. Nord,K.Albe,P.Erhartand and K.Nordlund,J.Phs.:Condens. Matter.2003,15(1):5649-5655.
    [117]J. Tersoff,Phys. Rev. B.1989,39(1):5566-5572.
    [118]J.M.Haile, Molecular Dynamics Simulation,John Wiley and Sons, Inc.1992, New York.
    [119]J.M.Haile, Molecular Dynamics Simulation, John Wiley and Sons, New York,1992.
    [120]Z.S.Basinski, M.S. Duesberry, R.Taylor, Can.J.Phys.1971,49(1):2160-2180.
    [121]J. M. Haile, Molecular Dynamics Simulation, John Wiley and Sons, New York,1992.
    [122]J. Borel and J. Buttet(ed.),Small Particles and Inorganic Clusters, Surf. Sci.1981,106(1):1-6.
    [123]P. P. Kulik, G. E. Norman and L. S. Polak, Khim. Vys. Energ.1976,10(l):203-213.
    [124]T. Takagi, Thin Solid Films.1982,92(1):1-40.
    [125]Haberland H, Karrais M, Mall M and Thunder Y, J.Vac.Sci. Technol. A.1992,10(1): 3266-3270.
    [126]Carroll S J, Weibel P, Von Issendorff B, Kuiperes L and Palmer R E,The impact of size-selected Ag clusters on graphite:an STM study, J.Phys.:Condens. Matter.1996,8(41): 617-626.
    [127]Hou M,Nucl. Instrum.Methos B.1998,135(1):501-509.
    [128]Carroll S J, Hall S G, Palmer R E and Smith R, Phys. Rev.Lett.1998,81(3):3715-3722.
    [129]Palacios F J. Iniguez M P, Lopez M J and Alonso J A, Phys. Rev. B.1999,60(1):2908-2918.
    [130]T. Takagi, I. Yamada, M. Kumnori and S. Kobiyama. Proc.2nd Int. Conf. Ion Sources, Vienna, Osterreichiche Studiengeselshaft fur Atomenrgi,1972, p.790.
    [131]F.J. Palacios, M.P. Iniguez, M. J. L6pez and J.A. Alonso Computational Materials Science.2000,17(2):515-519.
    [132]M.G Del P6polo, E.P.M.Leiva and W.Schmickler, Journal of Electroanalytical Chemistry.2002,518(2):84-90.
    [133]J.C. Jimenez-Saez, A.M.C. Perez-Martin and J.J.Jimenez-Rodriguez, Applied Surface Science.2004,238(2):223-227.
    [134]F. Dumas-Bouchiat, H.S. Nagaraja, F.Rossignol,C.Champeaux, GTrolliard, A.Catherinot and D.Givord, Journal of Applied Physics.2006,100(3):064304-064314.
    [135]E.Kasabova, D.Alamanova, M.Springborg and V.G Grigoryan, Eur.Phys. J.D 2007,45(1):425-431.
    [136]Y.Long andN.X. Chen, Physica B.2008,403(2):4006-4011.
    [137]S.-P.Kim, K.-R.Lee, Y.-C.Chung, M.Sahashi and Y.K.Kim, Journal of Applied Physics.2009, 105(3):114312-114317.
    [138]Yongzhi Cao, Junjie Zhang, Tao Sun, Yongda Yan and Fuli Yu, Applied Surface Science. 2010,256(2):5993-5997.
    [139]Vladimir N.Popok, Ingo Barke, Eleanor E.B.Campbell and Karl-Heinz Meiwes-Broer, Surface Science Reports.2011,66(2):347-377.
    [140]Valkealahti S and Mannien M, Phys.Rev. B.1992,45(1):9459-9467.
    [141]Pai xiao-Dong, Gai Zhi-Gang, and Li Gonh-Ping, Chinese Physics B.2008,17(9):1-6.
    [142]张梅玲,李公平,李叶洲,郭向云,Journal of Xihua University.2009,28 (2):1-6.
    [143]J.P. Michels and N.J. Trapeniers, Molecular-dynamical calculations of the self-diffusion coefficient below the critical density, Chem. Phys. Lett.33(2):195-200.
    [144]Mackay A L,Acta Cryst.1962,15(1):916-926.
    [145]D. Rigby and R.J. Roe, Molecular Dynamics Simulation of Polymer Liquid and Glass.Ⅱ. Short Range Order and Orientation Correlation, Journal of Chemical Physical. 1988,89(8):5280-5290.
    [146]R. J. Hamers, U. K. Kohler and J. E. Demuth, Epitaxial growth of silicon on Si(001)by scanning tunneling microscopy, Jornal of Vacuum Science & Technology.1999,8(1):195-200.
    [147]GRossi, T. Kendelewicz,I.Lindau,and W.E. Spicer, The Si(111)/Cu interface studied with surface sensive techniques, J.Vac.Sci.Technol. A.1983,1(2):987-990.
    [148]ChinAn Chang, Formation of copper silicides from Cu(100)/Si(100)and Cu(111)/Si(111) structure, J. Appl. Phys.1990,87(1):1-9.
    [149]C.-A. Chang,J.Appl.Phys.1989,66(1):2989-2996.
    [150]C.-A. Chang, Appl. Phys. Lett.1989,55(3):1543-1550.
    [151]R.M.Tromp,R.G.Smecnk,F. W.Saris.Phys.Rev.Lett.1981,46(1):939-943.
    [152]C.-A. Chang and GOttaviani, Appl.Phys.Lett.1984,44 (1):901-910.
    [153]C.-A. Chang, Appl.Phys.Lett.1989,55 (1):2754-2760.
    [154]Denitsa Alamanova, Valeri GGrigoryan and Michael Springborg, Surf.Sci., 2008,602(2):1413-1422.
    [155]J C Jimenez-Saez, A M C Perez-Martin, M Said-Ettaoussi and J J Jimenez-Rodriguez, Atomic structure of Ni nanoclusters on Cu(001)surfaces,Nanotechnology.2005,16(2):396-401.
    [156]Y.X.Wang,Z.Y.Pan,Q.Wei,A.J.Du, Z.Huang, Y.Xu,and Y.K.Ho, Impact energy dependence of Al13 cluster deposition on Ni(001)surface, Surf.Sci.2002,512(2):128-134.
    [157]W. K. Burton, N. Cabrera and F. C. Frank, In situ observations by scanning force microscopy, Philos. Trans. Roy. Soc. (London) A,1951,3(4):243:299.
    [158]M.Hanbiicken and J.J.Metois, Combined AES,LEED, SEM and TEM characterizations of Cu-Si(100)interfaces, Surf.Sci.1985,162(1):622-627.
    [159]P.Mutombo and V.Chab, Theotrtical STM images of Cu atoms on a Si(111)surface, Surf.Sci. 2003,5(5):645-649.
    [160]G.Bhargava, I. Gouzman, C.M. Chun, T.A. Ramanarayanan and S.L. Bernasek, Characterization of the"native"surface thin films on pure polycrystalline iron:A high resolution XPS and TEM study, Appl.Surf.Sci.2007,253(2):4322-4329.
    [161]Rand Dannenberg, Er Stach, Joanna R. Groza and Brian J. Dresser, TEM annealing study of normal grain growth in silver thin films, Thin Solid Films.2000,379(2):133-138.
    [162]Juatinas Palisaitis, Remigijus Vasiliauskas and Gabriel Ferro, Epitaxial Growth of Thin Films, Physics of advanced Materials Winter School.2008,pp.2.
    [163]Karfer M, Parisi G and Zhang Y C. Phys.Rev.Lett.1986,56(1):889-893.
    [164]Lagally M G. Physics Today.1993,46(1):24-27.
    [165]Sang-Pil Kim, Seung-Cheol Lee,Kwang-Ryeol Lee and Yong-Chae Chung, Molecular dynamics simulation at the early stage of thin film deposition:Al or Co on Co(111), Japanese Journal of Applied Physics,2004,43(6B):3818-3821.
    [166]T. Takagi,Ion implantation and ion beam processing of materials, edited by G.K. Huber, O.W. Holland, C.R. Clayton, and C.W. White(North-Holland,New York,1984), p.501,and references therein.
    [167]T.Takagi, I.Yamada,and A.Sasaki,Thin Solid Films.1977,45(l):569-577.
    [168]I. Yamada, H. Inokawa,and T.Takagi,Thin Slid Films.1984,124(1):179-188.
    [169]J. S. McCalmott,K. M. Lakin, and H.R. Shanks, J.Vac. Sci. Technol. A5.1991,1 (2):1-6.
    [170]I. Yamada,Appl.Surf. Sci.1989,43(l):23-29.
    [171]J.Lammpinen,R.M. Nieminen,and K.Kaski, Molecular dynamics simulation of epitaxial growth of the Si(001)surface. Surf. Sci.1988,203():201-211.
    [172]H.J. Gossmann and L.C. Feldman,Phys.Rev.B.1985,32(1):6-16.
    [173]Jon Zimmerman(Sandia).
    [174]P.Mathiez, E.Daugy and F. Salvan, Characterization of Cu/Si(100)interfaces by different surface-sensitive techniques, Surf.Sci.1986,168(1):158-163.
    [175]M.Hanbucken and J.J Metois, Combined AES, SEM and TEM characterizations of Cu-Si(100)interface,Surf.Sci.1985,162(1):622-627.
    [176]F. Ringeisen and J.Derrien, Formation and properties of the copper silicon (111)interface, J.Vac.Sci.Technol.B.1983, 1(3):546-552.
    [177]E.Daugy, P.Mathiez, F.Salvan and J.M.Layet,7×7 Si(111)-Cu interfaces" Comnined LEED, AES and EELS Measurements, Surf.Sci.1985,154(1):267-283.
    [178]P.Bai,G-R.Yang, L.You, T-M.Lu and D.B.Knorr, Room-temperature epitaxy of Cu on Si(111)using particially ionized beam deposition, J.Mater, Res.1990,5(5):989-997.
    [179]Marek Sosnowski, Hiroaki Usui and Isao Yamada, Epitaxial growth of Cu films on Si by ionzed cluster beam deposition, J.Vac.Sci.Technol.A.1990,8(3):1470-1473.
    [180]A. kobayashi and S.Das Sarma,Phys.Rev. B.1988,37(1):1039-1044.
    [181]E.T. Gawlinski and J.D. Gunton,Phys.Rev. B.1987,36(1):4774-4780.
    [182]B.W.Dodson,Phys.Rev. B.1987,36(3):1068-1076.
    [183]R.Biswas, Gary S.Grest and C.M. Soukoulis, Molecular-dynamics simulation of cluster and atom deposition on silicon(111), Phys.Rev.B.1988,38(12):8144-8153.
    [184]Traian Dumitrica,University of Dumitrica, Department of Mechanical Engineering,Trends in computational nanomechanics transcending length and time scales,Springer Dordrecht Heidelberg London New york, pp 161.
    [185]P.Jensen, Rev.Mod.Phys.1999,71(1):1695-1705.
    [186]C.Binns, Surf. Sci.Rep.2001,44(1):1-49.
    [187]J. H. Weaver and G. D. Waddill, Science.1991,251(1),1444-1447.
    [188]B.Pauwels, G.V. Tendeloo, W. Bouwen, L.T. Kuhn, P. Lievens, H.Lei and M.Hou, Phys. Rev. B.2000,62(1):10383-10390.
    [189]Q.Hou, M. Hou, L. Bardotti, B.Prevel, P. Melinon, and A. Perez, Phys.Rev.B.2000,62(1): 2825-2831.
    [190]L. Bardotti, B.Prevel, P. Melinon, A. Perez, Q. Hou, and M.Hou, Phys.Rev. B.2000,62(2): 2835-2842.
    [191]R. E. Palmer, S. Pratontep and H. G Boyen, Nature Mater.2003,2(1):443-446.
    [192]C. Xirouchaki, Vacuum.2004,73(4):123-130.
    [193]C. K. Chen and S.C. Chang, Nanotechnology.2006,17(3):5051-5060.
    [194]Mayr S G and Averback R S 2005 Ion-Irradiation-Induced Stresses and Swelling in Amorphous Ge thin films Phys.Rev. B.2005,71(1):134102-134110.
    [195]K. Ding and H. C.Andersen, Phys.Rev. B.1986,34(1),6987-6994.
    [196]J.Tersoff, Phys.Rev.B.1988,37(1):6991-7000.
    [197]Berendsen H J C, Postma J P M, van Gunsteren W F, DiNola A and Haak J R, Molecular Dynamics with Coupling to an External Bath J. Chem. Phys.1984,81(1):3684-3690.
    [198]K.Gartner, J. Johrens, T. Steinbach, C. S. Schnohr, M.C. Ridgway, and W. Wesch, Void formation in amorphous germanium due to high electronic energy deposition, Phys. Rev. B.2011, 83(5):224106-224113.
    [199]R. J. Temkin, W. Paul, and G. A. N. Connell, Adv.Phys.1973,22(1):581-588.
    [200]C. S. Marians and L.W. Hobbs, The phase structure of aperiodic SiO2 as a function of network topology, J. Non-Cryst. Solids.1988,106(1):309-312.
    [201]C. S. Marians and L. W. Hobbs, Local structure of silica glass, J. Non-Cryst.Solids.1990, 119(1):269-282.
    [202]C. S. Marians and L. W. Hobbs, Network properties of crystalline polymorphs of silica, J. Non-Cryst. Solids.1990,124(3):242-253.
    [203]Linn W. Hobbs, Engineering of Crystalline Materials Properties,2008,1(3):193-230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700