用户名: 密码: 验证码:
基于自支撑金刚石薄膜的晶体管和紫外探测器制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于金刚石薄膜具有优异的力学、热学、光学、电学和化学稳定性,使得它成为一种理想的电子器件用宽禁带半导体材料,基于金刚石薄膜的器件尤其适用于在高温、高功率、强辐射和腐蚀性的苛刻环境下应用。CVD金刚石薄膜,尤其是具有光滑表面的CVD自支撑金刚石薄膜的制备及其器件应用已经成为国际前沿课题。本论文主要研究了高质量自支撑CVD金刚石薄膜的制备及其在晶体管和光电探测器件方面的应用。
     采用热丝辅助化学气相沉积(HFCVD)法和微波等离子体化学气相沉积(MPCVD)法制备自支撑金刚石薄膜。研究了衬底预处理方法对金刚石薄膜成核的影响。利用扫描电镜(SEM)、原子力显微镜(AFM)和X射线衍射仪(XRD)对薄膜厚度、薄膜成核面的表面形貌和取向性进行了分析,结果表明HFCVD法和MPCVD法制备的自支撑金刚石薄膜的成核面均十分平整;采用HFCVD法制备薄膜的速度要快于MPCVD法。通过Raman光谱仪及半导体特性表征系统研究了表面处理及退火处理对薄膜质量及电学性能的影响。结果表明采用MPCVD法制备的薄膜质量要优于HFCVD法制备的薄膜。
     对MPCVD法制备的自支撑金刚石薄膜的成核面进行氢等离子处理,研究了不同的氢等离子处理工艺以及退火工艺对薄膜表面p型导电性能的影响规律。并通过紫外拉曼光谱、傅立叶变换红外光谱及二次离子质谱等方法研究了薄膜表面导电层产生的原因及厚度。主要得到以下结果:采用氢等离子体处理金刚石薄膜的成核面可以使得薄膜表面形成一层40-50nm厚的p型导电层;这种p型导电层形成的原因可能与氢和碳悬挂键的结合有关;氢等离子体处理温度(600-750oC)以及处理时间(5-30min)的增加,可以提高薄膜表面的载流子浓度,降低电阻率;在空气中退火温度大于200oC,或真空中退火温度大于600oC时,氢从金刚石薄膜表面脱出使得薄膜逐渐丧失表面导电性;采用氧等离子体处理可以使金刚石薄膜的表面导电性能消失。
     研究了金属电极与氢终端p型金刚石薄膜的接触性能,结果表明金可以与p型金刚石薄膜形成较好的欧姆接触,而铝则与p型金刚石薄膜形成了肖特基接触。研究了氢终端p型金刚石基肖特基势垒栅场效应晶体管(MESFET)的制备工艺及器件的性能,结果表明该器件具有明显的增强型晶体管的特性。
     采用射频磁控溅射法在自支撑金刚石衬底上制备ZnO薄膜。研究了沉积功率、沉积气压以及同质缓冲层对ZnO薄膜性能的影响,并对ZnO/金刚石结构在光电探测器方面的应用进行了初步研究。主要得到以下结论:当溅射功率为150W、沉积气压为0.3Pa以及添加同质缓冲层时可以制备出高度c轴取向高质量的ZnO薄膜;相对于未添加缓冲层的样品,通过添加缓冲层,可以明显提高薄膜的质量,降低缺陷;添加缓冲层也有助于改善ZnO/金刚石薄膜结构紫外光探测器的光电性能和光谱响应特性。
Due to the unique mechanical, thermal, optical, electrical properties and outstanding chemical stability, diamond film is an ideal wide-band-gap semiconductor material for electron devices, especially devices operating at high temperature, high power, high radiation and corrosion environments. It has been the international interesting subjects that the fabrication of CVD diamond films, especially freestanding diamond films with smooth nucleation surface, and their applications for devices. In this thesis, the fabrication of high quality CVD diamond films and their applications in transistors and photodetectors were studied.
     The freestanding diamond (FSD) films were grown by hot filament chemical vapor deposition (HFCVD) method and microwave plasma chemical vapor deposition (MPCVD) method, respectively. The influence of substrate pretreatment methods on the nucleation density of diamond films was studied. The thickness of FSD films, the structure, and morphology of the FSD nucleation surface were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The results indicated that the nucleation sides of FSD films prepared by both methods were very smooth; The growth rate of diamond films was much higher by using HFCVD method. The effects of surface treatment and annealing process on the quality and electrical properties of FSD films were investigated by semiconductor characterization system and Raman spectroscopy. The results showed that the FSD films with better crystal quality could be obtained by MPCVD method.
     The nucleation sides of FSD films prepared by MPCVD method were exposed to hydrogen plasma treatment. The effects of hydrogen plasma treatment and annealing process on the p-type behavior of FSD films were investigated. The origin of this high-conductivity layer of FSD films was also discussed by using ultraviolet (UV) Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR) and secondary ion mass spectrometry (SIMS). The main results were as follows: The nucleation side of FSD films with a p-type conductivity layer (~50nm thick) could be obtained by hydrogen plasma treatment; The origin of this conductivity layer may be related to the complexes of absorbed hydrogen atoms with carbon dangling bonds; The sheet carrier concentration of the FSD film increased and sheet resistivity decreased with the time (5-30min) and temperature (600-750oC) of plasma treatment; Surface conductivity of hydrogenated diamond surfaces disappeared gradually after annealing at temperature above 200°C in the air, or above 600°C in the vacuum; The conductive surface layer could also be removed by oxidation using oxygen plasma treatment.
     The properties of metal contacts on hydrogenated p-type diamond surfaces were discussed. The results suggested that ohmic contacts could be realized between the p-type diamond and the Au electrodes. However, it’s easy to form schottky contacts between Al electrodes and the p-type diamond. Preparation technology of p-type channel metal–semiconductor field effect transistors (MESFETs) was studied. The properties of the device were analyzed by semiconductor characterization system, which showed a typical characteristic of enhancement-mode MESFET.
     The ZnO films were grown on the nucleation sides of FSD substrates by radio-frequency (RF) magnetron sputtering method. The effects of sputtering power, gas pressure and homobuffer layer on the properties of the ZnO film were studied. The ZnO/diamond structure was also applied for UV photodetectors use. The main results were as follows: High quality ZnO films with highly c-axis orientation can be obtained when sputtering power was 150W, gas pressure was 0.3Pa and homobuffer layer was applied; Compared with films prepared without buffer layer, the samples with buffer layer showed a better crystalline quality; The homobuffer layer was also helpful to improve electrical properties and spectral response performance of the ZnO/diamond structure photodetectors.
引文
[1] K. E. Spear, J. P. Dismukes. Synthetic Diamond: Emerging CVD Science and Technology [M]. New York: John Wiley, 1993: 533–580.
    [2] R. F. Davis. Deposition and characterization of diamond, silicon carbide and gallium nitride thin films [J]. J. Cryst. Growth, 1994, 137: 161-169.
    [3] F.P. Bundy, H.T. Hall, H.M. Strong, R.J. Wentorf Jun. Man-made diamond [J]. Nature, 1955, 176 (4471): 51-54.
    [4] W. G. Eversole. U. S. Patent: 3 030 187 and 3 030 188, 1958.
    [5] B. V. Deryagin, D. V. Fedoseev, V. M. Lukyanovich, et al. Filamentary diamond crystals [J]. J. Cryst. Growth, 1968, 2: 380-384.
    [6] J. C. Angus, H. A. Will, W. S. Stanko. Growth of diamond seed crystals by vapor deposition [J]. J. Appl. Phys., 1968, 39(6): 2915-2922.
    [7] S. Matsumoto, Y. Sato, M. Kamo, N. Sekata. Vapor deposition of diamond particles from methane [J]. Japan. J. Appl. Phys., 1982, 21(4): L183-L185.
    [8] Xia Yiben, Sekiguchi Takashi, Zhang Wenjun, et al. Yao Takafumi. Surfaces of undoped and boron doped polycrystalline diamond films influenced by negative DC bias voltage [J]. Diamond Relat. Mater., 2000, 9 (9-10): 1636-1639.
    [9] J. Isberg, J. Hammersberg, E. Johansson, T. Wikstr?m, D.J. Twitchen, A.J. Whitehead, S.E. Coe, G.A. Scarsbrook. High carrier mobility in single-crystal plasma-deposited diamond [J]. Science, 2002, 297(5587): 1670-1672.
    [10] M. Werner, R. Locher. Growth and application of undoped and doped diamond films [J]. Rep. Prog. Phys., 1998, 61(12): 1665-1710.
    [11] M. Bavdaz, A. Peacock, A. Owens. Future space applications of compound semiconductor X-ray detectors [J]. Nucl. Instr. and Meth. A, 2001, 458: 123-131.
    [12] M. Schieber, H. Hermon, A. Zuck, et al. Theoretical and experimental sensitivity to X-rays of single and polycrystalline HgI2 compared with different single-crystal detectors [J]. Nucl. Instr. and Meth. A, 2001, 458: 41-46.
    [13] E. Rossa, C. Bovet, D. Meier, et al. CdTe photoconductors for LHC luminosity monitoring [J]. Nucl. Instr. and Meth. A, 2002, 480: 488-493.
    [14] I. M. Buckley-Golder, R. Bullough, M.R. Hayns, et al. Post-processing of diamond and diamondfilms: a review of some Harwell work [J]. Diam. Relat. Mater., 1991, 1 (1) 43-50.
    [15] F. J. Himpsel, J. A. Knapp, J. A. Vechten, et al. Quantum photoyield of diamond(111)-A stable negative-affinity emitter [J]. Phys Rev, 1979, B20: 624-627.
    [16] K. Kanda, S. Takehana, S. Yoshida,et al.Application of diamond-coated cutting tools [J].Surf Coat Technol,1995,73:I15-120.
    [17] S. Durante, G. Rutelli, F. Rabezzana, et al. Aluminum-based MMC machining with diamond-coated cutting tools [J]. Surf Coat Technol, 1997, (94-95): 632-640.
    [18] R. S. Sussmann, J. R. Brandon, G. A. Scarsbrook, et al. Properties of bulk polycrystalline CVD diamond [J]. Diamond Relat. Mater., 1994, 3(4-6): 303-312.
    [19] R. S. Sussmann, J. R. Brandon, S. E. Coe, et al. CVD diamond: a new engineering material for thermal, dielectric and optical applications [J]. Industr. Diamond Rev., 1998, 58 (578): 69-77.
    [20] W. Adam. Performance of irradiated CVD diamond micro-strip sensors [J]. Nucl. Instr. Meth. A, 2002, 476(3): 706-712.
    [21] H. Kagan. Recent advances in diamond detector development [J]. Nucl. Instr. Meth. A, 2005, 541(1-2): 221-227.
    [22] D. Tromson, A. Brambilla, P. Bergonzo, et al. Influence of temperature on the response of diamond radiation detectors [J]. J. Appl. Phys., 2001, 90(3): 1608-1611.
    [23] Y. Liou, A. Inspektor, R. Weimer and R Messier. Low-temperature diamond deposition by microwave plasma-enhanced chemical vapor deposition [J].Appl. Phys. Lett., 1989, 55(7): 631-633.
    [24] S.–T. Lee, Z. D. Lin, X. Jiang. CVD diamond films: nucleation and growth [J].Materials Science and Engineering., 1999, 25:123-154.
    [25] K. Kurihara, K. Sasaki, M. Kawarada, et al. High rate synthesis of diamond by plasma jet chemical vapor deposition [J]. Appl. Phys. Lett., 1988, 52(6): 437-439.
    [26] A. T.Collins, P. M. Spear. Optically active nickel in synthetic diamond [J]. Appl. Phys. Lett., 1983, 15: 183-187.
    [27] M. C. Polo, J. Cifre, G. Sanchez, et al. Pulsed laser deposition of diamond from graphite target [J]. Appl. Phys. Lett., 1995, 67(4): 485-487.
    [28] C. Sun, W. J. Zhang , C. S. Lee, et al. Nucleation of diamond films by ECR-enhanced microwave plasma chemical vapor deposition [J]. Diamond Relat. Mater., 1999, 8: 1410–1413.
    [29] Gu Changzhi, Jin Zengsun. The Characteristics and Applications of Diamond Film and the Researching Status [J]. Function Material, 1997, 28(3):232-236.
    [30] W. D. Brown, R. A. Beera, H. A. Naseem, et al. State-of-the-art Synthesis and Post-deposition Processing of Large Area CVD Diamond Substractes for Thermal Management [J]. Surface and Coatings Technology, 1996, 86:698-707.
    [31] Katsuhito Yoshida, Hideaki Morigami. Thermal Properties of Diamond/Copper Composite [J]. Microelectronics Reliability, 2004, 44:303-308.
    [32] S. Potocky, A. Kromka, J. Potmesil, et al. Investigation of Nanocrystalline Diamond Films Grown on Silicon and Glass at Substrate Temperature Below 400℃[J]. Diamond & Related Materials, 2007, 16:744-747.
    [33] M. Noda, A. Marui, T. Suzuki, et al. Deposition of Diamond Film on Silicon and Quartz Substrates Located Near DC Plasma [J]. Diamond & Related Materials, 2005, 14:1757-1760.
    [34] N. K. Annamalai, P. Fechner, J. Sawyer. Proceedings 1992 IEEE International SOI Conference,1992:64-65.
    [35] P. C. Karulkar, N. K. Annamalai. Preceedings 1992 IEEE International SOI Conference, 1992(Oct.):108-109.
    [36] A. Aleksov, X. Li, N. Govindaraju, et al. Silicon-on-diamond: An Advanced Silicon-on-insulator Echnology [J]. Diamond & Related Materials, 2005, 14: 308-313.
    [37] A. Aleksov, S. D. Wolter, J. T. Prater, et al. Fabrication and Thermal Evaluation of Silicon on Diamond Wafers [J]. Journal of Electronic Materials, 2005, 34:116-121.
    [38]金曾孙.低成本高质量金刚石膜生长技术及热学方面的应用[J].材料导报,2001,15(2):24-29.
    [39] J. M. Liu, Y. B. Xia, L. J. Wang, et al. Electrical characteristics of UV photodetectors based on ZnO/diamond structure [J]. Applied Surface Science, 2007, 15(10): 1550-1554.
    [40] J. Huang, L. J. Wang, R.Xu, et al. Effect of a buffer layer on the properties of UV photodetectors based on a ZnO/diamond film structure [J]. Semicond. Sci. Technol., 2008, 23: 125018.
    [41] N. Ahmed Surface Acoustic Wave Flow Sensor [C]. IEEE Ultra-sonic Symp. Proc., 1985: 483- 485.
    [42]一之濑生,尾上守夫,坂本直志等,声表面波器件及其应用[M]许昌昆,孟秀林,林江等译,北京:科学出版社, 1984: 1- 2.
    [43] G. Lehmann, M. Schreck and L. Hou. Dispersion of surface acoustic waves in polycrystalline diamond plates [J]. Diamond and Related Materials, 2001, 10(3-7):686-692.
    [44] V. F. Dmitriev. Theory of an SAW Filter Operating in Weakly Coupled Resonance Modes [J]. Thch. Phys., 2003, 48 (2) : 231- 238.
    [45] M. Hikita, N. Matsuura, K. Yokoyama, et al. SAW Front-end-Module for GSM-based Dual-band Cellular Phones with Direct-conversion Demodulation [C]. IEEE T. Mircow. Theory, 2002, 50 (11): 2629- 2638.
    [46] Y. Roh, Y. Lee, S. Lee. Development of a New Design Technique for Surface Acoustic Wave Ladder Filters [J]. Jpn. J. Appl. Phys., 2001, 40 (8): 5173- 5179.
    [47] J. M. Liu, Y. B. Xia, L. J. Wang, et al. Preparation of free-standing diamond films for high frequency SAW devices [J]. Transaction of Nonferrous Metals Society of China, 2006, 16: s298-s301.
    [48] H. K. Chung, J. C. Sung. The rapid growth of thin transparent films of diamond [J]. Materials Chemistry and Physics, 2001, 72(2):130-132.
    [49] M. B. Assouar, F. Benedic, O. Elmazria et al. MPACVD diamond films for surface acoustic wave filters [J]. Diamond and Related Materials, 2001, 10(3-7): 681-685.
    [50] G. Lehmann, M. Schreck, L. Hou et al. Dispersion of surface acoustic waves in polycrystalline diamond plates [J]. Diamond and Related Materials, 2001, 10(3-7):686-692.
    [51] H. Nakahata, H. Kitabayashi, S. Fujii, et al. Fabrication of 2.5 GHz SAW retiming filter with SiO2/ZnO/diamond structure [J]. IEEE Ultrasonics Symposium, 1996: 285-288.
    [52] W. C. Shih, M. J. Wang, I. Nan Lin. Characteristics of ZnO thin film surface acoustic wave devices fabricated using nanocrystalline diamond film on silicon substrates [J]. Diamond and Related Materials, 2008, 17(3): 390-395.
    [53] Barbara Paci, Amanda Generosi, Valerio Rossi Albertini, et al. A study of highly c-axis oriented AlN films for diamond-based surface acoustic wave devices: Bulk structure and surface morphology [J]. Sensors and Actuators A: Physical, 2007, 137(2): 279-286.
    [54] S. S. Zhgoon, Q. Zhang, S. F. Yoon, et al. surface acoustic waves in diamond-like carbon films onLiNbO3 [J]. Diamond and Related Materials, 2000, 9(8): 1430-1434.
    [55] M. B. Assouar, O. Elmazria, R. J. Jiménez Riobóo, et al. Modelling of SAW filter based on ZnO/ diamond/ Si layered structure including velocity dispersion Alnot [J]. Applied Surface Science, 2000, 164: 200-204.
    [56] M. B. Assouar, R. J. Jiménez Riobóo, O. Elmazria, et al. Study of effect of deposition temperature of AlN films on SAW velocity using Brillouin spectroscopy [J].Diamond & Related Materials,2007 16:1417–1420.
    [57] V. Mortet, O. Elmazria, M. Nesladeka, et al. Study of aluminium nitride/ freestanding diamond surface acoustic waves filters [J]. Diamond and Related Materials 2003, 12: 723–727.
    [58] Won Taeg Lim, Byoung Keun Son, Dong Hae Kang, et al. Structural properties of AlN films grown on Si, Ru/Si and ZnO/Si substrates [J]. Thin Solid Films, 2001, 382: 56-60.
    [59] Jingze Tiana, Qing Zhang, Q. Zhou, et al.Correlation between adhesion of diamond-like carbon film on LiTaO3 substrate and SAW velocity [J]. Surface & Coatings Technology, 2005, 198: 198– 201.
    [60] M. B. Assouar, F. Benedic, O. Elmazria, et al. MPACVD diamond films for surface acoustic wave filters [J]. Diamond and Related Materials, 2001, 10(3-7): 681-685.
    [61]赵谢群,邱向东,林鸿溢.氧化锌薄膜的研究与开发进展[J].半导体技术,1998(6):8-12.
    [62]吕建国,叶志镇. ZnO薄膜的最新研究进展[J].功能材料,2002, 33(6):581-583.
    [63] H. Nakahata, A. Hachigo, S. Shikata, et al. High Frequency Surface Acoustic Wave Filter Using ZnO/IDT/diamnond/Si Structure [J]. IEEE. Ultrason. Symp. Proc, 1992(4): 377-379.
    [64] S. Shikata, H. Nakahata, A. Hachigo, et al. 1.5GHz SAW bandpass filter using poly-crystal diamond [J]. IEEE. Ultrason. Symp.Proc, 1993(5): 277-284.
    [65] H. Nakahata, H. Kitabayashi, S. Fujii, et al. Fabrication of 2.5GHz SAW retiming filter with SiO2/ZnO/IDT/dianmond/Si structure [J]. IEEE. Ultrason. Symp. Proc, 1996(3): 285-286.
    [66] H. Nakahata, A. Hachigo, K. Itakuta, et al. Fabrication of High Frequency SAW Filters from 5 to 10 GHz using SiO2/ZnO/Diatnond Structure [J]. IEEE. Ultrason. Symp. Proc, 2000(6): 349-355.
    [67] L. J. Wang, Y. B. Xia, H. J. Shen, et al. Infrared optical properties of diamond films and electrical properties of CVD diamond detectors [J]. J. Phys. D: Appl Phys, 2003, 36:2548-2552.
    [68] A. Bizzarri, F. Bogani, M. Bruzzi, et al. Luminescence and conductivity studies on CVD diamond exposed to UV light [J]. Nucl Instr and Meth, 1999, 426 (A):169-172.
    [69] J. Hiscock, A. T. Collins. Comparison of diamond and silicon ultraviolet photodetectors [J]. Diamond and Related Materials, 1999, 8:1753-1758.
    [70] M. G. Donato, G. Faggio, M. Marinelli, et al. High quality CVD diamond for detection applications:structural characterization [J]. Diamond and Related Materials, 2001, 10:1788-1793.
    [71] S. P. Lansley, O. Gaudin, M. D. Whitfield, et al. Diamond deep UV photodetectors: reducing charge decay times for 1-kHz operation [J]. Diamond and Related Materials, 2000, 9:195-200.
    [72] M. D. Whitfield, S. P. Lansley, O. Gaudin, et al. Diamond photoconductors: operational lifetime and radiation hardness under deep-UV excimer laser irradiation [J]. Diamond and Related Materials, 2001, 10:715-721.
    [73] S. P. Lansley, O. Gaudin, H. Ye, et al. Imaging deep UV light with diamond-based systems [J]. Diamond and Related Materials, 2002, 11:433-436.
    [74] S. P. Lansley, R. D. Mckeag, M. D. Whitfield, et al. Diamond photodetector response to deep UV excimer laser excitation [J]. Diamond and Related Materials, 2003, 12:677-681.
    [75] R. Mahon, L. Allers, R. J. Ott, et al. Preliminary results from CVD diamond detectors for biomolecular imaging [J]. Nuclear Instruments and Methods in Physics Research A, 1997, 392:274-280.
    [76] R. Mahon, J. H. Macdonald, A. Mainwood, et al. Characterisation of CVD diamond as a detector of DNA [J]. Diamond and Related Materials, 1999, 8:1748-1752.
    [77] J. F. Hochedez, P. Brgonzo, M. C. Castex, et al. Diamond UV detector for future solar physics missions [J]. Diamond and Related Materials, 2001, 10:673-680.
    [78] J. F. Hochedez, J. Alvarez, F. D. Auret, et al, Recent progresses of the BOLD investigation towards UV detectors for the ESA Solar Orbiter [J]. Diamond and Related Materials, 2002, 11:427-432.
    [79] M. D. Whitfield, S. P. Lansley, O. Gaudin, et al. Diamond photodetector for next generation 157-nm deep-UV photolithography tools [J]. Diamond and Related Materials, 2001, 10:693-697.
    [80] H. L. Lu, Y. M. Zhang, Y. M. Zhang, et al. A comprehensive model of frequency dispersion in 4H–SiC MESFET [J]. Solid-State Electronics, 2009, 53: 285–291.
    [81] Yasuhiro Ueda, Yasuhiko Nomura, Seiji Akita, et al. Characteristics of 4H-SiC Pt-gate metal-semiconductor field-effect transistor for use at high temperatures [J]. Thin Solid Films, 2008, 517: 1468–1470.
    [82] Yuki Niiyama, Hiroshi Kambayashi, Shinya Ootomo, et al. 250 OC operation normally-off GaN MOSFETs [J]. Solid-State Electronics, 2007, 51:784–787.
    [83] E. Tschumak, M. P. F. deGodoy, D. J. As, et al. Insulating substrates for cubic GaN-based HFETs [J]. Microelectronics Journal, 2009, 40: 367–369.
    [84] H. J. Looi, Lisa Y.S. Pang, Michael D. Whitfield, et al. Progress towards high power thin film diamond transistors [J]. Diamond and Related Materials, 1999, 8: 966-971.
    [85] H. El-Hajj, A. Denisenko, A. Kaiser, et al. Diamond MISFET based on boron delta-doped channel [J]. Diamond & Related Materials, 2008, 17:1259–1263.
    [86] T. Watanabe, T. Teraji, T. Ito. Fabrication of diamond p–i–p–i–p structures and their electrical and electroluminescence properties under high electric fields [J]. Diamond & Related Materials, 2007, 16: 112–117.
    [87] L. Y. S. Pang, S. S. M. Chan, C. Johnston, et al. A thin film diamond p-channel field-effect transistor [J]. Appl. Phys. Lett., 1997, 70, 339-341.
    [88] B. A. Fox, M. L. Hartsell, D. M. Malta, et al. Diamond devices and electrical properties [J]. Diamond Relat. Mater., 1995,4: 622-627.
    [89] M. Kasu, K. Ueda, H. Ye, et al. High RF output power for H-terminated diamond FETs [J].Diamond & Related Materials, 2006, 15:783–786.
    [90] K. Ueda, M. Kasu, Y. Yamauchi, et al. Characterization of high-quality polycrystalline diamond and its high FET performance [J]. Diamond & Related Materials, 2006, 15: 1954–1957.
    [91] M. Kubovic, K. Janischowsky, E. KohnSurface channel MESFETs on nanocrystalline diamond [J]. Diamond & Related Materials, 2005, 14: 514– 517.
    [92] Stuart P. Lansley, H. J. Looi, Y. Y. Wang, A thin-film diamond phototransistor [J]. Appl. Phys. Lett., 1999, 74(4), 615-617.
    [93] M. I. Landstrass, K. V. Ravi. Hydrogen Passivation of Electrically Active Defects in Diamond [J]. Appl. Phys. Lett., 1989, 55: 1391-1393.
    [94] S. Albin, L. Watkins. Electrical properties of hydrogenated diamond [J]. Appl. Phys. Lett., 1990,56: 1454-1456.
    [95] K. Tsugawa, K. Kitatani, H. Noda, A. Hokazono, K. Hirose, M. Tajima, H. Kawarada. High-performance diamond surface-channel field-effect transistors and their operation mechanism [J]. Diamond & Related Materials, 1999, 8: 927–933.
    [96] A. Hokazono, K. Tsugawa, H. Umezana, K. Kitatani, H. Kawarada. Surface p-channel metal-oxide-semiconductor transistors fabricated on hydrogen terminated (001) surfaces of diamond [J]. Solid-State Electronics, 1999, 43: 1465-1471.
    [1] Q. F. Su, Y. B. Xia, L. J. Wang, et al. Influence of texture on optical and electrical properties of diamond films [J]. Vacuum, 2007, 5(5): 644-648.
    [2]张贵锋,耿东生,李兴无,郑修麟.金刚石薄膜形核与长大动力学的研究[J].材料科学与工艺,1997, 5(3): 30-34.
    [3]高巧君,林栋增.在强碳化物形成元素衬底上生长金刚石薄膜的物理机制探索[J].物理学报,1992,41(5):798-803.
    [4] L. J. Wang, Y. B. Xia, H. J. Shen, et al. Infrared optical properties of diamond films and electrical properties of CVD diamond detectors [J]. J. Phys. D: Appl. Phys., 2003, 36 (20): 2548-2552.
    [5]陈光华,张兴旺,季亚英,严辉.金属和金刚石表面接触的电学特性的研究[J].物理学报,1997, 46 (6): 1188-1192.
    [6] A. C. Ferrari and J. Robertson. Resonant Raman spectroscopy of disordered amorphous, and diamond-like carbon, Phys. Rev. B, 2001, 64 (7): 0754141-1-13.
    [7] S.A. Solin and A.K. Ramdas. Raman spectrum of diamond, Phys. Rev. B, 1970, 1:1687–1698.
    [8] R. J. Nemanich and S. A. Solin. First- and second-order Raman scattering from finite-size crystals of graphite, Phys. Rev. B, 1979, 20: 392–401.
    [9] A. C. Ferrari and J. Robertson. Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 2000, 61(20): 14095–14107.
    [10] A. C. Ferrari. Determination of bonding in diamond-like carbon by Raman spectroscopy, Diamond Relat. Mater., 2002, 11: 1053–1061.
    [11] S. Prawer, R. J. Nemanich. Raman spectroscopy of diamond and doped diamond [J]. Phil. Trans. R. Soc. Lond. A, 2004, 362 (1824): 2537-2565.
    [12] M. Silveira, M. Becucci, E. Castellucci, et al. Non-diamond carbon phases in plasma-assisted deposition of crystalline diamond films: a Raman study [J]. Diamond Relat Mater, 1993, 2 (9): 1257-1262.
    [13] B. R. Huang and W. Z. Ke. Surface properties on both sides of the isolated diamond film [J]. Materials Science and Engineering, 1999, B64: 187-191.
    [14] I. W. Kim, D. S. Lee, S. H. Kang, et al. Antiferroelectric characteristics and low frequency dielectric dispersion of Pb1.075La0.025 (Zr0.95Ti0.05)O3 thin films [J]. Thin solid films, 2003, 441(1-2): 115-120.
    [15] S. Selvasekarapandian and M. Vijayakumar. Frequency-dependent conductivity and dielectric studies on LixV2O5 (x=0.6–1.6) [J]. Solid State Ionics, 2002, 148(3-4): 329-334.
    [1] H. El-Hajj, A. Denisenko, A. Kaiser, et al. Diamond MISFET based on boron delta-doped channel [J]. Diamond & Related Materials, 2008, 17:1259–1263.
    [2] T. Watanabe, T. Teraji, T. Ito. Fabrication of diamond p–i–p–i–p structures and their electrical and electroluminescence properties under high electric fields [J]. Diamond &Related Materials, 2007, 16: 112–117.
    [3] L. Y. S. Pang, S. S. M. Chan, C. Johnston, et al. A thin film diamond p-channel field-effect transistor [J]. Appl. Phys. Lett., 1997, 70, 339-341.
    [4] B. A. Fox, M. L. Hartsell, D. M. Malta, et al. Diamond devices and electrical properties [J]. Diamond Relat. Mater., 1995,4: 622-627.
    [5] M. Kasu, K. Ueda, H. Ye, et al. High RF output power for H-terminated diamond FETs [J].Diamond & Related Materials, 2006, 15:783–786.
    [6] K. Ueda, M. Kasu, Y. Yamauchi, et al. Characterization of high-quality polycrystalline diamond and its high FET performance [J]. Diamond & Related Materials, 2006, 15: 1954–1957.
    [7] M. Kubovic, K. Janischowsky, E. KohnSurface channel MESFETs on nanocrystalline diamond [J]. Diamond & Related Materials, 2005, 14: 514– 517.
    [8] Stuart P. Lansley, H. J. Looi, Y. Y. Wang, A thin-film diamond phototransistor [J]. Appl. Phys. Lett., 1999, 74(4), 615-617.
    [9] M. I. Landstrass, K. V. Ravi. Hydrogen Passivation of Electrically Active Defects in Diamond [J]. Appl. Phys. Lett., 1989, 55: 1391-1393.
    [10] S. Albin, L. Watkins. Electrical properties of hydrogenated diamond [J]. Appl. Phys. Lett., 1990, 56: 1454-1456.
    [11] M. Yoshikawa, G. Katagiri, H. Ishida, et al. Characterization of crystalline quality of diamond films [J]. Appl. Phys. Lett., 1989, 55(25): 2608-2610.
    [12] U. Hitoshi, T. Hirotada, A. Takuya, et al. Potential applications of surface channel diamond field-effect transistors [J]. Diamond & Related Materials, 2001, 10: 1743–1748.
    [13] L. Pereira, E. Pereira, H. Gomes, et al. Microelectrical characterisation of diamond films: an attempt to understand the structural influence on electrical transport phenomena [J]. Diamond and Related Materials, 2000: 1061–1065.
    [14] B. Fiegl, R. Kuhnert, M. Ben-Chorin, et al. Evidence for grain boundary hopping transport in polycrystalline diamond films [J]. Appl. Phys. Lett., 1994, 65 , 371-373.
    [15] J. Nan, H. Akimitsu and I. Toshimichi. Nitrogen Doping Effects on Electrical Properties of Diamond Films [J]. Jpn. J. Appl. Phys., 1998, 37: L1175-L1177.
    [16] Y. Bar-Yam and T. D. Moustakas. Defect-induced stabilization of diamond films [J]. Nature, 1989, 342: 786– 787.
    [17] J. Nan and I. Toshimichi. Electrical properties of surface conductive layers of homoepitaxial diamond films [J]. JOURNAL OF APPLIED PHYSIC, 1999, 85(12): 8267-8273.
    [18] J. B. Cui, J. Ristein and L. Ley. Dehydrogenation and the surface phase transition on diamond (111): kinetics and electronic structure [J]. Phys. Rev. B, 1999, 59:5847-5856.
    [19] C. Su, J.-C. Lin. Thermal desorption of hydrogen from the diamond C(100) surface [J]. Surface Science, 1998, 406: 149–166.
    [20] F. Maier, M. Riedel, B. Mantel, et al. Origin of Surface Conductivity in Diamond [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (16): 3472-3475.
    [21] H. Kazushi, Y. Sadanori, O. Hideyo, et al. Study of the effect of hydrogen on transport properties in chemical vapor deposited diamond films by Hall measurements [J]. Appl. Phys. Lett., 1996, 68 (3):376-378.
    [22] C. L. Cheng, C F. Chen, W. C. Shaio, et al. The CH stretching features on diamonds of different origins [J]. Diamond & Related Materials, 2005, 14: 1455– 1462.
    [23] D. Ballutaud, T. Kociniewski, J. Vigneron, et al. Hydrogen incorporation, bonding and stability in nanocrystalline diamond films [J]. Diamond & Related Materials, 2008, 17: 1127–1131.
    [24]查良镇,桂东,朱怡峥.二次离子质谱学的新进展[J] .真空科学与技术,2001,21(2): 129-136.
    [25] F. Adams, R. Gijbels and R. V. Grieken.祝大昌译.Inorganic Mass Spectrometry [M].上海:复旦大学出版社, 1993: 126-258.
    [26] A. Benninghoven, F. G. Rudenauer and H. W. Werner. Secondary Ion Mass Spectrometry [M]. Wiley, John &Sons, Incorporated, 1987.
    [27]王铮,曹永明等.二次离子质谱分析[J].上海计量测试,2003,30(3):42- 46.
    [1] H. L. Lu, Y. M. Zhang, Y. M. Zhang, et al. A comprehensive model of frequency dispersion in 4H–SiC MESFET [J]. Solid-State Electronics, 2009, 53: 285–291.
    [2] Yasuhiro Ueda, Yasuhiko Nomura, Seiji Akita, et al. Characteristics of 4H-SiC Pt-gate metal-semiconductor field-effect transistor for use at high temperatures [J]. Thin Solid Films, 2008, 517: 1468–1470.
    [3] Yuki Niiyama, Hiroshi Kambayashi, Shinya Ootomo, et al. 250 OC operation normally-off GaN MOSFETs [J]. Solid-State Electronics, 2007, 51:784–787.
    [4] E. Tschumak, M. P. F. deGodoy, D. J. As, et al. Insulating substrates for cubic GaN-based HFETs [J]. Microelectronics Journal, 2009, 40: 367–369.
    [5] H. El-Hajj, A. Denisenko, A. Kaiser, et al. Diamond MISFET based on boron delta-doped channel [J]. Diamond & Related Materials, 2008, 17:1259–1263.
    [6] T. Watanabe, T. Teraji, T. Ito. Fabrication of diamond p–i–p–i–p structures and their electrical and electroluminescence properties under high electric fields [J]. Diamond & Related Materials, 2007, 16: 112–117.
    [7] L. Y. S. Pang, S. S. M. Chan, C. Johnston, et al. A thin film diamond p-channel field-effect transistor [J]. Appl. Phys. Lett., 1997, 70, 339-341.
    [8] B. A. Fox, M. L. Hartsell, D. M. Malta, et al. Diamond devices and electrical properties [J]. Diamond Relat. Mater., 1995,4: 622-627.
    [9] Y. G. Chen, M. Ogura, S. Yamasaki, et al. Investigation of specific contact resistance of ohmic contacts to B-doped homoepitaxial diamond using transmission line model [J].Diamond Relat. Mater., 2004, 13: 2121—2124.
    [10] P. E.Viljoen, E. S. Lambers and P. H. Holloway, J. Vac. Sci. Techn. B, 1994, 12: 2997-3005.
    [11] Q. F. Su, Y. B. Xia, L. J. Wang, et al. Optical and electrical properties of different oriented CVD diamond films[J]. Appl. Surf. Sci., 2006, 252(23): 8239-8242.
    [12] S. M. Sze. Semiconductor devices: Physics and Technology [M]. 2nd, ed. New York: J. Wiley, 2001: 217-228.
    [13]刘恩科,朱秉升,罗晋生.半导体物理[M].第4版.北京:国防工业出版社,1994:178-183.
    [14] K. L. Moazed, J. R. Zeidler, M. J. Taylor. A thermally activated solid state reaction process for fabricating ohmic contacts to semiconducting diamond [J]. J. Appl. Phys., 1990, 68(5): 246-2254.
    [15] T. Tachibana, B. E. Willias, J. T. Glass. Correlation of the electrical properties of metal contacts on diamond films with the chemical nature of the metal-diamond interface [J]. Phys. Rev. B, 1992, 45(20): 11968-11974.
    [16]龙闰,戴瑛,刘东红,等.p型金刚石欧姆接触的研究[J].半导体技术,2006, 31(1):44-47.
    [1] J. F. Muth, R. M. Kolbas, A. Sharma, et al. structure and absorption coefficient measurements of Zn0 single crystal epitaxial films deposited by pulsed laser deposition [J]. Journal of Applied Physics, 1999, 85(2), 78-84.
    [2] S. T. Lee, Z. Lin and X. Jiang. CVD diamond films: nucleation and growth [J]. Mat. Sci. Eng, 1999, 25(4): 123-154.
    [3] L. H. Shu, A. Christou and D. F. Barbe. High temperature device simulation and thermal characteristics of GaAs MESFETs on CVD diamond substrates [J]. Microelectron. Reliab, 1996, 36(9): 1177-1189.
    [4] B. P. Zhang, K. Wakatsuki, N. T. Binh, et al. Effects of growth temperature on the characteristics of ZnO epitaxial films deposited by metalorganic chemical vapor deposition [J]. Thin Solid Films, 2004, 449: 12-19.
    [5] A. Setiawan, H. J. Ko, S. K. Hong, et al. Study on MgO buffer in ZnO layers grown by plasma-assisted molecular beam epitaxy on Al2O3 (0001) [J]. Thin Solid Films, 2003, 445(2): 213–218.
    [6] K. Koike, T. Komuro, K. Ogata, et al. CaF2 growth as a buffer layer of ZnO/Si heteroepitaxy [J]. Physica E, 2004, 21(2-4): 679–683.
    [7] A. Nahhas, H. K. Kim, J. Blachere. Epitaxial growth of ZnO films on Si substrates using an epitaxial GaN buffer [J]. Appl Phys Lett, 2001, 78(11):1511–1513.
    [8] A. A. Ashrafi, A. Ueta, H. Kumano, et al. Role of ZnS buffer layers in growth of zincblende ZnO on GaAs substrates by metalorganic molecular-beam epitaxy [J]. J Cryst Growth, 2000, 221(3): 435–439.
    [9] X. F. Zhu, B. X. Lin, G. H. Liao, et al. The effect of Zn buffer layer on growth and luminescence of ZnO films deposited on Si substrates [J]. J Cryst Growth, 1998, 193(3): 316–321.
    [10] I. W. Kim, H. S. Kim and Y. B. Kwon. Effect of ultra-thin buffer on the structure of highly mismatched epitaxial ZnO during sputter growth [J]. Applied Surface Science, 2005, 241: 261–265.
    [11] F. Xiu, Z. Yang, D. Zhao, Liu J, et al. ZnO growth on Si with low-temperature ZnO buffer layers by ECR-assisted MBE [J]. J Cryst Growth, 2006, 286: 61–65.
    [12] J. Lee, D. Lee, D. Lim, et al. Structural, electrical and optical properties of ZnO: Al films deposited on flexible organic substrates for solar cell applications [J]. Thin Solid Films, 2007, 515(15): 6094-6098.
    [13] M. A. Lucio-Lopez, A. Maldonado, Castanedo-Perez, et al. Thickness dependence of ZnO: In thin films doped with different indium compounds and deposited by chemical spray [J]. Sol. Energy Mater. Sol. Cells, 2006, 90(15): 2362-2376.
    [14] M. Hakansson, Q. Jiang, M. Helin, et al. Cathodic Tb (III) chelate electrochemiluminescence at oxide-covered magnesium and n-ZnO: Al/Mg0 composite electrodes [J]. Electrochim. Acta, 2005, 51(2): 289-296.
    [15]汪雷.ZnO薄膜生长技术的最新研究进展[J].材料导报, 2002, 16(9): 3336-3339.
    [16] H. M. Zhou, D. Q. Yi, Z. M. Yu, et al. Preparation of aluminum doped zinc oxide films and the study of their microstructure, electrical and optical properties [J]. Thin Solid Films, 2007, 515(17): 6909-6914.
    [17]张云洞,刘洪祥.离子束溅射沉积干涉光学薄膜技术[J].光电工程, 2001, 28(5): 70-72.
    [18] J. Lee, Z. Li, M. Hodgson, et al. Structural, Electrical and Transparent Properties of ZnO thin Films prepared by Magnetron Sputtering [J]. Current Applied Physics, 2004, 4: 398-401.
    [19]马艳,杜国同,杨天棚,等. MOCVD法生长Zn0薄膜的结构及光学特性[J].发光学报, 2004 ,25(3): 305-307.
    [20] S. Chakrabarti, D. Ganguli and S. Chaudhuri. Substrate Dependencs of Preferred Orientation in Sol-gel-derived Zinc Oxide Filrns[J]. Materials letters, 2004, 58: 3952-3957.
    [21] B. J. Lokhande, P. S. Patil and M. D. Uplane. Studies on Structural, Optical and Electrical properties of Boron Doped Zinc Oxide Films Prepared by Spray Pyrolysis Technique[J]. Physica B, 2001(302):59-63.
    [22]王丹,张喜田,刘益春,等.热氧化法制备纳米Zn0薄膜及其发光特性的研究[J].功能材料, 2003, 34(5): 570-572.
    [23]梁红伟,吕有明,申德振,等.利用P-MBE方法在(400)Si衬底上生长Zn0薄膜[J].发光学报, 2003, 24(3): 275-278.
    [24] H. Kim, A. Pique, J. S. Horwitz, et .al. Effect of Aluminum Doping on Zinc Oxide Thin Films Grown by Pulsed Laser Deposition for Organic Light-emitting Devices [J]. Thin Solid Films, 2000, 377-378: 798-802.
    [25] Atneelrd and Kellypj. Recent advances in magnetron sputtering [J]. Surface and Coatings Technology, 1999, 112: 170-176.
    [26]丛秋滋.多晶二维X射线衍射[M],第一版.北京:科学出版社, 1997: 31-38.
    [27] Y. Yoshino, K. Inoue, M. Takeuchi, et al. Effect of substrate surface morphology and interface microstructure in ZnO thin films formed on various substrates [J]. Vacuum, 2000, 59: 403-410.
    [28] J. B. Lee, S. H. Kwak and H. J. Kim. Effects of surface roughness of substrates on the c-axis preferred orientation of ZnO films deposited by r.f. magnetron sputtering [J]. Thin Solid Films, 2003, 423: 262-266.
    [29] T. Ohshima, R. K. Thareja, T. Ikegami, et al. Preparation of ZnO thin films on various substrates by pulsed laser deposition [J]. Surface and Coatings Technology. 2003, 169-170: 517-520.
    [30] X. H. Li, A. P. Huang, M. K. Zhu, et al. Influence of substrate temperature on the orientation and optical properties of sputtered ZnO films [J]. Materials Letters, 2003, 57: 4655– 4659.
    [31] ] I. T. Tanga, Y. C. Wang, W. C. Hwang, et al. Investigation of piezoelectric ZnO film deposited on diamond like carbon coated onto Si substrate under different sputtering conditions [J]. Journal of Crystal Growth, 2003, 252: 190-198.
    [32] S. S. Lin, J. L. Huang, D. F. Li. The effects of r.f. power and substrate temperature on the properties of ZnO films [J]. Surface and Coatings Technology, 2004, 174: 173-181.
    [33] W. Gao and Z. W. Li. ZnO thin films produced by magnetron sputtering [J]. Ceramics International, 2004, 30: 1155-1159.
    [34] R. J. Hong, J. B. Huang, H. B. He, et al. Influence of different post-treatments on the structure and optical properties of zinc oxide thin films[J]. Applied Surface Science, 2005, 242: 346–352.
    [35] Z. B. Fang, Z. J. Yana, Y. S. Tan, et al. Influence of post-annealing treatment on the structure properties of ZnO films [J]. Applied Surface Science, 2005, 241: 303–308.
    [36] S. Dutta, M. Chakrabarti, S. Chattopadhyay, et al. Defect dynamics in annealed ZnO by positron annihilation spectroscopy [J]. J. Appl. Phys, 2005, 98 (053513): 1-3.
    [37]汪冬梅,吕瑁,陈长奇,等. RF磁控溅射法制备ZnO薄膜的XRD分析[J].理化检验-物理分册, 2006, 42(1):19-22.
    [38] M. K. Puchert, P. Timbrell .and R. N. Lamb. Postdeposition annealing of radio frequency magnetron sputtered ZnO films [J]. J. Vac. Sci. Technol. A, 1996, 14(4): 2220.
    [39] Y. G. Wang, S. P. Lau, H. W. Lee, et al. Comprehensive study of ZnO films prepared by filtered cathodic vacuum arc at room temperature[J]. Journal of Applied Physics, 2003, 94: 1597.
    [40] H. Y. Ki, J. W. Choi and D. H. Lee. Characteristics of ZnO thin films deposited onto Al/Si substrates by r.f magnetron sputtering [J]. Thin Solid Films, 1997, 302: 116-121.
    [41] Z. Fang, Y. Wang, D. Xu, et al. Blue luminescent center in ZnO films deposited on silicon substrates [J]. Optical Materials, 2004, 26(3):239-242.
    [42] K. Vanheusden, W. L. Cai and L. D. Zhang. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors [J]. Appl. Phys. Lett., 1996, 68(3): 403-405.
    [43] B. Kyu-Hyun, H. Deuk-Kyu and J. Myoung. Effects of ZnO buffer layer thickness on properties of ZnO thin films deposited by radio-frequency magnetron sputtering[J]. Applied Surface Science, 2003, 207(1-4): 359–364.
    [44] Y. Zhang, G. Du, B. Liu, et al. Effects of ZnO buffer layer thickness on properties of ZnO thin films deposited by low-pressure MOCVD [J]. Journal of Crystal Growth, 2004 , 262: 456–460.
    [45]张德恒,王卿璞,薛忠营.不同衬底上ZnO薄膜的紫外光致发光[J].物理学报, 2003, 52 (6): 1484-1487.
    [46] W. Gao and Z. W. Li. ZnO thin films produced by magnetron sputtering [J]. Ceram. Int, 2004, 30(7): 1155-1159.
    [47] Q. A. Xu, J. W. Zhang, K. R. Juc, et al. ZnO thin film photoconductive ultraviolet detector with fast photoresponse [J]. Crys. Growth, 2006, 289(1) 44-47.
    [48] C. X. Wang, G. W. Yang and C. X. Gao. Highly oriented growth of n-type ZnO films on p-type single crystalline diamond films and fabrication of high-quality transparent ZnO/diamond heterojunction[J]. Carbon, 2004, 42(2): 317-321.
    [49] S. Salvatori, E. Pace, M. C. Rossi and F. Galluzzi. Photoelectrical characteristics of diamond UV detectors: Dependence on device design and film quality [J]. Diam. Relat. Mater. 1997, 6(2-4) 361-366.
    [50] E. K. Souw and R. J. Meilunas. Response of CVD diamond detectors to alpha radiation [J]. Nucl. Instrum. Meth A, 1997,400 (1): 69-86
    [51] Y. R. Ryu, S. Zhu, J. D. Budai, et al. Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition [J]. J. Appl. Phys., 2000, 88(1): 201-204

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700