用户名: 密码: 验证码:
氧化物和有机小分子中磁性及相关特性的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着密度泛函理论和第一性原理计算方法的发展以及计算机技术的飞速进步,采用第一性原理对材料的性质进行研究已经成为凝聚态物理和材料科学领域的一门重要学科。本论文的工作主要是通过基于密度泛函理论的第一性原理计算,结合分子轨道理论、半导体理论以及磁学相关知识对氧化物半导体材料及有机小分子中的磁性及其相关特性进行探索和研究,涉及的领域主要包括磁性半导体等相关知识。
     自旋电子学又称自旋传输电子学或自旋基电子学,是当今凝聚态物理研究中的热点领域,它不仅利用了电子的电荷自由度而且同时利用其自旋自由度作为信息的载体,通过材料的带隙和自旋子带的劈裂对电子电荷和自旋的物理行为进行调控,进而实现信息的传输、处理和存储,制备把标准微电子学和自旋相关效应相结合的器件。铁磁性半导体的研究是自旋电子学研究中的一个重要领域,它主要寻找把半导体性质和铁磁体性质相结合的材料。铁磁性半导体的优点是它们具有作为自旋极化的载流子源的潜力,并且很容易集成到半导体器件中。理想的铁磁半导体要求居里温度大于室温,并且不仅可以引入p型掺杂,同时还可以制备以型半导体。传统上主要是通过在半导体中掺杂过渡金属离子来制备铁磁半导体的,通过过渡金属离子间的铁磁耦合作用使半导体材料具有本征磁性,而不改变半导体材料的主要晶格结构等半导体性质。过渡金属元素在半导体材料中的溶解度通常比较低,过渡金属离子间的距离太大不足以产生铁磁耦合作用;而近邻的掺杂离子间也可能形成反铁磁耦合作用。同时,由于过渡金属离子容易形成团簇及二次相等结构,过渡金属掺杂的半导体材料中的磁性是否本征等仍具有争议。另外,实验上发现本征缺陷对材料的磁性有重要影响,甚至在未掺杂的半导体或者绝缘体、金属材料中发现了室温铁磁性,这给研究铁磁半导体材料中的磁性来源及其耦合机制带来了新的挑战。因此,通过第一原理计算对过渡金属掺杂半导体材料的磁性、缺陷对过渡金属掺杂半导体材料磁性的影响、未掺杂半导体或绝缘体、金属材料中的磁性来源进行研究,对于理解铁磁半导体的磁性来源,进一步制备具有高居里温度的本征铁磁半导体具有重要意义。
     传统的自旋电子学研究主要集中在无机领域,而有机自旋电子学是一门新的有前景的研究学科,它采用有机材料作为媒介来传输或者调控自旋极化信号,是有机电子学和自旋电子学相结合的学科。一方面有机材料具有价格低廉、重量轻、柔韧性好、可设计性强等优点;另一方面,利用电子自旋又可以制备非挥发性器件,同时由于自旋动力学的响应能量尺度比电荷小的多,自旋电子学器件还具有潜在的高速率、低功耗等优点。有机半导体在自旋电子学领域最有吸引力的方面是它们具有非常弱的自旋散射机制,其自旋轨道耦合作用非常小,这预示着载流子的自旋极化可以维持相当长的时间。由于有机半导体与铁磁电极材料电导率不匹配导致了自旋注入效率低下,开发有机磁性半导体是可能的解决方案之一,而采用过渡金属元素掺杂有机材料来制备有机铁磁半导体是人们首先想到的研究方法。
     第一性原理计算作为凝聚态物理学中重要的研究方法,在以上领域也具有广泛的应用。通过计算可以对材料的磁性及相关特性进行研究分析,从理论上解释实验现象,并且可以为实验提供新的思想和指导。本论文的主要研究内容和结论如下:
     1.未掺杂氧化镁中的磁性
     首先对未掺杂氧化镁中的磁性来源进行了研究。研究结果表明Mg空位可以在MgO中引起局域磁矩,而氧空位无论浓度如何都不能产生局域磁矩。局域磁矩主要来源于部分占据的eg-和tlu-轨道(或者只有eg-轨道),键导(through-bond)自旋极化机制可以传输MgO中的铁磁性。对两个Mg空位掺杂的块体MgO基态结构,反铁磁态与铁磁态的能量差只有28 meV,不足以克服室温下的热扰动,同时块体中镁空位的形成能较高,缺陷数量较少。因此,室温下块体结构中的铁磁态不稳定。对MgO薄膜,Mg空位倾向于在表面区域形成,因为表面位置上Mg空位的形成能比次表面和块体内部要低。更进一步地,MgO量子点中Mg空位的形成能降低非常多,这允许更大浓度的Mg空位形成。结论是,在量子点中当大量浓度的Mg空位存在从而引入足够的空穴时,磁性可以持续。这与在MgO的纳米晶结构中发现了磁性的实验结果是一致的。
     2.未掺杂二氧化钼中的磁性
     采用第一性原理对未掺杂MoO2中的电子结构和磁学性质进行了研究,计算过程中分别采用了GGA和GGA+U方法。计算结果表明在完美的MoO2中没有磁矩形成。对含有Mo空位的MoO2, GGA的计算结果显示有少量磁矩形成,然而采用GGA+U方法时发现磁矩有明显下降,如果Mo原子的本位(on-site) Coulomb能采用U=-1 eV,则没有任何磁矩可以形成,因此采用GGA计算得到的由Mo空位导致的磁矩可能是由于对Mo原子的本位Coulomb能过度估计的结果。当存在第二种类型(typeⅡ)的氧空位时,无论GGA还是GGA+U的计算结果均显示无论这种类型的空位浓度如何均不能导致体系中局域磁矩的形成。然而,两种方法的结果均显示第一种类型的氧空位(typeⅠ)可以导致体系中形成局域磁矩,并且局域磁矩之间是铁磁耦合的,因此氧空位应该是未掺杂MoO2中磁性的主要来源。两种不同类型的氧空位之间不同的结构性质以及由此导致的电荷密度重分布性质不同是磁性行为不同的原因。对磁性耦合作用,Ruderman-Kittel-Kasuya-Yosida (RKKY)作用和间接的超交换作用机制共同传导磁性。
     3.掺杂氧化锌中的磁性及相关特性
     通过对半导体材料进行掺杂可以改变其性质,不同的掺杂材料以及不同的结构形态对材料的性质有不同的影响。通常掺入3d过渡金属元素是在半导体中引入磁性常用的方法,而掺入其他元素也会对材料的导电、光学等其他相关特性具有重要的影响。我们对过渡金属元素铬(Cr)掺杂氧化锌的磁学性质进行了研究,并且讨论了本征空位对其磁性的影响。研究结果表明,Cr掺入ZnO材料后会在费米能级处引起明显的自旋极化,体系的总磁矩为3.77μB。Cr原子之间的铁磁交换作用是短程的并且随掺入Cr原子间距离的增加而减弱。在只有少量浓度的Cr存在时铁磁态并不稳定。而O空位的存在可以导致半金属态的铁磁态更加稳定,因此可以预期存在更高的居里温TC。另一方面,Zn空位的存在可以导致铁磁稳定性有轻微下降。通过对形成能的计算可以发现,在O富足的条件下,锌空位和铬替代锌形成的VZn+CrZn结合体可以自发形成。然而在Zn富足的条件下,氧空位和铬替代锌形成的VO+CrZn结合体却更容易形成。因此,Cr掺杂的ZnO中会出现一定浓度的本征空位并对磁性产生不同的影响。
     我们还研究了锆(Zr)掺杂氧化锌的结构、电子结构、导电及光学等其他相关特性。一般来说,Zr元素掺入ZnO中会形成n型掺杂。选取不同的超晶胞结构包含Zn15O16Zr、Zn23O24Zr和Zn31O32Zr等分别模拟了ZnO中掺入不同Zr含量的情况。Zr掺入ZnO中一般会形成三种结构:(1)Zr原子取代Zn原子(ZrZn)、(2)Zr原子形成填隙原子(Zri)、(3)Zr原子取代O原子(Zro)。我们对这三种不同的掺杂结构进行了计算,并根据计算结果对其电子结构及光学等相关特性进行了分析,这些理论结果将会较好的解释以前的实验结果。计算结果表明Zrzn缺陷的形成能最低,这预示着ZrZn结构比其他两种结构更容易形成,因而它的浓度在样品中最高,对样品的性质也具有更重要的影响。随着Zr掺杂含量的增加,ZnO的晶格常数会增加,而其光学带隙先变大然后变小,这些结果与以前的实验结果是一致的。对电子能带结构的计算表明,当掺入Zr时,ZrZn缺陷引入ZnO中,其费米能级往导带方向移动,因此导带会出现额外的电子,这会导致掺杂氧化锌出现n型导电性质,并且导电性能会提高,这可能是Zr掺杂ZnO薄膜具有良好导电性的一个重要原因。
     4.钴掺杂8-羟基喹啉铝的磁性
     采用第一性原理计算对过渡金属元素钴(Co)掺杂8-羟基喹啉铝(Alq3)的电子结构和磁学性质进行了研究。计算结果表明Co掺杂Alq3中会出现局域磁矩,并且磁矩主要来源于Co原子上局域化的d轨道。掺杂之后,Co原子与Alq3分子发生相互作用,导致电子从Co原子转移到Alq3分子上。Co原子处于正价,其d轨道上的上下自旋的电子占据不同,因此出现局域磁矩。转移的电子主要局域在喹啉基配位体上,这会导致束缚磁极化子(bound magnetic polarons)的形成。自旋与同一个磁性离子反平行排列的两个束缚磁极化子之间的间接铁磁交换作用会引起集体性的宏观磁性,这可以解释最近的实验结果。
During the past few years, great progress and development have been made on the computer technologies and first principles calculation methods based on density functional theory (DFT). It has become one of the most important areas of condensed matter physics and material science to study the properties of materials using first principle methods. In this dissertation, we studied the magnetic and related properties of oxides and small organic molecular materials using first principles calculations based on DFT as well as molecular orbital theory, the theories and knowledge of semiconductors and magnetism. These studies are related with magnetic semiconductors.
     Until recently, the spin of the electron was ignored in mainstream charge-based electronics. A technology has emerged called spintronics (spin transport electronics or spin base electronics), where it is not the electron charge but the electron spin that carries information, and this offers opportunities for a new generation of devices combining standard microelectronics with spin-dependent effects that arise from the interaction between spin of the carrier and the magnetic properties of the material. This approach can be followed to introduce magnetic elements into nonmagnetic semiconductors to make them magnetic. This category of semiconductors, called diluted magnetic semiconductors (DMSs), is alloy of nonmagnetic semiconductor and magnetic elements. Generally, the approach to make DMSs is by introducing a high concentration of magnetic ions into semiconductors. The introduction of magnetic semiconductors opens up the possibility of using a variety of magnetic phenomena not present in conventional nonmagnetic semiconductors in the optical and electrical devices already established. The major obstacle in making DMSs has been the low solubility of magnetic elements in the compands. Moreover, the magnetic dopants are easy to form clusters or secondary phases which are detrimental to intrinsic DMSs. Some experimental measurements revealed that the observed ferromagnetism in TM-doped DMSs was related with the native defects. Interestingly, unexpected room temperature ferromagnetism has also been observed in undoped wide band gap semiconducting or insulating even metallic thin films and nanoparticles. Though there is a consensus that the ferromagnetism is related with native defects, considerable controversy on the origin of the magnetism still exists. Thus, it is necessary to study the magnetic properties carefully using theoreotical methods.
     Traditionally, the research of spintronics has been focused on inorganic areas. Organic spintronics is a new and promising research field where organic materials are used to mediate or control a spin polarized signal. It is hence a fusion of organic electronics and spin electronics. Organic materials, on one hand, open the way to cheap, low-weight, mechanically flexible, chemically interactive, and bottom-up fabricated electronics. The application of the electron's spin (instead of or in addition to its charge), on the other hand, allows for non-volatile devices. Spintronics devices are also potentially faster and consume less electrical power, since the relevant energy scale for spin dynamics is considerably smaller than that for manipulating charges. The most attractive aspects for spintronics applications in organic semiconductors are the weakness of the spin-scattering mechanism and the very low spin-orbit coupling, implying that the spin polarization of the carriers can be maintained for a very long time. Nevertheless, the low spin injection efficiency, the presence of an "ill-defined layer" and the conductivity mismatch together have impeded further applications. Thus, a possible solution has been proposed by using organic-based magnetic semiconductors. As in the inorganic areas, this can be done by doping magnetic elements into organic semiconductors.
     In this dissertation, we studied the origin of the magnetism in undoped MgO and MoO2; the magnetic properties of Cr doped ZnO and the effect of native vacancies on the magnetic properties; the structure, electronic structure, electrical and optical properties of Zr doped ZnO; the structural and magnetic properties of Co-doped Alq3 by first principles calculations. The detailed contents and main results are given below:
     1. Magnetism in undoped MgO
     The origin of magnetism in undoped MgO has been studied based on density functional theory. It is shown that Mg vacancies can induce local moments in MgO while O vacancies cannot irrespective of the concentration. The origin of the local magnetic moments comes from the partially occupied eg-and tlu- (or only eg) orbitals and the through-bond spin polarization mechanism mediates the ferromagnetism in MgO. For the ground state configuration of bulk MgO with two Mg vacancies, the energy difference between the antiferromagnetic and ferromagnetic states (28 meV) is smaller than the electron thermal energy at room temperature((?)kBT, more than 35 meV), which means that the ferromagnetic state is not stable in the bulk at room temperature. For MgO thin films, Mg vacancies tend to form at the surface region because of the lower formation energy at the surface site than at the subsurface site and in the bulk. Moreover, the formation energy of Mg vacancy in MgO quantum dot decreases much, allowing a larger concentration of Mg vacancies to appear. In conclusion, the magnetism can be sustained in the quantum dot when enough holes are introduced by the large concentration of Mg vacancies. This is consistent with the experimental result of magnetism observed in MgO nanocrystals.
     2. Origin of the magnetism in undoped MoO2
     The electronic and magnetic properties of undoped MoO2 have been studied using first-principles calculations within both the GGA and GGA+U method. The calculated results show that no magnetic moment forms in perfect MoO2. For MoO2 with Mo vacancies, the GGA results show some magnetic moments whereas the GGA+U (U=-1 eV for Mo) results indicate no magnetic moment forms. In the presence of type II O vacancies, both the GGA and GGA+U results show no magnetic moment can form irrespective of the vacancies concentration. Nevertheless, the type I O vacancies always lead to formation of magnetic moments which couple ferromagnetically and should be the main origin of the magnetism in undoped MoO2. The different structural properties and the corresponding charge density redistribution behaviors of the two inequivalent types of oxygen vacancies are the origin of the different magnetic behaviors. For the magnetic interaction, the RKKY interaction and the superexchange mechanism cooperatively underlie the magnetism.
     3. Magnetic and related properties of doped ZnO
     First-principles density-functional theory (DFT) calculations have been performed to study the magnetic properties of ZnO:Cr with and without vacancies. The results indicate that the doping of Cr in ZnO induces obvious spin polarization around the Fermi energy and a total magnetic moment of 3.77μB. The ferromagnetic (FM) exchange interaction between two Cr atoms is short-ranged and decreases with increasing Cr separation distance. It is suggested that the FM state is not stable with low concentration of Cr. The presence of O vacancies can make the half-metallic FM state of the system more stable, so that higher Curie temperature ferromagnetism can be expected. Nevertheless, Zn vacancies can result in the stability of the FM state decreasing slightly. The calculated formation energy shows that Vzn+CrZn complex forms spontaneously under O-rich conditions. However, under Zn-rich conditions, the complex of Vo+CrZn forms more easily. Thus, ZnO doped with Cr may exhibit a concentration of vacancies that influence the magnetic properties.
     The structural, electronic, optical and electrical properties of zirconium-doped zinc oxide have also been investigated by first principle calculations. Three possible structures including substitutional Zr for Zn (Zrzn), interstitial Zr (Zn) and substitutional Zr for O (Zro) are considered. The results show that the formation energy of Zrzn defect is the lowest, which indicates that ZrZn defect forms easier and its concentration may be the highest in the samples. It is also found that as the proportion of Zr increases, the lattice constants increase while the optical band gap first becomes larger and then smaller, which are consistent with our experimental results. The electronic structure calculations display that as Zrzn defect is introduced into ZnO, the Fermi energy shifts to the conduction band, and there are excess electrons in the conduction band, which leads to the n-type conductivity of Zr-doped ZnO and the enhancing conductivity. This is one of the reasons of the observed good conductivity of Zr doped ZnO films.
     4. Magnetism in Co-doped Alq3
     The electronic and magnetic properties of Co-doped tris-8-hydroxyquinoline aluminum (Alq3) have been studied by first-principles calculations. Our results indicate that local magnetic moments can form in Co-doped Alq3, and the local magnetic moments mainly originate from the localized d states of Co atom. After doping, Co atom tends to interact with Alq3 molecule and leads to electrons transferred from Co atom to Alq3 molecule. Co atom is in a positive charge state, which can act as electron-trap sites. The transferred electrons are mainly localized on the quinolate ligand, resulting in formation of bound magnetic polarons. The indirect ferromagnetic exchange interaction between two bound magnetic polarons antialigning with the same magnetic ion promotes the collective magnetism found in recent experiments.
引文
1. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294,1488 (2001).
    2. M. Baibich et al. Phys. Rev. Lett.61,2472 (1988).
    3. J. Barnas, A. Fuss, R. Camley, P. Grunberg, and W. Zinn, Phys. Rev. B 42,8110 (1990).
    4. Igor, Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys.76,323 (2004).
    5.庞智勇,纳米磁性材料的磁力显微镜研究及自旋注入有机半导体探索,博士学位论文,山东大学,(2006).
    6.蔡建旺,赵见高,詹文山,沈保根,物理学进展,17,119(1997).
    7. G. Schmidt, J. Phys. D:Appl. Phys.38, R107 (2005).
    8. David D. Awschalom and Michael E. FLATTE, Nature Physics 3,153 (2007).
    9. Gary A. Prinz, Science 282,1660 (1998).
    10. T. Jungwirth, J. Sinova, J. Masek, J. Kucera, and A. H. Macdonald, Rev. Mod. Phys. 78,809 (2006).
    11. H. Ohno, et al, Science 281,951 (1998).
    12. M. Bibes and A. Barthelemy, arXiv:0706.3015v1, Oxide spintronics (2006).
    13. T. Dietl, J. Phys.:Condens. Matter 19,165204 (2007).
    14. K. Ando, Science 312,1883 (2006).
    15. A. Quesada, M. A. Garcia, J. de la Venta, E. Fernadez Pinel, and J. M. Merino, A.Hernando, Eur. Phys. J. B 59,457-461 (2007).
    16. T. Dietl, J. Appl. Phys.103,07D111 (2008).
    17. S. A. Chambers, T. C. Droubay, C. M. Wang, K. M. Rosso, S. M. Heald, D. A. Schwartz, K. R. Kittilstved, and D. R. Gamelin, Materials Today 9,28 (2006).
    18. W. Prellier, A. Fouchet and B. Mercey, J. Phys. Condens. Matter 15, R1583 (2003).
    19. R. Janisch, P. Gopal and N. A. Spaldin, J. Phys.:Condens. Matter 17, R657 (2005).
    20. J. M. D. Coey and S. Sanvito, J. Phys. D:Appl. Phys.37,988 (2004).
    21. C. Liu, F. Yun, and H. Morkoc, J. Mater. Sci:Materials In Electronics 16,555 (2005).
    22. H. Katayama-Yoshida, K. Sato, T. Fukushima, M. Toyoda, H. Kizaki, V. A. Dinh, and P. H. Dederichs, Phys. Stat. sol. (a) 204,15 (2007).
    23. S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Thedoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim, and L. A. Boatner, J. Appl. Phys.93,1 (2003).
    24. J. M. D. Coey, Curent Opinion, in Solid State and Materials Science 10,83 (2006).
    25. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287,1019 (2000).
    26. A. Mauger and C. Godart, Phys. Rep.141,51 (1986).
    27. M. Tanaka, J. Cryst. Growth 201/202,660 (1999).
    28. G. Prinz, K. Hathaway, Phys. Today 48,24 (1995).
    29. J. K. Furdyna and J. Kossut, Diluted Magnetic Semiconductors, vol.25 of Semiconductor and Semimetals (Academic Press, New York,1988); T. Dietl, Diluted Magnetic Semiconductors, vol.3B of Handbook of Semiconductors, (North-Holland, New York,1994).
    30. J. M. D. Coey, Curent Opinion, in Solid State and Materials Science 10,83 (2006).
    31. A. Haury et al, Phys. Rev. Lett.79,511 (1997).
    32. H. Ohno et al, Appl. Phys. Lett.69,363 (1996).
    33. H. Ohno, J. Cryst. Growth 251,285 (2003).
    34. T. Jungwirth et al, Phys. Rev. B 72,165204 (2005).
    35. S. Sonada et al., J. Cryst. Growth 237-239,1358 (2002).
    36. K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett.79,988 (2001).
    37. Y. Matsumoto et al., Science 291,854 (2001).
    38. M. Venkatesan, C. B. Fitzgerald, and J. M. D. Coey, Nature 430,630 (2004).
    39. J. Cibert and D. Scalbert, Diluted Magnetic Semiconductors:Basic Physics and Optical Properties.
    40. D. Khomskii, Electronic Structure, Exhange and Magnetism in Oxides.
    41. J. Stohr and H. C. Siegmann, Magnetism:From Fundamentals to Nanoscale Dynamics.
    42. J. M. D. Coey, M. Venkatesan and C. B. Fitzgerald, Nature Mater.4,173 (2005).
    43. C. Liu, F. Yun, and H. Morkoc, J. Mater. Sci.:Mater. In Electronics 16,555 (2005).
    44.尉然,ZnO基稀磁半导体及其铁磁性和反铁磁性的性能研究,硕士学位论文,华南师范大学(2008).
    45. T. Story, R. R. Galazka, R. B. Frankela et al., Phys. Rev. Lett.56,777 (1986).
    46. A. C. Durst, R. N. Bhatt, and P. A. Wolff, Phys. Rev. B 65,235205 (2002).
    47. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumara, M. Kawasaki, P. Ahmet, T. Chikyow, S. Y. Koshihara, and H. Koinuma, Science 291,854 (2001).
    48. W. Prellier, A. Fouchet and B. Mercey, J. Phys.:Condens. Matter 15, R1853 (2003).
    49. R. Janisch, P. Gopal, and N. A Spaldin, J. Phys.:Condens. Matter 17, R657 (2005).
    50. P. Sharma, A. Gupta, K. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. Osorio-Guillen, B. Johansson, and G. Gehring, Nat. Mater.2,673 (2003).
    51. Theodoropoulou N, Misra V, Philip J, LeClair P, Berera G P, Moodera J S, Satpati B and Som T, Preprint cond-mat/0408294 (2004).
    52. Lim S W, Jeong M C, Ham M H and Myoung J M Japan. J. Appl. Phys.43, L280 (2004).
    53. Kolesnik S, Dabrowski B and Mais J, J. Appl. Phys.95,2582 (2004).
    54. J. R. Neal, A. J. Behan, R. M. Ibrahim, H. J. Blythe, M. Ziese, A. M. Fox, and G. A. Gehring, Phys. Rev. Lett.96,197208 (2006).
    55.胡树军,氧化物铁磁性半导体的电子结构和磁性研究,博士学位论文,山东大学(2008)。
    56. J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nature Mater.4,173 (2005).
    57. H. S. Hsu, J. C. A. Huang, Y. H. Huang, Y. F. Liao, M. Z. Lin, C. H. Lee, J. F. Lee, S. F. Chen, L. Y. Lai, and C. P. Liu, Appl. Phys. Lett.88,242507 (2006).
    58. K. R. Kittilstved, D. A. Schwartz, A. C. Tuan, S. M. Heald, S. A. Chambers, and D. R. Gamelin, Phys. Rev. Lett.97,037203 (2006).
    59. N. Khare, M. J. Kappers, M. Wei, M. G. Blamire, and J. L. MacManus-Driscoll, Adv. Mater.18,1449(2006).
    60. P. Sati, C. Depairs, C. Morhain, S. Schafer, and A. Stepanov, Phys. Rev. Lett.98, 137204(2007).
    61. T. Chanier, M. Sargolzaer, I. Opahle, R. Hayn, and K. Koepernik, Phys. Rev. B 74, 134418(2006).
    62. N. H. Hong, J. Sakai, N. T. Huong, N. Poirot, and A. Ruyter, Phys. Rev. B 72, 245336 (2005).
    63. H. Liu, X. Zhang, L. Li, Y. X. Wang, et al, Appl. Phys. Lett.91,072511 (2007).
    64. J. Narayan, S. Nori, D. K. Pandya, D. K. Avasthi, and A. I. Smirnov, Appl. Phys. Lett.93,082507 (2008).
    65. I. S. Elfimov, S. Yunoki, and G. A. Sawatzky, Phys. Rev. Lett.89,216403 (2002).
    66. C. D. Pemmaraju and S. Sanvito, Phys. Rev. Lett.94,217207 (2005).
    67. H. Weng and J. Dong, Phys. Rev. B 73,132410 (2006).
    68. D. W. Abraham, M. M. Frank, and S. Guha, Appl. Phys. Lett.87,252502 (2005).
    69. N. H. Hong, J. Sakai, and V. Brize, J. Phys.:Condens. Mater 19,036219 (2007).
    70. S. D. Yoon, Y. Chen, A. Yang, T. L. Goodrich, X. Zuo, D. A. Arena, K. Ziemer, C. Vittoria, and V. G. Harris, J. Phys.:Condens. Matter 18,355 (2006).
    71. N. H. Hong, J. Sakai, N. Poirot, and V. Brize, Phys. Rev. B 73,132404 (2006).
    72. J. Osorio-Guillen, S. Lany, S. V. Barabash, and A. Zunger, Phys. Rev. Lett.96, 107203 (2006).
    73. A. Tiwari, V. M. Bhosle, S. Ramachandran, N. Sudhakar, and J. Narayan, S. Budak, and A. Gupta, Appl. Phys. Lett.88,142511 (2006).
    74. J. Phys.:Condens. Matter 17, L451 (2005).
    75. J. Hu, Z. Zhang, M. Zhao, H. Qin, and M. Jiang, Appl. Phys. Lett.93,192503 (2008).
    76. G. Bouzerar and T. Ziman, Phys. Rev. Lett.96,207602 (2006).
    77. J. X. Zheng, G. Ceder, T. Maxisch, W. K. Chim, and W. K. Choi, Phys. Rev. B 75, 104112(2007).
    78. Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, and P. Jena, Phys. Rev. B 77,205411 (2008).
    79. X. Zuo, S.-D. Yoon, A. Yang, C. Vittoria, and V. G. Harris, J. Appl. Phys.103, 07B911 (2008).
    80. G. Rahman, V. M. Garcia-Suarez, and S. C. Hong, Phys. Rev. B 78,184404 (2008).
    81. H. Peng, J. Li, S.-S. Li, and J.-B Xia, Phys. Rev. B 79,092411 (2009).
    82. X. Han, J. Lee, and H.-I. Yoo, Phys. Rev. B 79,100403(R) (2009).
    83. H. Peng, H. J. Xiang, S.-H. Wei, S.-S. Li, J.-B. Xia, and J. Li, Phys. Rev. Lett.102, 017201 (2009).
    84. P. Dev, Y. Xue, and P. Zhang, Phys. Rev. Lett.100,117204 (2008).
    85. Y. Gohda and A. Oshiyama, Phys. Rev. B 78,161201(R) (2008).
    86. H. Jin, Y. Dai, B. Huang, and M.-H. Whangbo, Appl. Phys. Lett.94,162505 (2009).
    87. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C. N. R. Rao, Phys. Rev. B 74,161306(R) (2006).
    88. J. M. D. Coey, M. venkatesan, P. Stamenov, C. B. Fitzgerald, and L. S. Dorneles, Phys. Rev. B 72,024450 (2005).
    89. C. Das Pemmaraju and S. Sanvito, Phys. Rev. Lett.94,217205 (2005).
    90. Fenggong Wang, Zhiyong Pang, Liang Lin, Shaojie Fang, Ying Dai, and Shenghao Han, Phys. Rev. B 80,144424 (2009).
    91. H. Pan, J. B. Yi, L. Shen, R. Q. Wu, J. H. Yang, J. Y. Lin, Y. P. Feng, J. Ding, L. H. Van, and J. H. Yin, Phys. Rev. Lett.99,127201 (2007).
    92.I. S. Elfimov, A. Rusydi, S. I. Csiszar, Z. Hu, H. H. Hsieh, H.-J. Lin, C. T. Chen, R. Liang, and G. A. Sawatzky, Phys. Rev. Lett.98,137202 (2007).
    93. S. Zhou, Q. Xu, et al. Appl. Phys. Lett.93,232507 (2008).
    94. L. Shen, R. Q. Wu, H. Pan, G. W. Peng, M. Yang, Z. D. Sha, and Y P. Feng, Phys. Rev. B 78,073306 (2008).
    95. A. Droghetti and S. Sanvito, Appl. Phys. Lett.94,252505 (2009).
    96. B. Gu, N. Bulut, T. Ziman, and S. Maekawa, Phys. Rev. B 79,024407 (2009).
    97. P. Mavropoulos, M. Lezaic, and S. Blugel, Phys. Rev. B 80,184403 (2009).
    98. L. X. Guan, J. G. Tao, C. H. A. Huan, J. L. Kuo, and L. Wang, Appl. Phys. Lett.95, 012509(2009).
    99. C. Zhang and S. Yan, Appl. Phys. Lett.95,232108 (2009).
    100. M. Zhao, F. Pan, and L. Mei, Appl. Phys. Lett.96,012508 (2010).
    101. Z. J. Liu, Y. X. Du, X. L. Zhang, J. H. Qi, L. N. Tian, and Y. Guo, Phys. Status Solidi B 247,157-162(2010).
    102. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, Appl. Phys. Lett.72,2466 (1998).
    103. A. Yamasaki and T. Fujiwara, Phys. Rev. B 66,245108 (2002).
    104. Y. Z. Zhu, G. D. Chen, H. Ye, A. Walsh, C. Y. Moon, and S.-H. Wei, Phys. Rev. B 77,245209 (2008).
    105. 吴敬元,新型镁质功能材料制备研究,大连理工大学,硕士学位论文(2009).
    106. 景殿策,氧化镁纳米棒的制备及动力学研究,大连理工大学,硕士学位论文(2008).
    107. 王志俊,PLD法制各MgO薄膜及其表征,大连理工大学,硕士学位论文(2005).
    108. D. O. Scanlon, A. Walsh, B. J. Morgan, M. Nolan, J. Fearon, and G. W. Watson, J. Phys. Chem. C 111,7971 (2007).
    109. D. Taylor, Br. Ceram. Trans. J.83,5 (1984).
    110. O. M. Madelung, Semiconductors:Data Handbook,3rd ed. (Springer, Berlin), (2004).
    111. J. Okumu, F. Koerfer, C. Salinga, and M. Wutting, J. Appl. Phys.95,7632 (2004).
    112. Magneli A and Andersson G, Acta Chim. Scand.9,1378 (1955).
    113. Brandt B G and Skapski A C, Acta Chim. Scand.21,661 (1967).
    114. V. Eyert, R. Horny, K-H Hock, and S. Horn, J. Phys.:Condens. Matter 12, 4923-4946 (2000).
    115. M. Ghedira, D.-D. Chieu, M. Marezio, Journal of Solid State Chemistry 59, 159(1985).
    116. J. Moosburger-Will, J. Kiindel, M. Klemm, S. Horn, P. Hofmann, U. Schwingenschlogl, and V. Eyert, Phys. Rev. B 79,115113 (2009).
    117. 吕茂水,溅射法制备掺锆氧化锌透明导电薄膜与薄膜特性研究,博士学位论文,山东大学,济南(2007).
    118. U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, J. Appl. Phys.98,041301 (2005).
    119. D. C. Look, D. C. Reynolds, J. W. Hemski, R. L. Jones, and J. R. Sizelove, Appl. Phys. Lett.75,811 (1999).
    120. A. Y. Polyakov et al, J. Appl. Phys.94,2895 (2003).
    121. S. O. Kucheyev, J. S. Williams, C. Jagadish, J. Zou, C. Evans, A. J. Nelson, and A. V. Hamza, Phys. Rev. B 67,094415 (2003).
    122. D. C. Look, Mater. Sci. Eng. B 80,381 (2001).
    123. E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito, and T. Fukuda, J. Cryst. Growth 260,166 (2004).
    124. J.-M. Ntep, S. S. Hassani, A. Lusson, A. Tromson-Carli, D. Ballutaud, G. Didier, and R. Triboulet, J. Cryst. Growth 207,30 (1999).
    125. O. Madelung, M. Schulz, and H. Weiss, Numerical Data and functional Relationships in Science and Technology (Springer Verlag, Berlin) Vol.17 (1982).
    126. A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, Phys. Rev. B 61, 15019(2000).
    127. S. B. Zhang, S.-H. Wei, and A. Zunger, Phys. Rev. B 63,075205 (2001).
    128. A. Janotti and C. G. Van de Walle, Phys. Rev. B 76,165202 (2007).
    129. O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, and A. K. Pradhan, Appl. Phys. Lett.90,252108 (2007).
    130. H. B. Ye, J. F. Kong, W. Z. Shen, J. L. Zhao, and X. M. Li, Appl. Phys. Lett.90, 102115(2007).
    131. V. Bhosle, A. Tiwari, and J. Narayan, Appl. Phys. Lett.88,032106 (2006).
    132. C. G. Van de Walle and J. Neugebauer, J. Appl. Phys.95,3851 (2004).
    133. L. L. Chen, J. G. Lu, Z. Z. Ye, Y. M. Lin, B. H. Zhao, Y. M. Ye, J. S. Li, and L. P. Zhu, Appl. Phys. Lett.87,252106 (2005).
    134. M. X. Qiu, Z. Z. Ye, H. P. He, Y. Z. Zhang, X. Q. Gu, L. P. Zhu, and B. H. Zhao, Appl. Phys. Lett.90,182116 (2007).
    135. S. B. Orlinskii, J. Schmidt, P. G. Baranov, D. M. Hofmann, D. Celso de Mello, A. Meijerink, Phys. Rev. Lett.92,047603 (2004).
    136. S. B. Orlinskii, J. Schmidt, E. J. J. Groenen, P. G. Baranov, D. Celso de Mello, and A. Meijerink, Phys. Rev. Lett.94,097602 (2005).
    137. J. G. Lu et al. Appl. Phys. Lett.89,112113 (2006).
    138. F. X. Xiu, Z. Yang, L. J. Mandalapu, and J. L. Liu, Appl. Phys. Lett.88,152116 (2006).
    139. Y. Cao et al. Appl. Phys. Lett.88,251116 (2006).
    140. Y. Nakano, T. Morikawa, T. Ohwaki, and Y. Taga, Appl. Phys. Lett.88,172103 (2006).
    141. W. J. M. Naber, S. Faez and W. G van der Wiel, J. Phys. D:Appl. Phys.40, R205 (2007).
    142. V. A. Dediu, L. E. Hueso, I. Bergenti, and C. Taliani, Nature Mater.8,707 (2009).
    143. R. H. Friend et al., Nature 397,121 (1999).
    144. S. Sanvito, Nature Mater.6,803 (2007).
    145. J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett.74, 3273 (1995).
    146. C. B. Harris, R. L. Schlupp, and H. Schuch, Phys. Rev. Lett.30,1019 (1973).
    147. J. S. Jiang, Phys. Rev. B 77,035303 (2008).
    148. J. M. Baik, Y. Shon, S. J. Lee, Y. H. Jeong, T. W. Kang, and J.-L. Lee, J. Am. Chem. Soc.130,13522 (2008).
    149. J. M. Baik, J.-L. Lee, Y. Shon, and T. W. Kang, Phys. Stat. Sol.2,22 (2008).
    150. M. Brinkmann, G. Gadret, M. Muccini, C. Taliani, N. Masciocchi, and A. Sironi, J. Am. Chem. Soc.122,5147-5157 (2000).
    151. 胡晓,有机小分子在Au(111)表面的相互作用力及组装的扫描隧道显微学研究,硕士学位论文,中国科学技术大学,合肥(2009).
    152. J. D. Wright, Prog. Surf. Sci.31,1 (1989).
    153. R. Zeis, T. Siegrist, and C. Kloc, Appl. Phys. Lett.86,022103 (2005).
    154. A. Yamashita and T. Hayashi, Adv. Mater. (Weinheim, Ger.) 8,791 (1996).
    155. G. Guillaud, J. Simon, and J. P. Gemain, Coord. Chem. Rev.178,1433 (1998).
    156. Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, Nature 427,821 (2004).
    157. J. Wang, Y. Shi, J. Cao, and R. Wu, Appl. Phys. Lett.94,122502 (2009).
    158. Hamada Y, Kanno H, Tsujioka T, Takahashi H, and Usuki T. Appl. Phys. Lett. 75,1682(1999).
    159. Chen CH, Tang CW, Shi J and Klubek KP. Thin Solid Films 363,327-331 (2000).
    160. Shi JM and Tang CW, Appl. Phys. Lett.70,1665-1667 (1997).
    161. Tanaka I, Tabata Y and Tokito S. Phys. Rev. B 71,205207 (2005).
    162. Kwong RC, Sibley S, and Dubovoy T. Chem. Mat.11,3709-3713 (1999).
    163. Ding HJ and Gao YL. Appl. Sur. Sci.252,3943-3947 (2006).
    164. Pi TW, Liu CH, and Hwang J, J. Appl. Phys.99,123712 (2006).
    165. A. Curioni and W. Andreoni, J. Am. Chem. Soc 121,8216 (1999).
    166. 陈红征,施跃文,施敏敏,林家军,汪芒,材料科学与工程学报24,0614(2006).
    167. M. Brinkmann, G. Gadret, M. Muccini, C. Taliani, N. Masciocchi, and A. Sironi, J. Am. Chem. Soc.122,5147 (2000).
    168. C. Ghica, M. N. Grecu, J. Gmeiner, V. V. Grecu, and J. optoelec. Adv. Mater.7, 2997 (2005).
    169. M. Amati and F. Lelj, J. Phys. Chem A 107,2560 (2003).
    170. A, Curioni, M. Boero, W. Andreoni, Chem. Phys. Lett.294,263 (1998).
    171. P. Thakur, J. C. Cezar, N. B. Brookes, R. J. Choudhary, Ram Prakash, D. M. Phase, K. H. Chae, and Ravi Kumar, Appl. Phys. Lett.94,062501 (2009).
    172. J. Okumu, F. Koerfer, C. Salinga, and M. Wutting, J. Appl. Phys.95,7632 (2004).
    173. A. N. Caruso, D. L. Schulz, and P. A. Dowben, Chem. Phys. Lett.413,321 (2005).
    1.龙闰,金刚石和氮化锌半导体材料电子性质研究,山东大学博士学位论文,(2008).
    2.解士杰,韩圣浩,凝聚态物理,山东教育出版社(2001).
    3. M. Born and J. R. Oppenheimer, Zur Quantentbeorie der Molekeln. Ann. Pbys 84, 457(1927).
    4. D. R. Hartree, Proceedings of the Cambridge Philosophical Society 24,89 (1928).
    5. D. R. Hartree, Proceedings of the Cambridge Philosophical Society 24,111 (1928).
    6. L. H. Thomas, Proc. Camb. Phil. Soc.23,542 (1927).
    7. E. Fermi, Z. Phys.48,73(1928).
    8. P. Hohenberg and W. Kohn, Phys. Rev. B 136,864 (1964).
    9. J. P. Perdew and Y. Wang, Phys. Rev. B 45,13244 (1992).
    10. Perdew, J. A. Chevary, et al. Phys. Rev. B 46,6671 (1992).
    11. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996).
    12. A. D. Becke, J. Chem. Phys.100,1290 (1994).
    13. X. Xu and W. A. Goddard Ⅲ, Proc. Natl. Acad. Sci. USA 101,2673 (2004).
    14. W. Koch and M. C. Holthausen, A Chemist's guide to density functional theory second edition Wiley-VCH (2001).
    15. K. Bueke and E. K. U. Gross, Density Functiona:Theory and Applications, Springer, Belin(1998).
    16. A. K. Rajagopal and J. Callaway, Phys. Rev. B 7,1912 (1973).
    17. V. I. Anisimov, J. Zaanen, and O. K. Anderson, Phys. Rev. B 44,943 (1991).
    18. L. Hedin, Phys. Rev. A 139,796 (1965).
    19. G. Vignale and M. Rasolt, Phys. Rev. Lett.59,2360 (1987).
    20. S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys.73,515 (2001).
    21. Richard M. Martin, Electronics Structure:Basic Theory and Pratical Methods, Cambridge University Press (2003).
    22. V. I. Anisimov, F. Aryasetiawan,and A. I. Lichtenstein, J. Phys.:Condensed Matter 9, 767-808(1997).
    23. A. I. Liechtenstein, V. I. Anisimov and J. Zaane, Phys. Rev. B 52, R5467 (1995).
    24. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57,1505(1998).
    1. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287,1019 (2000).
    2. T. Jungwirth, J. Sinova, J. Masek, J. Kusera, and A. H. MacDonald, Rev. Mod. Phys. 78,809 (2006).
    3. M. Venkatesan, C. B. Fitzgerald, and J. M. D. Coey, Nature 430,630 (2004).
    4. J. M. D. Coey, Solid State Sci.7,660 (2005).
    5. C. D. Pemmaraju and S. Sanvito, Phys. Rev. Lett.94,217205 (2005).
    6. J. M. D. Coey, M. Venkatesan, P. Stamenov, C. B. Fitzgerald, and L. S. Dorneles, Phys. Rev. B 72,024450 (2005).
    7. N. H. Hong, J. Sakai, N. Poirot, and V. Brize, Phys. Rev. B 73,132404 (2006).
    8. A. Sundaresan, R. Bhargavi, N. Rangrajan, U. Siddesh, and C. N. R. Rao, Phys. Rev. B74,161306(R)(2006).
    9. Haowei Peng, Jingbo Li, Shu-Shen Li, and Jian-Bai Xia Phys. Rev. B 79,092411 (2009).
    10. Qian Wang, Qiang Sun, Gang Chen, Yoshiyuki Kawazoe, and Puru Jena, Phys. Rev. B.77,205411 (2008).
    11. Xu Zuo, Soack-Dae Yoon, Aria Yang, Wen-Hui Duan, Carmine Vittoria, and Vincent G. Harris, J. Appl. Phys.105,07C508 (2009).
    12. Haowei Peng, H. J. Xiang, Su-Huai Wei, Shu-shen Li, Jian-Bai Xia, and Jingbo Li, Phys. Rev. Lett.102,017201 (2009).
    13. Gul Rahman, Victor M. Garcia-Suarez, and Soon Chelo Hong Phys. Rev. B 78, 184404(2008).
    14. Xiaoping Han, Jaichan Lee, and Han-Ⅲ Yoo, Phys. Rev. B 79,100403 (2009).
    15.1. S. Elfimov, S. Yunoki, and G. A. Sawatzky, Phys. Rev. Lett.89,216403 (2002).
    16. J. Osorio-Guillen, S. Lany, S. V. Barabash, and A. Zunger, Phys. Rev. Lett.96, 107203 (2006).
    17. S Gallego, J I Beltran, J Cerada, and M C Munoz, J. Phys.:Condens. Matter 17, L451-L457(2005).
    18. Jifan Hu, Zhongli Zhang, Ming Zhao, Hongwei Qin, and Minhua Jiang, Appl. Phys. Lett.93,192503 (2008).
    19. W. Kohn and L. J. Sham, Phys. Rev.140, A113 (1965).
    20. G. Kresse and D. Joubert, Phys. Rev. B 59,1758 (1999).
    21. J. P. Perdew and Y Wang, Phys. Rev. B 33,8800 (1986).
    22. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996).
    23. G. Kresse, J. Furthmuller, Phys. Rev. B 54,11169 (1996).
    24. G. Kresse, J. Furthmuller, Comput. Math. Sci.6,15 (1996).
    25. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    26. Taylor D, Transactions and Journal of the British Ceramic Society 83,5-9 (1984).
    27. A. Janotti and C. G. Van de Walle, Phys. Rev. B 76,165202 (2007).
    28. R. C. Whited, C. J. Flaten, and W. C. Walker. Solid State Commun.13,1903 (1973).
    29. B. H. Rose and L. E. Halliburton, J. Phys.C 7,3981 (1974).
    30. P. Mahadevan, A. Zunger, and D. D. Sarma, Phys. Rev. Lett.93,177201 (2004).
    31. P. Dev, Y. Xue, and P. Zhang, Phys. Rev. Lett.100,117204 (2008).
    32. Z. Wang, B. Huang, L. Yu, Y. Dai, P. Wang, X. Qin, Xiaoyang Zhang, Jiyong Wei, Jie Zhan, Xiangyang Jing, Haixia Liu, and Myung-Hwan Whangbo, J. Am. Chem. Soc.130,16366(2008).
    33. E. C. Stoner, Proc. R. Soc. London, Ser. A165,372 (1938); 169,339 (1939).
    34. K. Yoshizawa, T, Kuga, T. Sato, M. Hatanaka, K. Tanaka, and T. Yamabe, Bull. Chem. Soc. Jpn.69,3443 (1996).
    35. H. Jin, Y. Dai, BaiBiao Huang, and M.-H. Whangbo, Appl. Phys. Lett.94,162505 (2009).
    1. H. Ohno, Science 281,951 (1998).
    2. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287,1019 (2000).
    3. T. Jungwirth, J. Sinova, J. Masek, J. Kusera, and A. H. MacDonald, Rev. Mod. Phys. 78,809 (2006).
    4. H. Pan, J. B. Yi, L. Shen, R. Q. Wu, J. H. Yang, J. Y. Lin, Y. P. Feng, J. Ding, L. H. Van, and J. H. Yin, Phys. Rev. Lett.99,127201 (2007).
    5. Fenggong Wang, Zhiyong Pang, Liang Lin, Shaojie Fang, Ying Dai, and Shenghao Han, J. Magnet. Magnet. Mater.321,3067 (2009).
    6. M. Gacic, G. Jakob, C. Herbort, H. Adrian, T. Tietze, S. Briick, and E. Goering, Phys. Rev. B 75,205206 (2007)
    7. M. Venkatesan, C. B. Fitzgerald, and J. M. D. Coey, Nature (London) 430,630 (2004).
    8. J. Hu, Z. Zhang, M. Zhao, H. Qin, and M. Jiang, Appl. Phys. Lett.93,192503 (2008).
    9. N. H. Hong, J. Sakai, N. Poirot, and V. Brize, Phys. Rev. B 73,132404 (2006).
    10. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C. N. R. Rao, Phys. Rev. B 74,161306(R) (2006).
    11. J. M. D. Coey, M. venkatesan, P. Stamenov, C. B. Fitzgerald, and L. S. Dorneles, Phys. Rev. B 72,024450 (2005).
    12. C. Das Pemmaraju and S. Sanvito, Phys. Rev. Lett.94,217205 (2005).
    13. H. Peng, J. Li, Shu-Shen Li, and Jian-Bai Xia, Phys. Rev. B 79,092411 (2009).
    14. Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, and P. Jena, Phys. Rev. B 77,205411 (2008).
    15. Xu Zuo, Soack-Dae Yoon, Aria Yang, Wen-Hui Duan, Carmine Vittoria, and Vincent G. Harris, J. Appl. Phys.105,07C508 (2009).
    16. Haowei Peng, H. J. Xiang, Su-Huai Wei, Shu-Shen Li, Jian-Bai Xia, and Jingbo Li, Phys. Rev. Lett.102,017201 (2009).
    17. G. Rahman, V. M. Garcia-Suarez, and S. C. Hong, Phys. Rev. B 78,184404 (2008).
    18. Xiaoping Han, Jaichan Lee, and Han-Ⅲ Yoo, Phys. Rev. B 79,100403(R) (2009).
    19. Fenggong Wang, Zhiyong Pang, Liang Lin, Shaojie Fang, Ying Dai, and Shenghao Han, Phys. Rev. B 80,144424 (2009).
    20. P. Thakur, J. C. Cezar, N. B. Brookes, R. J. Choudhary, Ram Prakash, D. M. Phase, K. H. Chae, and Ravi Kumar, Appl. Phys. Lett.94,062501 (2009).
    21. J. Okumu, F. Koerfer, C. Salinga, and M. Wutting, J. Appl. Phys.95,7632 (2004).
    22. W. Kohn and L. J. Sham, Phys. Rev.140, A1133 (1965).
    23. G. Kresse and D. Joubert, Phys. Rev. B 59,1758 (1999).
    24. G. Kresse and J. Furthmiiller, Phys. Rev. B 54,11169 (1996).
    25. G. Kresse and J. Furthmuller, Comput. Mater. Sci.6,15 (1996).
    26. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996)
    27. M. Ghedira, D.-D. Chieu, M. Marezio, Journal of Solid State Chemistry 59,159 (1985).
    28. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    29. Vladimir I Anisimov, F Aryasetiawant, and A I Lichtenstein, J. Phys.:Condens. Matter 9,767(1997).
    30. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57,1505(1998).
    31. T. Saitoh, M. Nakatake, A. Kakizaki, H. Nakajima, O. Morimoto, Sh. Xu, Y. Moritomo, N. Hamada, and Y Aiura, Phys. Rev. B 66,035112 (2002).
    32. D. D. Sarma, Priya Mahadevan, T. Saha-Dasgupta, Sugata Ray, and Ashwani Kumar, Phys. Rev. Lett.85,2549 (2000).
    33. A. Janotti and C. G. Van de Walle, Phys. Rev. B 76,165202 (2007).
    34. Judith Moosburger-Will, Jorg Kundel, Matthias Klemn, and Siegfried Horn, Philip Hofrnann, Udo Schwingenschlogl, Volker Eyert, Phys. Rev. B 79,115113 (2009).
    35. G. Henkelman, A. Arnaldsson, and H. Jonsson, Comput. Mater. Sci.36,354 (2006).
    36. P. W. Anderson, Phys. Rev.79,350 (1950).
    37. J. B. Goodenough, ibid.100,564 (1955).
    38. J. Kanamori, J. Phys. Chem. Solids 10,87 (1959).
    1. I. Zutic, J. Fabian, and S. D. Sarma, Rev. Mod. Phys.76,323 (2004).
    2. W Prellier, A Fouchet, and B Mercey, J. Phys.:Condens. Matter.15, R1583-R1601 (2003).
    3. T. Dietl, H. Ohno, F. Matsujura, J. Cibert, and D. Ferrand, Science 287,1019 (2000).
    4. R. Janisch, P. Gopal, and N. A. Spaldin, J. Phys.:Condens. Matter 17, R657 (2005).
    5. Kenji Ueda, Hitoshi Tabata, and Tomoji Kawai, Appl. Phys. Lett.79,988 (2001).
    6. H. Pan, J. B. Yi, L. Shen, R. Q. Wu, J. H. Yang, J. Y. Lin, Y. P. Feng, J. Ding, L. H. Van, and J. H. Yin, Phys. Rev. Lett.99,127201 (2007).
    7. M. Bouloudenine, N. Viart, S. Colis, J. Kortus, and A. Dinia, Appl. Phys. Lett.87, 052501 (2005).
    8. W. Li, Q. Q. Kang, Z. Lin, W. S. Chu, D. L. Chen, Z. Y. Wu, Y. Yan, D. G. Chen, and F. Huang, Appl. Phys. Lett.89,112507 (2006).
    9. A. Debernardi and M. Fanciulli, Appl. Phys. Lett.90,212510 (2007).
    10. Q. Wang, Q. Sun, P. Jena, and Y. Kawazoe, Appl. Phys. Lett.87,162509 (2005).
    11. Priya Gopal and Nicola A. Spaldin, Phys. Rev. B 74,094418 (2006).
    12. K. R. Kittilstved, D. A. Schwartz, A. C. Tuan, S. M. Heald, S. A. Chambers, and D. R. Gamelin, Phys. Rev. Lett.97,037203 (2006).
    13. Y. Gohda and Atsushi Oshiyama, Phys. Rev. B 78,161201 (2008).
    14. Hui Liu, Xiao Zhang, Luyuan Li, Y. X. Wang, K. H. Gao, Z. Q. Li, R. K. Zheng, S. P. Ringer, Bei Zhang, and X. X. Zhang, Appl. Phys. Lett.91,072511 (2007).
    15. Nguyen Hoa Hong, Joe Sakai, Ngo Thu Huong, Nathalie Poirot, and Antoine Ruyter, Phys. Rev. B 72,045336 (2005).
    16. P. E. Blochl, Phys. Rev. B 50,17953 (1994).
    17. G. Kresse and J. Furthmuller, Phys. Rev. B 54,11169 (1996).
    18. G. Kresse and J. Furthmuller, Comput. Math. Sci.6,15 (1996).
    19. V. Anisimov, F. Aryasetiawan, and A. Lichtenstein, J. Phys.:Condens. Matter.9,767 (1997).
    20. L. M. Huang, A. L. Rosa, and R. Ahuja, Phys. Rev. B 74,075206 (2006).
    21.O. Madelung, M. Schulz, and H. Weiss, Numerical Data and functional Relationships in Science and Technology (Springer Verlag, Berlin) Vol.17 (1982).
    22. A. L. Rosa and R. Ahuja, J. Phys.:Condens. Matt.19,386232 (2007).
    23. A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, Phys. Rev. B 61,15019 (2000).
    24. Chris. G. Van de Walle, Phys. Rev. Lett.85,1012 (2000).
    25. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys.79,7983 (1996).
    26. K. L. Chopra, S. Major, and D. K. Pandya, Thin Solid Films 102,1 (1983).
    27. G. Gustafsson, Y. Cao, G. M. Treacy F. Klavetter, N. Colaneri, and A. J. Heeger, Nature (London) 357,477 (1992).
    28. C. Adachi, K. Nagai, and N. Tamoto, Appl. Phys. Lett.66,2679 (1995).
    29. J. Kido, K. Hongawa, K. Pkuyama, and K. Nagai, Appl. Phys. Lett.68,217 (1996).
    30. A. Rajagopal and A. Khan, J. Appl. Phys.84,355 (1998).
    31. Y. He and J. Kanicki, Appl. Phys. Lett.76,661 (2000).
    32. X. F. Fan, Zexuan Zhu, Yew-Soon Ong, Y. M. Lu, Z. X. Shen, and Jer-Lai Kuo, Appl. Phys. Lett.91,121121 (2007).
    33. Maoshui Lv, Xianwu Xiu, Zhiyong Pang, Ying Dai, and Shenghao Han, Appl. Surf. Sci.252,5687 (2006).
    34. S. B. Qadri, H. Kim, H. R. Khan, A. Pique, J. S. Horwitz, D. Chrisey, W. J. Kim, and E. F. Skelton, Thin Solid Films 377-378,750 (2000).
    35. Lu Mao-shui, Pang Zhi-yong, Xiu Xian-wu, Dai Ying, and Han Sheng-Hao Chinese Phys.16,548 (2007).
    36. Maoshui Lv, Xianwu Xiu, Zhiyong Pang, Ying Dai, Lina Ye, Chuanfu Cheng, and Shenghao Han, Thin Solid Films 516,2017 (2007) in press.
    37. John P. Perdw and Yue Wang, Phys. Rev. B 45,13244 (1992).
    38. John P. Perdw, J. A. Chevary, S. H. Vosko, Koblar A. Jackson, Mark R. Pederson, D. J. Singh, and Carlos Fiolhais, Phys. Rev. B 46,6671 (1992).
    39. David Vanderbilt, Phys. Rev. B 41,7892 (1990).
    40.0. Madelung, M. Schulz, and H. Weiss, Numerical Data and functional Relationships in Science and Technology (Springer Verlag, Berlin) Vol.17 (1982).
    41. M. Marlo and V. Milman Phys. Rev. B 62,2899 (2000).
    42. Yanfa Yan and M. M. Al-Jassim Phys. Rev. B 69,085204 (2000).
    43. Sukit. Limpijumnong, S. B. Zhang, Su-Huai Wei, and C. H. Park, Phys. Rev. Lett. 92,155504(2004).
    44. Gabriela B. Gonzalez, Jerome B. Cohen, Jin-Ha Hwang, Thomas O. Mason, Jason P. Hodges, and James D. Jorgensen, J. App. Phys.89,2550 (2001).
    45. Burstein E, Phys. Rev.93,632 (1954).
    46. Chun-Yuan Ren, Shan-Haw Chiou, and Chen-Shiung Hsue, Physica B 349,136 (2004).
    47. Yo Ji Imai and Akio Watanbe, J. Mater. Sci.:Mater. In Electronics 15,743 (2004).
    1. W. J. M. Naber, S. Faez, and W. G. van der Wiel, J. Phys. D:Appl. Phys.,40, R205 (2007).
    2. Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi. Nature 427,821 (2004).
    3. I. Zutic, J. Fabian, and S. D. Sarma, Rev. Mod. Phys.76,323 (2004).
    4. T. Jungwirth, J. Sinova, J. Masek, J. Kucera, and A. H. MacDonald, Rev. Mod. Phys.78,809 (2006).
    5. F. Wang, Z. Pang, L. Lin, S. Fang, Y. Dai, and S. Han, Phys. Rev. B 80,144424 (2009).
    6. K. Yang, Y. Dai, B. Huang, and M.-H. Whangbo, Appl. Phys. Lett.93,132507 (2008).
    7. F. Wang, Z. Pang, L. Lin, S. Fang, Y. Dai, and S. Han, J. Magn. Magn. Mater.321, 3067 (2009).
    8. H. Ohno, Science 281,951 (1998).
    9. J. M. Baik, Y. Shon, S. J. Lee, Y. H. Jeong, T. Won Kang, and J.-L. Lee, J. Am. Chem. Soc.130,13522 (2008).
    10. A. N. Caruso, D. L. Schulz, and P. A. Dowben, Chem. Phys. Lett.413,321 (2005).
    11. W. Kohn and L. J. Sham, Phys. Rev.140, A1133 (1965).
    12. G. Kresse and D. Joubert, Phys. Rev. B 59,1758 (1999).
    13. J. P. Perdew and Y. Wang, Phys. Rev. B 33,8800 (1986).
    14. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    15. A. Curioni and W. Andreoni, J. Am. Chem. Soc 121,8216 (1999).
    16. M. Brinkmann, G. Gadret, M. Muccini, C. Taliani, N. Masciocchi, and A. Sironi, J. Am. Chem. Soc.122,5147 (2000).
    17. G. Henkelman, A. Arnaldsson, and H. Jonsson, Comput. Mater. Sci.36,354 (2006).
    18. V. I. Anisimov, F. Aryasetiawant, and A. I. Lichtenstein, J. Phys.:Condens. Matter 9, 767(1997).
    19. A. Curioni, W. Andreoni, R. Treusch, F. J. Himpsel, E. Haskal, P. Seidler, C. Heske, S. Kakar, T. van Buuren, and L. J. Terminello, Appl. Phys. Lett.72,1575 (1998).
    20. A. C. Durst, R. N. Bhatt, and P. A. Wolff, Phys. Rev. B 65,235205 (2002),

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700