用户名: 密码: 验证码:
机床铁基多孔含油材料滑块型滑动导轨关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滑动结合面常常是机床整个刚度链中的最薄弱环节之一,因此导轨的力学特性直接影响机床整机的动态性能。课题组在结合面方面雄厚的研究基础上,在多孔介质已成功应用于自润滑轴承的启发下,创造性地提出采用铁基多孔含油金属材料为结合面材料研制铁基多孔含油材料滑块型滑动导轨,并对其一些重要的性能进行了理论和实验研究。在以高档数控机床等基础装备和国民经济相关行业所需重大专用装备为重点的发展思路的大背景下,提出用新型功能材料来实现高刚度高阻尼的滑动导轨,对提高机床的加工精度、抑制机床振动与噪声、降低机床故障发生率和提高机床的工作效率等方面具有重要的意义。
     本文以机床动力学、接触力学、分形理论、渗流力学等相关知识为基础,从多孔含油金属材料固定结合面的基础研究开始,围绕着多孔金属材料内部润滑油的渗出机理,结合面间油膜的挤压特性,多孔含油材料结合面的建模及仿真,多孔含油材料固定结合面参数识别,铁基多孔含油材料滑块型滑动导轨及其实验台的研制,铁基多孔含油材料滑块型滑动导轨特性实验,滑块型滑动导轨的导向精度分析,滑动结合面对机床整机动态性能的影响等关键问题逐步展开研究。论文的主要内容包括以下几个方面:
     (1)通过对粗糙表面的数学分形描述、流体在多孔金属材料内部的流动分析、结合面狭缝间流体的特性、基于等效单自由度解耦的通用结合面单位面积参数识别等各方面总结与研究,为后续铁基多孔含油材料滑动导轨的研究及滑动导轨性能测试提供理论基础和实验研究手段。
     (2)采用分形理论和边界润滑的平均流动广义雷诺方程,推导了多孔含油材料结合面法向刚度和阻尼的分析模型。并通过模型对结合面固体接触刚度、液体接触刚度、结合面综合接触阻尼进行了定性仿真分析。分析结果显示,铁基多孔含油材料结合面能够较大幅度地提高结合面的刚度和阻尼特性。这为铁基多孔含油材料滑动导轨的研究提供了重要的理论依据和支撑。
     (3)通过基于等效单自由度解耦的通用结合面单位面积参数识别方法进行了铁基多孔含油材料固定结合面动态特性的实验研究。完成了固定结合面单位面积参数识别的实验装置设计和制造;开发并完善了基于Labview开发平台的正弦扫频激励的频响函数测量系统;利用此系统对铁基多孔含油材料固定结合面进行了前期实验研究,这也为铁基多孔含油材料滑动导轨的研究提供了重要的实验依据。
     (4)在前期的研究基础上,完成了铁基多孔含油材料滑块型滑动导轨以及其实验台的设计和制造,并进行了所设计滑动导轨动、静状态下的刚度和阻尼参数识别实验,低速平稳性实验等关键性实验研究。这方面的研究使得铁基多孔含油材料滑块型滑动导轨向实际应用又迈进了一步。
     (5)进行了铁基多孔含油材料滑块型滑动导轨的具体应用研究方面工作,给出了该类型导轨应用中的几种截面形状以及侧向间隙调整措施。并对滑块型滑动导轨的导向精度进行了建模与仿真分析,提出了滑块型滑动导轨与整体式滑动导轨相比,在导向精度方面的特点,并给出了滑块型动导轨滑块间距的一个确定原则。最后通过实例分析,表述了铁基多孔含油材料滑动导轨在提高机床整机动态性能方面的优势。
     论文整体从实际应用出发,开展铁基多孔含油金属材料滑块型滑动导轨的关键技术研究。在铁基多孔含油材料结合面的建模与分析、铁基多孔含油材料固定与滑动结合面参数识别,铁基多孔含油材料滑块型滑动导轨的关键性实验、滑块型滑动导轨导向精度建模与分析等方面取得了阶段性成果。
Sliding joint interface is always one of the weakest links in the whole stiffnesschain of the machine tools; therefore, the mechanical characteristics of the slidingguideway directly affect the dynamic performances of the machine tools. Based on theabundant research foundation on the joint interface of our research group, and basedon the premise and inspiration of the fact that porous media has been successfullyapplied to the self-lubricating bearings, a novel type of slider-sliding guideway wasproposed creatively which using Fe-based oil-soaked porous metallic material as thejoint interface material, and then some researches on its key performances wereconducted theoretically and experimentally. It had great significance to propose thenew kind of guideway under the background of taking the basic equipment, such asCNC machine tools and the major-special-equipments needed in the industries thoserelated to the national economy, as the key and focal point to develop in China.Meanwhile, it had great significance to develop a novel sliding guideway with higherstiffness and damping for improving the machining accuracy, suppressing vibrationand noise of the machine tools, reducing the fault rate and improving themanufacturing efficiency.
     In the paper, the researches were unfolded gradually begined from the basicresearch of the fixed joint interface consisted by Fe-based oil-soaked porous metallicmaterial, which based on the relevant knowledge including Machine dynamics,Contact mechanics, Fractal theory, and Percolation mechanics and so on. The keyissues were studied step by step, such as the exudation mechanism of internallubricants from the porous metallic material, the extrusion characteristics of oil filmbetween the joint surfaces, the modeling and simulation of the joint surface of theoil-soaked porous material, the parameter identification of the Fe-based oil-soakedporous fixed joint interface, the design of the slider-sliding guideway and its test-stand,the characteristic experiment of the designed sliding guideway, the guiding precisionanalysis of slider-sliding guideway, the impact of sliding joint interfaces on thedynamic performances of the machine tools. The main contents of each part in thepaper were described in detail as follows:
     (1) By the deeply studies of the mathematical description of rough surface basedon Fractal theory, the flow analysis of fluid in oil-soaked porous material, thesqueezed characteristics of the fluid in the joint surface slits, the universal unit areajoint surface parameter identification decoupling method based on the equivalentsingle degree of freedom (ESDOF), the theoretical basis and experimental tools were provided for the subsequent researches and the performance experiments of thedesigned sliding guideway.
     (2) The normal stiffness and damping analysis model of the Fe-based porous oilyjoint interface are derived by using the Fractal theory and the generalized Reynoldsequation of average flow under the circumstance of boundary lubrication.Furthermore, the qualitatively simulation analyses were conducted through the modelmentioned above, which included the solid contact stiffness, the liquid contactstiffness, the integrated equivalent contact damping of the joint interface. The analysisresult shows that the stiffness and damping characteristics of the Fe-based porous oilyjoint interface may improve greatly. All of these could provide important theoreticalbasis and support for the study of the designed guideway using Fe-based porousmaterial.
     (3) The experimental research was carried on through the unit area joint surfaceparameters identification decoupling method based on ESDOF to identify the stiffnessand damping of the Fe-based porous oily material fixed joint interface. The mainworks included the design and manufacturing of the experimental device, and thedeveloping of the software for the frequency response function measurement systemby Labview using swept sine excitation, and many pre-experiments on the fixed jointinterface through the system mentioned above. Meanwhile, these works also providedimportant experimental basis for the development of the slider-sliding guideway usingFe-based oil-soaked porous metallic material.
     (4) On the basis of previous studies,the design and manufacturing of theFe-based porous material slider-sliding guideway and its test-stand were completed.Furthermore, several key experiments were carried out, which included the stiffnessand damping parameter identification experiment under dynamic and static staterespectively, the low-speed stability experiment of the designed guideway. Theseresearches make the designed guideway step closer to practical applications.
     (5) Specific application research works about Fe-based porous materialslider-sliding guideway were conducted in this part. Several cross-sectional shape andlateral clearance adjustment measures were presented for better application of thedesigned guideway. The guide precision model of the designed guideway wasestablished. Furthermore, simulation analysis was also conducted using the model,comparing with the overall-contact guideway, the advantages of the slider-slidingguideway was proposed. Meanwhile, one of the principles for determining thedistance between sliders of slider-sliding guideway was proposed. At last, through acase study,the advantages of the Fe-based porous oily material slider-slidingguideway in improving the dynamic performance of the whole machine tool wereexpressed.
     All the researches in the dissertation were focused on practical application tocarry out the studies of Fe-based porous material slider-sliding guideway and its keytechnologies. Some progressive achievements were acquired in the aspects of themodeling and analysis of Fe-based porous material joint interface, the parametersidentification of the designed fixed and sliding joint interface, the critical experimentsof the designed slider-sliding guideway, and the modeling and analysis of guideprecision of the designed guideway.
引文
[1]李圣怡,戴一帆。精密和超精密机床设计理论与方法[M].第一版.国防科技大学出版社,长沙.2009.30
    [2] BURDEKIN M, BACK N and COWLEY A. Analysis of the local deformations in machinejoints[J]. Journal of Mechanical Engineering Science,1979(21):25-32.
    [3]张学良,机械结合面动态特性及应用[M].中国科学技术出版社.北京,2002.1-2.
    [4] Beards, C. F. Damping in Strrctural Joints[J]. Shock and Vibration Digest,24(7),3-7.
    [5]王建军,李其汉,李润方。齿轮系统非线性振动研究进展[J]。力学进展,2005,35(1):37-51.
    [6]陶钟,赵汝嘉,姚公启.组合件静动特性分析研究[J].机械设计与研究,1984,05:58-65.
    [7]黄玉美.机床导轨结合部接触刚度及其影响因素的研究[J].西安理工大学学报,1985,03:13-22.
    [8]廖伯瑜,廖永宜.机床结构建模的研究与应用[J].昆明工学院学报,1988,05:47-63.
    [9]张宗兰,祝效国.机械结合面动态参数的研究[J].哈尔滨工业大学学报,1988,04:79-86.
    [10] Greenwood J. A. and Willia-mson J. B. P. Contact of Nominally Flat Surfaees[J].Proe.Roy.Soe., London A295,1966:300-319.
    [11] Whitehouse D.J. and Archard J.F. The Properties of Random Surfaces of Significance inTheir Contact, Proc. Roy. Soc. London, A316,1970:97-121.
    [12] Nayak P.R. Random Process Model of Rough Srufaces, Trans. ASME, Science F,1971(93):398-407.
    [13] Onion R.A. and Archard J.F. The Contact of Surfaces Having a Random Structure. J. Phys.D, Appl. Phys.1973(6):289-304.
    [14]沈萌红,全永昕,周桂如.各向异性粗糙表面的接触性能研究[J].浙江大学学报(自然科学版),1990,05:24-31.
    [15]饶柱石,夏松波,汪光明.粗糙平面接触刚度的研究[J].机械强度,1994,02:72-75+71.
    [16]张学良.机械结合面动态特性及应用[M].中国科学技术出版社.北京,2002.3-4.
    [17] Majumdar A. and Bhushan B. Fractal model of elastic-plastic contact between roughsurfaces[J]. ASME J Tribol1991,113(1):1–11.
    [18] W. Yan and K. Komvopoulos. Contact analysis of elastic-plastic fractal surfaces[J]. J. Appl.Phys.1998,84(7):3617-3624.
    [19]张学良,黄玉美,温淑华.结合面接触刚度分形模型研究[J].农业机械学报,2000,04:89-91.
    [20]张学良,黄玉美,傅卫平,张文鹏.粗糙表面法向接触刚度的分形模型[J].应用力学学报,2000,(2):31-35.
    [21]张学良,黄玉美,韩颖.基于接触分形理论的机械结合面法向接触刚度模型[J].中国机械工程,2000,(7):15-17.
    [22]尤晋闽,陈天宁.结合面法向动态参数的分形模型[J].西安交通大学学报,2009,43(09):91-94.
    [23]尤晋闽,陈天宁.基于分形接触理论的结合面法向接触参数预估[J].上海交通大学学报,2011,45(09):1275-1280.
    [24] Shuyun Jiang, Yunjian Zheng, and Hua Zhu. A Contact Stiffness Model of Machined PlaneJoint Based on Fractal Theory[J]. JOURNAL OF TRIBOLOGY-TRANSACTIONS OFTHE ASME.2010,(132):1-7.
    [25] P.Wriggers, Computational Contact Mechanics [M]. John Wiley and Sons Ltd. Chichester,2002.
    [26] Zavarise G; Wriggers P. Contact with friction between beams in3-D space[J].INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING.2000,(49):977-1006.
    [27] Sanliturk KY, Ewins DJ. Modelling two-dimensional friction contact and its applicationusing harmonic balance method [J]. JOURNAL OF SOUND AND VIBRATION,1996,193(2):511-523.
    [28] R.E. Goodman, R.L. Taylor, T.L. Brekke, A model for the mechanics of jointed rock,Journal of the Soil Mechanics and Foundations Division1968,(94):637–660.
    [29] Bograd, S. Reuss, P. Schmidt, A. Gaul, L. Mayer, M. Modeling the dynamics ofmechanical joints[J]. Mechanical Systems and Signal Processing,2011,25(8):2801-2826.
    [30]张学良.机械结合面动态特性及应用[M].中国科学技术出版社.北京,2002.6-7.
    [31]黄玉美.机床导轨结合部接触刚度及其影响因素的研究[J].西安理工大学学报,1985,03:13-22.
    [32]董献国,王晖夫,佟浚贤,黄玉美.机床导轨结合部变形所产生的加工误差[J].西安理工大学学报,1988,(3):19-27.
    [33]黄玉美,佟浚贤,董献国,秦世良.机床导轨结合部优化设计方法与程序[J].西安理工大学学报,1989,(2):125-129.
    [34]张学良,黄玉美,赵宏林,黎明安.利用BP网络预测结合面基础特性参数[J].机械科学与技术,1996,(5):185-188.
    [35]张学良,温淑华.机械结构局部物理参数的一种识别方法[J].太原重型机械学院学报,1993,(4):85-88.
    [36]张学良,张宗兰,王船榜.对螺栓结合部接触刚度和接触阻尼识别法的研究[J].太原重型机械学院学报,1991,(1):22-29.
    [37]张学良,黄玉美.遗传算法及其在机械工程中的应用[J].机械科学与技术,1997,(1):51-56.
    [38]张学良,黄玉美.机械结合部动态特性参数识别的优化方法[J].太原重型机械学院学报,1995,(4):314-318.
    [39]张学良,黄玉美,温淑华.机床结合面静态基础特性参数的建模及其应用[J].制造技术与机床,1997,(11):8-10.
    [40]张学良,温淑华.螺栓结合部切向动态特性参数的实验研究[J].太原重型机械学院学报,1992,(3):87-95.
    [41]宋健伟,徐燕申,于德介,彭泽民.用频响函数总体逐阶模态拟合法识别结构模态参数[J].天津大学学报,1990,(S1):52-60.
    [42]宋健伟,徐燕申,彭泽民.机床结构动力特性灵敏度分析及其应用[J].天津大学学报,1990,(S1):61-67.
    [43]于德介,宋健伟,彭泽民,徐燕申.一种机械结构结合面动力学参数识别方法[J].应用力学学报,1990,(2):56-63.
    [44]刘晓平,徐燕申,彭泽民,宋健伟.模态分析和有限元法结合识别机械结构结合面动力学参数的研究[J].应用力学学报,1993,(4):108-112.
    [45]刘晓平,徐燕申,宋健伟,彭泽民.机械结构结合面阻尼参数识别的研究[J].振动与冲击,1995,(3):61-65.
    [46]彭朝阳,刘晓平.机械结构结合面参数辨识的模糊方法[J].北京邮电大学学报,2003,(3):12-16.
    [47]刘晓平,彭朝阳.基于传递函数的机械结合面参数模糊辨识[J].西南交通大学学报,2003,(5):521-524.
    [48] Schmitz TL, Donaldson R. Predicting high-speed machining dynamics by substructureanalysis. Ann CIRP,2000,49:303–308.
    [49] Schmitz TL, Davies M, Kennedy MD. Tool point frequency response prediction forhigh-speed machining by RCSA. J Manuf Sci Eng2002,(123):700–707.
    [50] Altintas Y. Manufacturing automation: Metal cutting mechanics, machine tool vibrations,and CNC design[M]. Cambridge University Press, New York2002.
    [51] Park S, Altintas Y, Movahhedy M. Receptance coupling for end mills [J]. Int J Mach ToolsManuf2003,(43):889–896.
    [52]唐秀近,袁景侠.时序分析和数字仿真在结构参数识别中的应用[J].大连工学院学报,1984,(2):9-17.
    [53]伍良生,王永宾,周大帅.分时快速稳态正弦扫频激振频响函数测量系统及方法[P].北京:CN101561342,2009-10-21.
    [54]伍良生,张威,赵宏林,张宝柱,刘清龙.数控机床滚动导轨力学性质的实验研究[J].制造技术与机床,2006,07:26-28.
    [55]伍良生,刘振宇,张宝柱,张威,杨庆坤.带过渡深腔的动压轴承的优化设计与试验[J].机械工程学报,2006,(11):144-149.
    [56]洪福昌.数控机床结合面特性参数的识别研究及其应用软件开发[D].北京工业大学,2000.
    [57]王海滨.机床结合面实验设计及有限元建模的研究[D].北京工业大学,2001.
    [58]韩会斌.机床结合面阻尼系数识别研究[D].北京工业大学,2001.
    [59]张威.数控机床结合面参数实验识别及其主结构动态优化[D].北京工业大学,2006.
    [60]董金城.粉末冶金材料结合面特征参数识别与研究[D].北京工业大学,2008.
    [61]王泽林.机床滑动结合面特征参数识别分析与研究[D].北京工业大学,2011.
    [62]杨家华,伍良生,管华.平面结合面参数识别的研究[J].北京工业大学学报,2000,03:20-23.
    [63] R. Connlly and R.H. Thornley. Determining the Normal Stiffness of Joint Faces[J],ASME.1967.
    [64] N. Back, M. Burdekin and A. Cowley. Analysis of Machine Tool Joints by the FiniteElement Method.14thConfer. M.T.D.R.1974:529-537.
    [65]伊东谊编,吕伯诚译.现代机床基础技术[M].机械工业出版社.北京,1987.
    [66] M. Yoshimura. Computer Aided Design Improvement of Machine Tool StructureIncorporating Joint Dynamic Data[J]. Annals of CIRP.1979,(1):241-246.
    [67]伍良生.带弹性夹层的层板结构的振动特性研究[J].机械工程学报,1999,(1):82-85.
    [68]陈卫福,孙建光,范晋伟等.模态力法用于机床结构系统动态分析的研究[J].北京工业大学学报,2000,(1):53-57.
    [69] Edward Chlebus, Bogdan Dybala. Modeling and Calculation of Properties of SlidingGuideways[J]. International Journal of Machine Tools and Manufacturing.1999,39(12):1823-1839.
    [70]温诗铸,黄平等.界面科学与技术[M].清华大学出版社.北京,2011.
    [71]屈重年,伍良生,肖毅川,张仕海.机床导轨技术研究综述[J].制造技术与机床,2012,(1):30-36.
    [72] W. P. Fu, Y. M. Huang, X.L. Zhang. Experimental Investigation of Dynamic NormalCharacteristics of machined Joint Surfaces [J]. Transactions of ASME. Journal of Vibrationand Acoustics.2000,122(4):393-398.
    [73]郭成龙.数控机床滑动导轨结合面动态特性参数测试及应用研究[D].南京理工大学,2012.
    [74]郭丹枫.数控机床固定结合面切向动态特性参数识别及其应用技术研究[D].南京理工大学,2012.
    [75]顾思闽,胡小秋,汪振华.机床固定结合面动态特性参数实验研究[J].机床与液压,2011,39(17):12-14.
    [76]柳林燕,汪惠芬,刘婷婷,李新平,周喜峰.基于结合面特性的机床整机精度设计系统研究[J].机床与液压,2012,40(1):1-6.
    [77]雷蕾.中间介质对结合部力学性质的影响研究[D].西安理工大学硕士论文.2009.
    [78] Powalka B, Okulik T. Dynamics of the guideway system founded on casting compound[J].INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY,2012,59(1-4):1-7.
    [79]天日和仁.滚珠丝杠和直线导轨的现状及技术动向[J].现代金属加工.2006(1):62-64.
    [80]屈岳陵.直线导轨的原理与发展[J].现代制造.2003(20):40-42.
    [81]台湾上银科技公司.智能型直线导轨[J].现代制造.2004(10):56.
    [82]丁振乾.我国机床液体静压技术的发展历史及现况[J].精密制造与自动化.2003(3):19-21.
    [83] Fazil Canbulut, Cem Sinanoglu, Sahin Yildirim. Analysis of Effects of Sizes of Orificeand Pocket on the Rigidity of Hydroctatic Bearing [J].KSME international journal(Korea).2004,18(3):432-442.
    [84] Xiaodong Yu, Yanqin Zhang, et al. Numerical Simulation of Gap Flow of Sector RecessMulti-pad Hydrostatic Thrust Bearing[C]. Proceedings of Asia Simulation conference2008/7th Int. Conf. on Sys. Simulation and Scientific Computing.2008:675-679.
    [85] M.F.Chen, W.L.Huang,Y.P.Chen. Design of the Aerostatic Liner Guideway with a PassiveDisk-spring Compensator for PCB Drilling Machine [J].Tribology International.2010(43):395-403.
    [86]孟心斋,孟昭焱.恒流供油液静压支承静态性能新表达式与应用[J].洛阳工学院学报.2002,23(1):63-66.
    [87]于晓东.重型静压推力轴承力学性能及油膜态数值模拟研究[D].东北林业大学博士论文.2007.
    [88] S Y Jeon, K H Kim.A fluid Film Model for Finite Element Analysis of Structures withLinear Hydrostatic Bearings[J].Mechanical Engineering Scince.2004(218):309-316.
    [89]孙学赟,罗松保.液体静压导轨的动态建模方法的研究[C].航天学会2005年学术交流论文集,2005:61-67.
    [90]陈学东.超精密气浮定位工作台技术[M].武汉:华中科技大学出版社.2007
    [91] Won-Jae Lee, Seok-ll Kim. Joint Stiffness Identification of an Ultra-Precision Machine forMachining Large-Surface Micro-Features[J], International Journal of Precision EngineeringAnd Manufacturing.2009,10(5):115-121.
    [92]薛飞,赵万华.静压导轨误差均化效应影响因素研究[J].西安交通大学学报.2010(11):33-36.
    [93]刘一磊.超精密机床液体静压导轨静动态特性分析及模态参数识别[D].哈尔滨工业大学硕士论文.2010
    [94]杨华勇,周华,路甬祥.水液压技术的研究现状与发展趋势[J].中国机械工程.2000(12):1430-1433.
    [95] Yui. A, Okuyama. S. Study on Precision Machine Table Equipped with Constant-FlowHydrostatic Water Bearings[C].12th International Symposium on Advances in AbrasiveTechnology,2009(76-78):664-669.
    [96]田录林.永磁轴承和导轨磁力解析模型的研究[D].西安理工大学博士论文.2008.
    [97]李黎川,丁玉成,卢秉恒.超精密磁悬浮工作台及其解耦控制[J].机械工程学报.2004(9):84-88.
    [98]许良琼,陆新江,李群明.模糊PID控制在电磁悬浮平台中的应用[J].中南大学学报(自然科学版).2005(8):631-636.
    [99]陈亚英,朱煜.基于电流变效应的超精密工件台研究与展望[J].半导体技术.2005(3):11-17.
    [100]J.W. Hutchinson, M.Y. He. Buckling of cylindrical sandwich shells with metal foamcores[J]. International Journal of Solids and Structures.2000.(37):6777-6794.
    [101]董鲜峰.铁基粉末冶金材料烧结渗硼工艺及组织、性能研究[D].吉林大学博士论文,2010.
    [102]奚正平,汤慧萍,朱纪磊,张健.金属多孔材料在能源与环保中的应用[J].稀有金属材料与工程,2006,S2:413-417.
    [103]Olurin. OB, Wilkinson. DS, Weatherly. GC. Strength and ductility of as-plated andsintered CVD nickel foams[J]. Composites Science and technology,2003,63(16):2317-2329.
    [104]高海燕. Fe-Al金属间化合物多孔材料的研究[D].中南大学博士论文.2009.
    [105]刘培生,李铁藩,傅超,吕明.多孔金属材料的应用[J].功能材料,2001,(1):12-15.
    [106]周桂茹.流体润滑理论[M].浙江大学出版社.杭州,1990
    [107]Armada S, Schmid R, Equey S, Liquid-Solid Self-Lubricated Coatings[J]. JOURNAL OFTHERMAL SPRAY TECHNOLOGY.2013,22(1):10-17.
    [108]王显方,潘红玮,黄勇.含油自润滑轴承在纺纱机械上的应用探讨[J].纺织器材,2007,(6):84-85.
    [109]卢天健,刘涛,邓子辰.多孔金属材料多功能化设计的若干进展[J].力学与实践,2008,(1):1-9.
    [110]饶柱石,夏松波,汪光明.粗糙平面接触刚度的研究[J].机械强度,1994,(2):72-75.
    [111]RS Sayles, TR Thomas. Surface Topography as a Nonstationary Random Process[J].Nature,1978,271:431-434.
    [112]A Majumdar, B Bhushan. Fractal model of elastic-plastic contact surfaces[J]. Tram ofASME,1991,113(1):1-11.
    [113]A Majumdar, B Bhushan. Role of fractal geometry in roughness characterization andcontact mechanics of surfaces[J]. ASME Journal of Tribology,1990,(172):205-206.
    [114] Yan W, Komvopoulos K. Contact Analysis of Elastic-Plastic Fractal Surfaces[J]. Journalof Applied Mechanics.1998,84(7):3617-3624.
    [115]葛世荣.粗糙表面的分形特征与分形表达研究[J].摩擦学学报,1997,(1):74-81.
    [116]You JM, Chen TN. A Static Friction Model for the Contact of Fractal Surfaces[J].Proceedings of the Institution of Mechanical Engineerings, Part J: Journal of EngineeringTribology.2010,(224):513-518.
    [117]Ausloos, M. Berman, DH. Multivariate Weierstrass-Mandelbrot Function[J]. Proceedingsof the Royal Society of London, Series A: Mathematical and Physical Sciences,1985,(400):331-350.
    [118]Lin J R. Squeeze film behavior in a hemispherical porous bearing using the Brinkmanmodel[J]. Tribology Transactions.1996,39(4):769-778.
    [119]Hwang Chi-Chuan, Lin Jaw-Ren, Yang Rong-Fuh. Lubrication of long porous sliderbearings (use of the Brinkman-extended Darcy model)[J]. JSME International Journal,Series B: Fluids and Thermal Engineering.1996,39(1):141-148.
    [120]Lin Jaw-Ren, Hwang, Chi-Chuan. Hydrodynamic lubrication of finite porous journalbearings-use of the Brinkman-extended Darcy model[J]. International Journal ofMechanical Sciences,1994,36(7):631-644.
    [121]杨沛然,温诗铸.非牛顿流体微观热弹流润滑理论[J].机械工程学报,1994,(1):69-74.
    [122]丁亮.烧结多孔介质材料发汗冷却的研究[D].中国科学技术大学,2012.
    [123]Tichy JA. A porous media model for thin film lubrication[J].Journal of TribologyTransactions of the ASME.1995,117(1):16-21.
    [124]曲庆文.薄膜润滑理论[M].科学出版社,北京2006.
    [125]吴承伟.部分流体膜挤压特性分析[J].应用力学学报,1992,(2):114-122.
    [126]王晓力,温诗铸,桂长林.基于平均流动模型的广义雷诺方程[J].润滑与密封,1998,(3):16-18.
    [127]Qu Chongnian, Wu Liangsheng, Ma Jianfeng, Xiao Yichuan. Research on stiffness anddamping characteristics of fixed oily porous materials joint interface[J]. AdvancedMaterials Research-Equipment Manufacturing Technology.2012,(422):575-579.
    [128]Thompson AH, Katz AJ, Raschke RA. Estimation of absolute permeability from capillarypressure measurements[J]. Society of Petroleum Engineers of AIME,1987,(Ω):475-481.
    [129]Boming Yu. Analysis of Flow in Fractal Porous Media[J]. Transactions of the ASME,Applied Mechanics Reviews.2008,61(5):1-19.
    [130]皇甫哲.机械加工接触面的变形和接触面积[J].西北大学学报(自然科学版),1992,(3):311-318.
    [131]高中庸,高尚晗,徐武彬.边界润滑抗磨与降噪的机理分析[J].现代制造工程,2005,(2):88-90.
    [132]苏丹.爬行机理的研究及计算机仿真[D].兰州理工大学,2007.
    [133]陈心昭.现代实用机床设计手册(上)[M].机械工业出版社.北京.2006.
    [134]Ekinci TO, Mayer JRR. Relationships between straightness and angular kinematic errors inmachines[J]. INTERNATIONAL JOURNAL OF MACHINE TOOLS&MANUFACTURE.2007,47(12-13):1997-2004.
    [135]Pawel Majda. Modeling of geometric errors of linear guideway and their influence onjoint kinematic error in machine tools[J]. Precision Engineering.2012,(36):369-378.
    [136]GMN Co. http://www.gmnbt.com/pdf/ballbearings.pdf
    [137]Lin LP, Lin JF. A new method for elastic-plastic contact analysis of a deformable sphere and arigid flat[J]. Journal of tribology,2006,128(2):221-229.
    [138]Yaxin Song, Modeling, identification and simulation of dynamics of structures with jointsand interfaces[D], University of Illinois at Urbana-Champaign, Urbana Illinois,2004.
    [139]Park. SS, Chae. J. Joint identification of modular tools using a novel receptance couplingmethod [J]. International Journal of Advanced Manufacturing Technology. FEB.2008,Vol.35(11-12):1251~1262.
    [140]Gouker RM, Gupta SK, Bruck HA. et.al. Manufacturing of multi-material compliantmechanisms using multi-material molding[J]. International Journal of AdvancedManufacturing Technology.2006, Vol.30(11-12):1049~1075.
    [141]Singh B, Nanda BK. Identification of damping mechanism in layered and weldedstructures[J]. Int J Mech Sci2012,63(1):37–47.
    [142]Quinn DD. Modal analysis of jointed structures[J]. J Sound Vib2012.331(1):81–93.
    [143]Xue Yue. Developments of Joint Elements and Solution Algorithms for Dynamic Analysis ofJointed Structures[D]. University of Colorado, USA.2002.
    [144]Jaspreet SD. Effect of Joint Nonlinearities on the Dynamic Perfoumance of Machine tools[D].Univesity of Michigan, USA.2007.
    [145]Cuauhtemoc MZ. The Effect of Interlayers on Dissimilar Friction Weld Properties[D].University of Toronto, USA.2001.
    [146]Ibrahim. R.A. Pettit. C.L. Uncertainties and dynamic problems of bolted joints andother fasteners[J]. Journal of Sound and Vibration,2005,(279):857-936.
    [147]Miller JD, Quinn DD. A two-sided interface model for dissipation in structural systems withfrictional joints[J].2009,J Sound Vib321(1–2):201–219.
    [148]Sahin M. Joining of stainless-steel and aluminum materials by friction welding[J]. Int J AdvManuf Tech,2009,41(5–6):487–497.
    [149]Olvera D, de Lacalle LNL, Compean FI, et al. Analysis of the tool tip radial stiffness ofturn-milling centers[J]. Int J Adv Manuf Tech,2012,60(9-12):883-891.
    [150]Mousseigne M, Landon Y, Seguy S, et al. Predicting the dynamic behaviour of torusmilling tools when climb milling using the stability lobes theory[J]. Int. J. Mach. ToolsManuf.2013,(65):47-57.
    [151]Ozer A, Semercigil SE, Kumar RP, Yowat P. Delaying tool chatter in turning with atwo-link robotic arm[J]. J. Sound Vibr.2013,332(6):1405-1417.
    [152]Caliskan H, Kursuncu B, Kurbanoglu C, et al. Material selection for the tool holderworking under hard milling conditions using different multi criteria decision makingmethods[J]. Mater. Des.2013,(45):473-479.
    [153]Zebala W. Tool stiffness influence on the chosen physical parameters of the millingprocess[J]. BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICALSCIENCES.2012,60(3):597-604.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700