用户名: 密码: 验证码:
硫化钠活化氧化矿时S~(2-)消耗跟踪理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜是关系到我国国计民生的重要有色金属,广泛应用于军工、电力、通讯、交通、运输、轻工、建筑、机械等行业。随着我国工业化和信息化进程的快速发展和推进对铜的消费需求急剧膨胀。在我国已探明的铜矿资源中,有相当大的一部分属于氧化矿,同样铅锌矿资源中也有相当数量的氧化矿。在国外许多铜矿的开采品位降到了0.4%。在国内这些低品位的难处理的氧化铜矿主要分布在云南、湖北、广东、新疆、内蒙、四川和黑龙江等地区。云南东川汤丹铜矿是目前全国已探明的储量最大的氧化铜矿,保有储量100万吨铜金属,平均地质品位0.88%,属于难处理氧化铜。由于氧化矿选矿难度大,且选矿指标差,因此迫切需要研究对氧化矿浮选更加有效的选矿工艺和方法。
     硫化钠作为一种在选矿、冶金和化工中广泛使用的化学药剂,可用作铜钼浮选分离时黄铜矿的抑制剂、有色金属氧化物的活化剂、废水处理时的离子沉淀剂等。在铜铅锌氧化矿选冶中,其特殊的化学性质对有色金属氧化矿的活化过程有很重要的作用。但是硫化钠活化氧化矿浮选时存在一些问题,这些问题往往使得硫化钠不能够被合理有效的充分利用,这些存在的问题包括:
     一是硫化钠活化的时效性,即不同的浮选体系中硫化钠的活化时间的不同,从几分钟到几十分钟,这对于其他药剂的添加和作用效果等影响很大;
     二是硫化活化时硫化钠的用量从每吨原矿石几百克到每吨原矿石十几公斤,远远超过了其化学当量,这对于氧化矿的有效活化和浮选指标的提高至关重要。
     三是浮选体系中矿泥的影响更加复杂,往往是造成氧化矿难以浮选的主要因素,对硫化活化的影响机理,药剂的消耗和作用机制等有重要的作用。
     针对硫化钠活化氧化矿过程中存在的以上问题,本论文对硫化钠与矿物作用的过程中矿浆体系中S2-的浓度和pH值进行了跟踪测量,对矿浆体系中S2-的变化情况进行了研究。
     论文中通过对孔雀石,黄铜矿,方铅矿,毒砂,黄铁矿,石英,方解石纯矿物与硫化钠作用时,矿浆体系中S2-浓度的变化进行了研究,研究表明在排除硫化钠水解反应的影响,以及可能存在的吸附作用后,可以得出结论,氧化铜矿(孔雀石)、黄铜矿、方铅矿、黄铁矿对S2-有加速氧化的催化作用。
Copper, as one of the most important non-ferrous metals to China's national economy, is widely used in military industry, electricity, telecommunications, transportation, light industry, construction, machinery and other industries. Along with the fast development and propulsion of our country's industrialization and informatization, the copper's consumer demand inflates suddenly. In China's proven copper resources, there exists a large number of low-grade refractory copper oxide ores and lead-zinc oxide ores. Many overseas copper mining's mining grade has fallen to 0.4 percent. A large amount of low-grade refractory copper oxide deposits are mainly distributed in such provinces as Yunnan, Hubei, Guangdong, Xinjiang, Inner Mongolia, Sichuan and Heilongjiang etc.. Tangdan copper deposit in Yunnan province is a copper oxide deposit whose reserves is the largest in the proven reserves of copper oxide so far in China. Its recoverable deposits are about 1,000,000 tons, while the average geological grade is 0.88%. These belong to the refractory oxide copper oxide ore which are difficult to dress. As its great difficulty of dressing and poor dressing indicators, there is an urgent need to study more effective flotation processes and flotation methods of oxide ore.
     Activation sulfide flotation is the main recycling method of such resources. As a chemical agent widespread applied in mineral processing, metallurgy and chemical industry, sodium sulfide can be used as copper-molybdenum flotation separation of chalcopyrite depressant, non-ferrous metal oxide activator, wastewater treatment the ion precipitation agent due to its reducing. Especially in the process of beneficiation and metallurgy of lead and zinc in the copper oxide ore, its special chemical properties of the activation of non-ferrous metal oxide ores plays a very vital role. But there exists some problems of the oxidation of sodium sulfide ore flotation activated, which often make sodium sulfide can not be fully used. Following are these problems:
     First, the timeliness of activated sodium sulfide, namely the activation time of sodium sulfide are different in different sodium sulfide flotation system, range from several minutes to several dozens minutes, which can largely affect the adding and action effect of other agents;
     Second, the amount of sodium sulfide in sulfide and activation process, the amount consumption of sodium is from a few hundred grams per ton to more than ten kilograms per ton to raw ore, going far beyond its chemical equivalent, which is essential to effective activation of oxide ores and flotation indicators.
     Third, the impact of sludge is more complex in the flotation system, being the primary factor for the oxidized ore's difficulty to carry on flotation process, playing an important role in affecting the mechanism of sulfide and activation, the consumption of reagent and the action mechanism.
     According to the above problems existing in the process of oxidation of sodium sulfide ore activation, the paper carried on experiment study on the changing situation of the concentration of S2- in the mineral slurry system during the process of function between sodium sulfide and mineral.
     Paper on malachite, chalcopyrite, galena, arsenopyrite, pyrite, quartz, calcite and sulfide minerals role of pure pulp system S2-concentration has been studied, studies show that the exclusion of hydrolysis reaction of sodium sulfide, and the possibility of adsorption, it can be concluded that copper oxide (malachite), chalcopyrite, galena, pyrite catalyze oxidation on the S2-.
引文
[1]陈甲斌.铅锌产业链结构状况及海外资源战略[J].地质学刊.2009.1
    [2]陈甲斌.国际铜资源供需分析[J].世界有色金属.2009.9
    [3]曾涛.投资海外铜矿资源的经验和教训[J].中国金属通报.2009.32
    [4]方建军.汤丹难处理氧化铜矿高效利用新技术及产业化研究[博士论文].昆明:昆明理工大学矿物加工系,2008,11
    [5]朱玉霜,朱建光.浮选药剂的化学原理(修订版)[M].长沙:中南工业大学出版社,1996
    [6]周亚樵,张约伯等.硫化钠氧化速率与机理的探讨[J].太原理工大学学报,1993,3
    [7]高洪山,杨奉兰.提高难选氧化铜矿有用矿物回收率的选矿工艺[J].矿业工程.1999,Vol19,No2:44-46
    [8]汤亚飞.菱锌矿—褐铁矿体系浮选研究[J].武汉化工学院学报.1996,Vol18,Nol:39-41
    [9]覃文庆,龙怀中等.高碱(石灰)体系中黄铁矿表面性质及其活化[J].有色金属.1996,Vol48,No4:35-38
    [10]Kazmierz Zmudzinski ct. al.. Rudy Metale Niezelazne,10(1995) No 10,523-526
    [11]万宏民.硫化钠在铅锌中矿分选中的应用[J].矿山保护与利用.2000,4:42-45
    [12]孟宪毅,白秀梅.综合回收某硫铁矿石中伴生铜锌的研究[J].1999,Vol8,No2:31-35
    [13]阿布拉莫夫,A.A.矿物无捕收剂浮选的可行性及条件的理论分析[J].国外金属矿选矿,2007,(9):4-10.
    [14]赵军伟,姚卫红,王虎.硫化矿浮选电化学研究现状[J].矿产保护与利用,2003,(4):32-36.
    [15]张芹,胡岳华,顾帼华.磁黄铁矿自诱导浮选电化学的研究[J].有色金属(选矿部分),2004,(2): 4-5.
    [16]覃文庆,李柏淡,邱冠周.硫化钠在硫化铜浮选中的应用[J].矿产保护与利用,1995,(3):36-39.
    [17]孙水裕,李柏淡,王淀佐.硫化矿无捕收剂浮选[J].中南矿冶学院学报,1990,21(5),473-478.
    [18]孙水裕,王淀佐,李柏淡—硫化钠电化学调控浮选的研究[J].有色矿冶,1993,2:15-18.
    [19]孙水裕,李柏淡,王淀佐.硫化矿浮选抑制的电化学研究[J].有色矿冶,1990,2:16-19.
    [20]孙水裕,王淀佐,李柏淡.砷黄铁矿硫化钠诱导浮选的研究[J].中南矿冶学院学报,1993,24(2):187-192.
    [21]孙水裕.硫化矿的浮选电化学及无捕收剂浮选[博士论文].中南工业大学,1990.
    [22]Lutrell, G. H. and Yoon, R. H.,用硫化钠时黄铜矿的无捕收剂浮选[J].国外金属矿选矿,1986,5:1-9.
    [23]Trahar, W. J., A laboratory study of the Influence of sodium sulphide and oxygen on the coIlectorless flotation on chalcopyrite, International journal of MineralProcessing,1983,11:57-74
    [24]张建军,张淑敏,刘滨婵.硫化钠对金矿石无捕收剂浮选的试验研究[J].黄金,1996,17:27-30.
    [25]张芹,胡岳华,徐兢.脆硫锑铅矿无捕收剂浮选的研究[J].有色金属(选矿部分),2005,(3):44-46.
    [26]左乌波乌里斯,A.B.从水溶液中浮选钴离子[J].国外金属矿选矿,2003,(6):37-39.
    [27]J.A.迪安.兰氏化学手册[M]北京:科学出版社,1991.381-386
    [28]刘庆文.重金属离子废水的处理方法[J].天津化工,1995,(4):16-18
    [29]邹莲花.铜、铁离子的硫化沉淀浮选[硕士论文].长沙:中南工业大学,1988
    [30]邹莲花,王淀佐,薛玉兰.含铜、铁离子废水的硫化沉淀浮选[J].化工矿山技术,1996,25(1):27-31
    [31]葛勇德.硫化沉淀浮选处理电解钻镍废水的实验研究[J].环境与开发,1999,14(2):21-22
    [32]张玉梅.含镉废水处理的试验研究[J].环境工程,1995,13,(01):15-21
    [33]唐受印,汪大翠废水处理工程[M]北京:化学工业出版社,2000:24-30
    [34]杨丹.化学法处理重金属离子废水的改进[J].电镀与精饰,1999,21(5):38-40
    [35]陶秀成,邵明望,宫世国等.重金属废水净水剂的制备及其应用[J].工业水处理,1998,18(4):6-9
    [36]Kennethy,C.,Morris J.C. Kinetics of Oxidation of Aqueous Sulfide by O2[J]. Environmental Science&Technology,1972,6(6):529-537.
    [37]Ilinitch,O. M., Vetchinova, Y. S. Membrance Assisted Liquid Phase Catalytic Oxidation of Sulfide[J]. Catalysis Today,1995,25:423-428.
    [38]Mallik,O. Chaudhuri, S. K. Air Oxidation of Aqueous Sodium Sulfide Solutions with Coal Fly Ash[J]. Wet. Res.,1999,33(2):585-590.
    [39]田进军,丁珂,王晟,等.湿法空气氧化法处理硫化钠废碱液[J].青岛科技大学学报,2004,25(3):210-212.
    [40]王续良,夏畅斌.粉煤灰催化空气氧化硫化钠溶液的研究[J].辽宁工程技术大学学报,2003,22:520-521.
    [41]关宏讯,邱熔处,赵旭涛,等.催化氧化法处理高浓度含硫废水的研究[J].兰州铁道学院学报,003,22(6):21-23.
    [42]易志刚,付永胜.电石渣浆上清液去除试验研究[J].工业用水与废水,2008,39(4):47-49.
    [43]杨民,孙承林,陈拥军,等.催化氧化法处理高含硫废水的研究[J].环境污染治理技术与设备,2003,4(5):74-76.
    [44]余政哲,孙德智,郭宝珠,等.均相催化氧化法处理废碱液中硫化物研究[J].西安交通大学学报:自然科学版,2004,19(1):63-65.
    [45]关宏讯,张国珍,赵家慧.含硫废水预处理方案的经济技术性研究[J].甘肃环境研究与监测,2003,16(4):303-306.
    [46]Satterfield, C. N., Robert, C. R., Briggs,D. R.Rate of Oxidation of Hydrogen Sulfide by Hydrogen Peroxide[J]. J. Am. Chem. Soc.,1954,76(15):3922-3923.
    [47]张冬梅,彭先福,李忠.03、H202紫外光助氧化降解炼油废碱水的可行性实验[J].环境污染治理技术与设备,2004,5(7):22-24.
    [48]余政哲,孙德智,段晓东,等.光催化氧化法处理含硫废水的研究[J].哈尔滨工业大学学报:自然科学版,2003,19(1):69-71.
    [49]张宗才,薛丽莎,戴红,等.光催化氧化消除制革脱毛废水中的硫化物[J].皮革科学与工程,2007,(1):61-65.
    [50]Fenton, H. J. H. Oixdation of Tartaric Acid in the Presence of Iron[J].J. Chem. Soc, 1894,65:899-901.
    [51]马万红,籍宏伟,赵进才,等.活化H202和分子氧的光催化氧化反应[J].科学通报,2004,49(18):1821-1829.
    [52]刘崇华,周浩,刘晓群,等.催化氧化法处理含硫废碱液新技术的开发与应用[J].油气田环境保护,2006,16(3):14-17.
    [53]王菲菲,丁原红,杨景亮,等.甲胺磷废水的酸解——Fenton氧化降解试验研究[J].工业水处理,2008,28(11):21-23.
    [54]孙登明,阮大文,王丽红.翠取催化光度法间接测定水中痕量硫离子[J].分析化学,2004,32(2):179-182.
    [55]杨俊香,兰叶青.硫化物还原Cr(Ⅵ)的反应动力学研究[J].环境科学学报,2005,25(3)356-360.
    [56]毛善成.硫化钠氧化的复杂反应动力学与机理[博士论文].徐州:中国矿业大学化工学院,2009.6
    [57]Kim, C., Qunha, Z.,Baolin, D., et al. Chromium(VI)Reduction by Hydrogen Sulfide in AqueousMedia:Stoickiometry and Kinetics[J]. Environ. Sci. Technol.2001,35:2219-2225.
    [58]Pittine,M.,Millero,F.J.,Passino,R. Reduction of Chromium(Ⅵ)with Hydrogen Sulfide in NaClMedia[J].Marine Chemistry,1994,46:335-344.
    [59]张文彬.氧化铜矿浮选研究与实践[M].中南工业大学出版社.长沙:1992
    [60]刘殿文.氧化铜矿浮选技术[M].冶金工业出版社.北京:2009
    [61]刘殿文,方建军,库建刚,张文彬.云南东川汤丹氧化铜矿的选矿实践与发展[J].矿冶,2002,7
    [62]张文彬.混合铜矿浮选中使用硫酸铵的效果[J].有色金属(选矿部分),1973,2
    [63]张文彬.在孔雀石的硫化-黄药浮选中硫酸铵的促进作用[J].第二届全国选矿学术讨论会论文集,1990,4
    [64]张覃,张文彬,刘邦瑞.硫酸铵在孔雀石的黄药直接浮选中的相转移催化机理研究[J].昆明理工大学学报,1997,3
    [65]武汉大学化学系编著.仪器分析[M].北京:高等教育出版社.2001
    [66]许国镇.电化学分析试验[M].北京:地质出版社.1991,4
    [67]王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社.1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700