用户名: 密码: 验证码:
黑斑原鮡消化生理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以具有很高经济价值和养殖潜力的黑斑原鮡Glyptosternum maculatum (Regan,1905)为研究对象,系统地研究其消化系统的形态学、组织学和超微结构以及消化酶的种类、分布、理化性质和不同年龄组消化酶的差异,并测定胃肠道粗酶液对7种饲料原料的离体消化率,从而为黑斑原鮡人工饵料的配方提供一些理论依据,同时也丰富了鮡科鱼类消化生理的基础知识,主要研究结果如下:
     1.黑斑原鮡消化系统具有以下特点:
     (1)口下位,吻钝圆,唇具小乳突。口腔和口裂都较大;上下颌有细小的尖齿,齿尖朝里,密集排列形成齿带。舌退化,第一鳃弓外鳃耙数目为5-9。口咽腔顶壁和底壁为复层鳞状上皮,内含味蕾和杯状细胞。
     (2)食道粗短,肌层很发达,内壁上有较深的纵向褶,粘膜层有大量的杯状细胞。黑斑原鮡食道前段的粘膜层仍发现少量的味蕾。
     (3)胃呈囊状,U型,分为贲门、盲囊和幽门三部分,胃壁内有很深的纵向皱褶,贲门和胃底部有胃腺。向幽门处移动胃腺数量逐渐减少,胃肠交界处的幽门胃无胃腺。胃底部存在三种类型的细胞:粘液细胞、腺细胞和内分泌细胞。
     (4)肠管较短,肠道系数约为0.9。肠壁较厚,管腔从前肠到后肠逐渐变小。整个肠道没有任何膨大部分,盘旋1-2次。整个肠道内壁充满密集的纵向粘膜褶,粘膜皱褶高度从前肠向后肠逐渐降低。肠上皮主要有吸收细胞和杯状细胞。
     (5)肝胰脏是分离的,胰腺主要分布在胃、肠道前段和胆囊壁外周以及肠道系膜的脂肪中。肝脏覆盖在食道和胃前端的上面,分左右两叶,肝脏呈深红棕色,分别通过连接带与胸鳍基部皮下的腹腔外附肝相连。胆囊借结缔组织与肝脏左叶相连,呈深绿色。
     2.2.黑斑原鮡消化道蛋白酶活性以胃最高,前肠、主肝和附肝次之,胃和前肠以及胃和主肝、附肝之间差异显著(p<0.05),主肝和附肝之间差异不显著(p>0.05),中肠和后肠最低且两者差异不显著(p>0.05);淀粉酶活性以前肠最高,主肝和附肝次之,前肠与后两者差异显著(p<0.05),但主肝和附肝之间差异不显著(p>0.05),再次为胃,胃与前肠淀粉酶活性差异显著(p<0.05),与两部分肝脏差异也不显著(p>0.05);中肠和后肠的活性最低,与前肠的淀粉酶差异显著(p>0.05);脂肪酶活性以前肠最高,主肝和后肠次之,三者之间差异显著(p<0.05),中肠、胃和附肝的脂肪酶活性最低,中肠与后肠的脂肪酶活性差异不显著(p>0.05),但二者都低于前肠(p<0.05),中肠与胃之间差异显著(p<0.05),主肝和附肝之间脂肪酶活性差异显著(p<0.05);胰蛋白酶前肠最高,胰凝乳蛋白酶活性主肝和附肝最高,两种酶活性均以胃部最低;碱性磷酸酶活性前肠最高,中肠和后肠次之且两者无显著性差异(p>0.05),但与前肠差异显著(p<0.05),主肝、附肝和胃活性最低,三者无显著性差异(p>0.05);亮氨酰氨基肽酶活性分布规律和碱性磷酸酶一致,前肠最高,中肠和后肠次之且两者无显著性差异(p>0.05),但与前肠差异显著(p<0.05),主肝、附肝和胃活性最低,三者无显著性差异(p>0.05)。
     3.黑斑原鮡胃蛋白酶最适温度为30℃,前肠、中肠和后肠为50℃;胃、前肠、中肠和后肠四个部位的淀粉酶最适温度均为30℃;胃脂肪酶最适温度为30℃,前肠最适反应温度为50℃,中肠和后肠的最适温度为40℃。胃蛋白最适pH为2.0,肠道最适pH为9.0-10.0;胃淀粉酶最适pH为6.0,肠道最适pH为7.0;胃脂肪酶最适pH为6.0,肠道最适pH为8.0。胃和肠道蛋白酶在20-50℃范围内均比较稳定。胃蛋白酶在pH 1.0-4.5之间都比较稳定,肠蛋白酶的pH稳定性范围为pH7.5-11.0。胃和肠道蛋白酶最适底物浓度分别为2.5%和2.0%干酪素,胃和肠淀粉酶最适底物浓度分别为2.5%和3.0%可溶性淀粉。Na+和Hg2+对胃蛋白酶有明显抑制作用,Cu2+和Co2+有明显激活效果;Cu2+、Zn2+和Fe3+对肠道蛋白酶有明显抑制作用,而Ca2+、Fe2+以及Mg2+对其有激活作用,EDTA对胃和肠道的蛋白酶均有强烈抑制作用。胃肠道蛋白酶明显受到PMSF、TPCK、TLCK、PepstatinA和β-巯基乙醇等的抑制。
     4.黑斑原鮡不同年龄组的消化酶活性有差异。蛋白酶和淀粉酶活性在9龄组最高,7龄组和15龄组最低,趋势是随年龄增加先增加后减小。碱性磷酸酶也随年龄增加先增加后降低。脂肪酶活性3龄组和5龄组最高,基本趋势随年龄增加而减小。胰蛋白酶和胰凝乳蛋白酶以及亮氨酰-氨基肽酶随年龄增加而降低。
     5.黑斑原鮡粗酶液对7种蛋白原料的干物质和粗蛋白的体外消化率大小顺序为:胃部>前肠>中肠>后肠,其中对动物性蛋白(如鱼粉)的消化率高于植物性蛋白(豆粕、菜粕和棉粕)。消化道粗酶液分解蛋白质所产生氨基酸的速率顺序为:前肠>中肠>胃>后肠。
The aim of the study is to investigate the morphology, histology and ultrastructure of digestive tract of Glyptosternum maculatum, and the distribution and characteristics of main digestive enzymes, and the changes of digestive enzymes vary from age, also the in-vitro digestibility on seven feed ingredients of crude enzymes. Such information of digestive physiology of G. maculatum of notable economic importance and with high potential for controlled rearing is considered valuable, not only for adding to current knowledge on the biology of Sisoridae fishes, but also for understanding formulation of any artificial diets. The main results are below:
     1. The features of digestive tract of G. maculatum are summarized below:
     (1) Inferior mouth with thin papillate lips, blunt snout and broad mouth width. Premaxillary teeth are short and conical, arranged in irregular rows on as a patch. Tongue degenerate. The number of outer gill raker in the fist gill arch is 5-9. The mucosa of both upper and lower wall of buccopharynx is stratified squamous epithelium with goblet cells and taste bud.
     (2) The oesophagus is stubby with thick muscularis. The mucosa fold is longitudinal, lined with many goblet cells, and few taste buds are found in the forepart of oesophagus.
     (3) The U shape stomach was divided into three portions obviously:cardiac, fundic and pyloric parts. In the cardiac and fundic stomach, there were a great amount of gastric glands, whereas there is a gradual loss of glands towards the pyloric stomach, and no gastric glands are found in the posterior part of pyloric stomach. The mucosa fold of the stomach is longitudinal with zigzagging bend, and second fold was transverse or wavy. At the ultrastuctural level, three type cells (mucous, glandular and endocrine cell) were found in the stomach, and glandular cell with a great amount of pepsinogen granules.
     (4) The intestine is short with 1-2 times convolution, and the relative intestine length was 0.9. The wall of intestine tube is thick, and the height of mucosa fold and thickness of muscularis decrease from the anterior intestine to posterior intestine. The intestinal epithelium is composed of two main cell types:enterocytes and goblet cells.
     (5) Liver and pancreas is separate, and the pancreas mainly distribute close to stomach, anterior intestine and gall bladder, as well as the lipid tissue of mesenterium. Liver has right and left lobe, above the oesophagus and stomach, and gall bladder is attached to the left lobe of liver. The color of liver and gall bladder is puce and bottle green, respectively. The subdominant liver is under the skin of pectoral fin, with joint belt connected to dominant liver in the abdominal cavity.
     2. The descending order of protease activity in different digestive sections is: stomach, anterior intestine, dominant liver, subdominant liver, posterior intestine and middle intestine, and the activity in the stomach is significantly higher than that in the anterior intestine and two parts of liver (p<0.05), while there is no significant difference between dominant and subdominant liver, as well as between posterior intestine and middle intestine (p>0.05). The amylase activity is highest in anterior intestine, following in the dominant and subdominant liver, and the amylase in the in anterior intestine is significantly higher than that in two parts of liver (p<0.05). The amylase is lowest in the stomach, which had no significant differences compared to that in posterior intestine and middle intestine (p>0.05). Lipase activity is highest in anterior intestine, following in the dominant liver and posterior intestine, the lipase activity of three above digestive sections with significant differences (p<0.05). Lipase activity is lowest in the subdominant liver, and lipase activity has significant difference among the middle intestine, stomach and subdominant liver (p<0.05), as well as lipase activity between dominant and subdominant liver with significant difference (p<0.05). The highest trypsin activity is found in the anterior intestine, and highest chymotrypsin activity is in the two parts of liver, both digestive enzymes with lowest value in the stomach. Alkaline phosphatase activity is highest in the anterior intestine, following in the middle intestine and posterior intestine, and the activity in anterior intestine is significantly higher than that in the middle and posterior intestine (p<0.05), however with nosignificant difference between middle and posterior intestine (p>0.05). Alkaline phosphatase activity is lower in the stomach, dominant and subdominant liver and above three digestive sections with no significant difference. Leucine aminopeptidase activity is similar to alkaline phosphatase activity, highest activity in the anterior intestine, following in the middle intestine and posterior intestine, lower in the stomach, dominant and subdominant liver, and the activity in anterior intestine is significantly higher than that in the middle and posterior intestine (p<0.05). Leucine aminopeptidase activity of the stomach, dominant and subdominant liver has no significant difference (p>0.05).
     3. The optimal reaction temperature for pepsin is 30℃, and for protease in the anterior, middle and posterior intestine is 50℃. The optimal reaction temperature in four digestive sections is 30℃. The optimal temperature of lipase is 30℃in stomach,50℃in anterior intestine,40℃in middle and posterior intestine. The optimal pH for pepsin is 2.0, and pH 9.0-10.0 is the optimal pH for intestine protease. The optimal pH for amylase is 6.0 in the stomach, and 7.0 for three parts of intestine. The optimal pH for lipase is 6.0, and 8.0 for three parts of intestine. The thermal stability for gastrointestinal protease is ranged from 20 to 50℃. Pepsin is stable in the pH range 1.0-4.5, and intestine protease is stable in the pH range 7.5-11.0. The best concentration of substrate for pepsin and intestine protease is 2.5% and 2.0% casein, respectively. And the best concentration of substrate for stomach and intestine amylase is 2.5% and 3.0% soluble starch, respectively. Na+ and Hg2+promote pepsin activity, while Cu2+ and Fe3+ inhibit the pepsin activity. Ca2+, Fe2+ and Mg2+promote protease activity of intestine, while Cu2+, Zn2+and Fe3+ inhibit intestine protease activity. The protease activity in the stomach and intestine is inhibited by PMSF, TPCK, TLCK, Pepstatin A andβ-mercaptoethanol.
     4. Digestive enzymes vary from age. The highest protease and amylase is found the 9 age group, lowest value in 7 and 15 age groups, and the enzymes activity increase first then decrease with age increasing from 3 to 15. Alkaline phosphatase activity vary according to age change is similar to the trend of protease and amylase. The lipase activities are higher in the 3 and 5 age-groups than other age-groups, and the activity decrease with age increasing from 3 to 15. The trend of change of trypsin activity, chymotrypsin activity and leucine aminopeptidase activity also decrease with age increasing from 3 to 15.
     5. The descending order of in-vitro protein and dry matter digestibility of crude enzymes of different digestive sections on seven feed ingredients was:stomach, anterior intestine, middle intestine and posterior intestine, and the in-vitro digestibility of crude enzymes on animal feed ingredients was higher than that of plant feed ingredients. The descending order of producing amino acid rate to the enzymolysis reaction by crude enzymes of different digestive sections was anterior intestine middle intestine, stomach and posterior intestine.
引文
1. 白东清,乔秀亭,刘刚,张建华,尤连国,张雅娟.不同生长阶段鲤肠、肝胰脏蛋白酶活性研究.水利渔业,1999,19:4-6
    2. 白晓慧,王贵英,熊传喜.不同年龄黑尾近红鲌消化酶活性比较.淡水渔业,2007,37:30-33
    3. 白晓慧.黑尾近红鲌消化酶活性分布及其性质研究.[硕士学位论文].武汉:华中农业大学图书馆,2007
    4.蔡克瑕,陈品健,王重刚,谢仰杰.饵料对花尾胡椒鲷仔鱼消化酶的影响.海洋学报,2000,22:142-145
    5.柴鹏,李吉方,吴蒙蒙,陈竟敏.饥饿和再投喂对锦鲤幼鱼几种消化酶活性的影响.水利渔业,2007,27:12-14
    6.常青,张秀梅,陈四清,梁萌青,刘寿堂.半滑舌鳎仔稚鱼消化酶活性的变化.海洋科学进展,2005a,23:472-476
    7.常青,陈四清,张秀梅,梁萌青,刘龙常.半滑舌鳎消化系统器官发生的组织学.水产学报,2005b,29:447-452
    8.常青,梁萌青,王家林,张秀梅,陈四清.微颗粒饲料中添加消化酶对半滑舌鳎仔、稚鱼生长和消化酶活性的影响.海洋水产研究,2008,29:63-68
    9. 陈慕雁.大菱鲆不同发育阶段消化生理的研究.[硕士学位论文].青岛:中国海洋大学图书馆,2004
    10.陈品健,王重刚,陆浩,顾勇.真鲷幼鱼消化酶活性与温度的关系.厦门大学学报:自然科学版,1998a,37:931-935
    11.陈品健,王重刚,郑森林.夏、冬两季真鲷仔、稚、幼鱼消化酶活性的比较.海洋学报,1998b,20:90-92
    12.陈品健,王重刚,郑森林.盐度影响真鲷幼鱼消化酶活力的研究.厦门大学学报:自然科学版,1998c,37:754-756
    13.陈勇,周洪琪,冷向军,钟国防.壳聚糖对异育银鲫生长和消化酶的影响.中国水产科学,2006,13:440-445
    14.陈勇,周洪琪.三种多糖对异育银鲫肠道,肝胰脏蛋白酶和淀粉酶活性的影响.上海水产大学学报,2005,14:468-471
    15.陈章宝,何利君,冉蓉,孙文锦,王伟.患肠炎病草鱼消化酶活性的研究.四川畜牧兽医学院学报,2001,15:7-12
    16.程秋根,潘志刚,韩兆红,叶元土.发酵豆粕和去皮豆粕离体消化率的比较.饲料与畜牧,2008,5:42-43
    17.褚新洛.鰋鮡鱼类的系统发育及演化谱系:包括一新属和一新亚种的描述.动物分类学报,1979,4:72-82
    18.褚新洛,郑葆珊,戴定远.中国动物志.硬骨鱼纲.鲇形目.北京:科学出版社,1999
    19.戴家银,郑微云,王淑红.铜和锌离子对真鲷幼鱼组织酶活性的影响.环境科学,1998,19:60-62
    20.戴贤君,舒妙安.黄鳝不同生长阶段消化器官及其消化酶的变化.上海交通大学学报:农业科学版,2002,20:113-116
    21.丁贤,李卓佳,陈永青.温度和pH对异育银鲫消化酶稳定性及其活力的影响.海洋水产研究,2008,29:46-51
    22.杜宣,周国勤,茆健强.3种微生态制剂的氨基酸组成及对鲤鱼消化酶活性的影响.云南农业大学学报,2006,21:351-354
    23.方静,李逊,谢林,周毅,曹五七.革胡子鲇消化道粘膜上皮的扫描电镜研究.四川农业大学学报,1994,12:310-313
    24.付新华,孙谧,孙世春.大菱鲆消化酶的活力.中国水产科学,2005,12:26-32
    25.高露姣,陈立侨,赵晓勤,庄平.施氏鲟幼鱼的饥饿和补偿生长研究—对消化器官结构和酶活性的影响.中国水产科学,2004,11:413-419
    26.高梅,罗毅平,曹振东.饲料碳水化合物对南方鲇(Silurus meridionalis Chen)幼鱼消化酶活性的影响.西南师范大学学报:自然科学版,2006,31:119-123
    27.顾岩,孙中武,尹洪滨,尹家胜.野生与养殖哲罗鱼消化系统及消化酶的比较研究.中国水产科学,2008,15:330-336
    28.关海红,匡友谊,徐伟,尹家胜.哲罗鱼消化系统形态学和组织学观察.中国水产科学,2008a,15:873-879
    29.关海红,徐伟,匡友谊,尹家胜.哲罗鱼与2种有胃鱼消化系统比较解剖的观察.水产学杂志,2008b,21:42-46
    30.关胜军,吴锐全,谢骏,王广军,谢一荣.摄食对大口黑鲈消化器官蛋白酶和淀粉酶活力的影响.海洋渔业,2006,28:190-194
    31.郭宝英.黑斑原鮡遗传多样性分析及微卫星标记的开发.[博士学位论文].武汉:华中农业大学图书馆,2009
    32.郭建林,叶元土,伍代勇,唐精,萧培珍,彭鹄,王成,张宝彤.膨化对植物性饲料原料草鱼离体消化率的影响.中国饲料,2005,24:24-26
    33.何舜平,陈永久,张亚平.鮡科鱼类细胞色素b基因片段的序列测定及其系统发育的初步研究.动物学研究,1999,20:81-87
    34.胡麟.乌鳢消化酶活性及对九种饲料原料体外消化的研究.[硕士学位论文].杭州:浙江大学图书馆,2006
    35.黄峰,严安生,张桂蓉,邹桂伟.不同蛋白含量饲料对南方鲇胃蛋白酶和淀粉酶活性的影响.水生生物学报,2003,27:451-456
    36.黄耀桐,刘永坚.草鱼肠道肝胰脏蛋白酶活性初步研究.水生生物学报,1988,12:328-334
    37.黄永春,刘登.温度对不同规格欧鳗消化器官蛋白酶和淀粉酶活性影响的初步研究.台湾海峡,2004,23:138-143
    38.黎军胜,李建林,吴婷婷.奥尼罗非鱼消化道蛋白酶分布与特性.南京农业大学学报,2004a,27:81-84
    39.黎军胜,李建林,吴婷婷.奥尼罗非鱼淀粉酶、脂肪酶的分布与特性.中国水产科学,2004b,11:473-477
    40.李广丽,王义强.草鱼、鲤鱼肠道、肝胰脏消化酶活性的初步研究.湛江水产学院学报,1994,14:34-40
    41.李红敬,刘鸿艳,樊启学,谢从新.黑斑原鮡个体生殖力研究.应用与环境生物学报,2008,14:499-502
    42.李红敬.黑斑原姚个体生物学和种群生态研究.[博士学位论文].武汉:华中农业大学图书馆,2008
    43.李金秋,林建斌,朱庆国,马燕梅,梅景良,邱曼丽.不同能量蛋白比饲料对牙鲆体内消化酶活性的影响.集美大学学报:自然科学版,2005,10:296-299
    44.李军.美国红鱼消化酶活性及饲料原料体外消化率相关性研究.[硕士学位论文].杭州:浙江大学图书馆,2006
    45.李芹.瓦氏黄颖鱼消化系统发育的研究.[硕士学位论文].重庆:西南农业大学图书馆,2005
    46.李希国,李加儿,区又君.盐度对黄鳍鲷幼鱼消化酶活性的影响及消化酶活性的昼夜变化.海洋水产研究,2006,27:40-45
    47.李旭.中国鲇形目鮡科鰋鮡群鱼类的系统发育及生物地理学分析.[硕士学位论文].昆明:西南林学院图书馆,2006
    48.李玉和,郭淑华.乌鳢消化道粘膜上皮的扫描电镜研究.解剖学报,1992,23:98-101
    49.林浩然.五种不同食性鲤科鱼的消化道.中山大学学报自然科学版,1962,3:65-78
    50.林仕梅,王友慧,罗莉,叶元土,李涛.大鳍鳠蛋白酶活力的研究.中国水产科学,2003a,10:169-172
    51.林仕梅,罗莉,叶元土.黄颡鱼、大鳍鳠消化道粘膜的扫描电镜观察.四川动物,2003b,22:63-65
    52.林仕梅,罗莉.岩原鲤对7种饲料消化力离体研究.中国水产科学,2008,15:637-643
    53.林树根,陈文烈,钟秀容,王寿昆.大黄鱼消化道器官显微与亚显微结构.水产学报,2002,26:396-401
    54.刘海平,谢从新,张磊,张惠娟,熊冬梅.黑斑原鮡色脑颅骨骼形态学的研究.淡水渔业,2008,38:3-12
    55.刘海平.黑斑原鮡外部形态学观察和骨骼解剖学研究.[硕士学位论文].武汉:华中农业大学图书馆,2008
    56.刘鸿艳.黑斑原鮡同工酶的研究.[硕士学位论文].武汉:华中农业大学图书馆,2006
    57.刘怀如,张耀光.南方鲇消化系统的解剖.泉州师范学院学报,2001,19:75-79
    58.刘娟萍,袁信华,过世东.预处理对甲鱼饲用红鱼粉蛋白质离体消化率的影响.水产科学,2007,26:506-508
    59.刘小刚,周洪琪,华雪铭,邱小琮,曹丹,张登沥.微生态制剂对异育银鲫消化酶活性的影响.水产学报,2002,26:448-452
    60.刘晓娜.几种肉食性鱼类摄食形态学适应的初步研究.湖北农学院学报,1996,16:280-283
    61.龙良启,熊邦喜,白东清,常青,黄和东,唐劲松.池养鳗鲡胃肠组织消化酶的初步研究.华中农业大学学报,1996,15:275-278
    62.楼允东.组织胚胎学.北京:中国农业出版社,1979
    63.罗海忠,施兆鸿,柳敏海,陈波,于宏,傅荣兵.周期性停食对鮸鱼(Miichthy smiiuy)幼鱼摄食、生长和消化酶活力的影响.海洋与湖沼,2007,38:458-463
    64.罗莉,唐毅,叶元土,李芹,林仕梅,潘利梅.异育银鲫对饲料膨化前后的酶解动力学研究.西南农业大学学报,2003,25:342-345
    65.孟庆闻,苏锦祥,李婉瑞.鱼类比较解剖.北京:科学出版牡,1987
    66.梅景良,马燕构,张红星,王寿昆,林树根.夏、冬两季黑鲷消化酶活力的比较及反应温度和pH对酶活力的影响.海洋学报,2006,28:167-171
    67.倪达书,洪雪峰.草鱼消化道组织学的研究.水生生物学集刊,1963,3:1-25
    68.倪寿文,桂远明,刘焕亮.草鱼、鲤、鲢、鳙和尼罗非鲫脂肪酶活性的比较研究.大连水产学院学报,1990,5:19-24
    69.倪寿文,桂远明,刘焕亮.草鱼、鲤、鲢、鳙和尼罗非鲫淀粉酶的比较研究.大连水产学院学报,1992,7:24-31
    70.倪寿文,桂远明,刘焕亮.草鱼、鲢、鳙鱼和尼罗非鲫肝胰脏和肠道蛋白酶活性初步探讨.动物学报,1993,2:160-168
    71.潘黔生,郭广全,方之平,李占国.6种有胃真骨鱼消化系统比较解剖的研究.华中农业大学学报,1996,15:463-469
    72.钱国英.不同驯食方式对鳜鱼胃肠道消化酶活性的影响.浙江农业大学学报,1998,24:207-210
    73.钱曦,王桂芹,周洪琪,陈建明,叶金云,潘茜,王友慧.饲料蛋白水平及豆粕替代鱼粉比例对翘嘴红鲌消化酶活性的影响.动物营养学报,2007,19:182-187
    74.乔慧,黄成,王喆,潘建林.不同饲料对黄颡鱼消化酶活性的影响.淡水渔业,2007,37:58-61
    75.邱小琮,赵红雪,王远吉,白文贤.兰州鲇对4种饲料原料的离体消化率和酶解能力.淡水渔业,2008,38:31-35
    76.区又君,刘泽伟.饥饿和再投喂对千年笛鲷幼鱼消化酶活性的影响.海洋学报,2007,29:86-91
    77.任修海,崔建勋,余其兴.黑斑原鮡的染色体组型及NOR单倍性.遗传,1992,14:10-11
    78.沈文英,寿建昕,金叶飞,祝尧荣,钱伟平.银鲫消化酶的研究.上海水产大学学报,2002,11:193-198
    79.沈怡.四种鲇形目鱼消化系统及消化酶的研究.[硕士学位论文].哈尔滨:东北林业大学图书馆,2007
    80.孙晓明,孟庆闻.鲢、鳙滤食及消化器宫的发育、构造与食性的相互关系.水产学报,1992,16:202-212
    81.谭北平.太湖沿岸区几种肉食性鱼类蛋白酶活性的研究.湖北农学院学报,1995,15:96-98
    82.汤保贵,陈刚,张健东,叶富良.pH、底物浓度及暂养盐度对红鳍笛鲷消化道淀粉酶活力的影响.动物学杂志,2004,39:70-73
    83.田宏杰,庄平,高露姣.生态因子对鱼类消化酶活力影响的研究进展.海洋渔业,2006,28:158-162
    84.田宏杰,庄平,章龙珍,侯俊利,高露姣.水温对施氏鲟幼鱼消化酶活力的影响.中国水产科学,2007,14:126-131
    85.田丽霞,林鼎.草鱼摄食两种蛋白质饲料后消化酶活性变动比较.水生生物学报,1993,17:58-65
    86.王海英.大菱鲆主要消化酶—蛋白酶、脂肪酶、淀粉酶的研究.[博士学位论文].青岛:中国海洋大学图书馆,2004
    87.王宏田,张培军.牙鲆体内消化酶活性的研究.海洋与湖沼,2002,33:472-476
    88.王健鑫,石戈,李鹏,刘美英,王日昕.条石鲷消化道的形态学和组织学.水产学报,2006,30:618-626
    89.王立波,刘伟,陈军,支兵杰.怀头鲇幼鱼摄食前后消化酶活性的变化.水产学杂志,2007,20:36-41
    90.王伟,陈默怡,何舜平.中国鮡科鱼类RAPD分析及鰋鮡鱼类单系性的初步研究.水生生物学报,2003,27:92-94
    91.王友慧,叶元土,林仕梅,周兴华,向枭,李涛.3种鱼对鱼粉酶解动力学及体外消化率的研究.西南农业大学学报,2002,24:259-262
    92.王远吉,任晓月,冯占虎,齐昂,邱小琮.不同生长阶段兰州鲇消化酶活性的比较研究.水生态学杂志,2009,2:54-57
    93.王韫明,王文.几种淡水鱼的胃腺细胞显微与超微结构的研究.水生生物学报,1989,13:334-339
    94.王重刚,陈品健,顾勇,陆浩.不同饵料对真鲷稚鱼消化酶活性的影响.海洋学报,1998,20:103-106
    95.王重刚,陈品健,郑森林.真鲷幼鱼消化酶活性的昼夜变化.水产学报,1999,23:199-201
    96.尾崎久雄.鱼类消化生理(上册).上海:上海科学技术出版社,1983
    97.尾崎久雄.鱼类消化生理(下册).上海:上海科学技术出版社,1985
    98.吴仁协,洪万树,张其永,陈仕玺.大弹涂鱼和中华乌塘鳢肠刷状缘膜消化酶活性的比较.动物学报,2006,52:1088-1095
    99.吴仁协,戈薇,洪万树,张其永.大弹涂鱼成鱼消化酶活性的研究.中国水产科学,2007,14:99-105
    100.吴婷婷,朱晓鸣.鳜鱼、青鱼、草鱼、鲤、鲫、鲢消化酶活性的研究.中国水产科学,1994,1:10-17
    101.伍献文,何名巨,褚新洛.西藏地区的鮡科鱼类.海洋与湖沼,1981,12:74-79
    102.武云飞,康斌,门强,吴翠珍.西藏鱼类染色体多样性的研究.动物学研究,1999,20:258-264
    103.西藏自治区水产局.西藏鱼类及其资源.北京:中国农业出版社,1995
    104.向枭,叶元土,周兴华,段彪.鲇胃肠道、胰脏对7种饲料蛋白质的酶解动力学.水生生物学报,2006,30:493-498
    105.谢从新,李红敬,李大鹏,柴毅,刘鸿艳,樊启学,朱邦科.黑斑原特殊器官-腹腔附肝.自然科学进展,2007,17:683-686
    106.谢从新.西藏黑斑原鮡生物学和人工繁殖技术研究的技术报告和工作总结.2009
    107.薛芹.黑斑原鮡线粒体DNA序列的遗传多样性分析.[硕士学位论文].武汉:华中农业大学图书馆,2005
    108.杨代勤.黄鳝营养需要与消化酶的研究.[博士学位论文].武汉:华中农业大学图书馆,2002
    109.杨代勤,严安生,陈芳,阮国良,方长琰.不同饲料对黄鳝消化酶活性的影响.水产学报,2003,27:558-563
    110.杨蕙萍,童圣英,王子臣.国内外关于水产动物消化酶研究的概况.大连水产学院学报,1998,13:64-71
    111.杨学芬,谢从新,杨瑞斌.梁子湖6种凶猛鱼摄食器官形态学的比较.华中农业大学学报,2003,22:257-259
    112.杨颖.中国鮡科鰋鮡群的系统分类.[硕士学位论文].昆明:西南林学院图书馆,2006
    113.杨元昊,周继术,吉红,龚月生,杨娟宁,李维平.温度对兰州鲇消化酶活性的影响.动物学杂志,2006,41:104-108
    114.叶继丹,卢彤岩,刘洪柏,赵吉伟,孙大江.六种鲟鱼消化酶活性的比较研究.水生生物学报,2003,27:590-595
    115.叶玫,吴成业,王勤,陈冰,刘智禹.鳗鲡消化道蛋白酶的初步分离提取及某些性质的研究.海洋学报.2000,22:132-136
    116.叶元土,林仕梅,罗莉.茚三酮法测定蛋白质饲料中水溶蛋白质成分.饲料工业,1993,14:18-20
    117.叶元土,林仕梅,冯兴无,罗莉.长吻鮠和南方大口鲇胃、肠道消化能力的研究.动物学研究,1997,18:305-313
    118.叶元土,林仕梅,罗莉,杨思华,陈文.温度、pH值对南方大口鲇、长吻鮠蛋白酶和淀粉酶活力的影响.大连水产学院学报,1998,13:17-23
    119.叶元土,薛敏,林仕梅,王友慧,罗莉,田吉顺.草鱼肠道、肝胰脏对饲料蛋白质酶解速度的比较.中国水产科学,2003,10:173-176
    120.叶元土.水产饲料离体消化率测定方法及其应用.饲料广角,2004,8:25-27
    121.喻召德.黄颡鱼消化酶的初步研究.[硕士学位论文].武汉:华中农业大学图书馆,2004
    122.张春霖,岳佐和,黄宏金.西藏南部的鱼类.动物学报,1964,16:72-182
    123.张海棠,王艳荣,王自良.饲料质检技术.北京:中国农业科学技术出版社,2008
    124.张家国,王义强,邹师哲.不同蛋白质能量比饲料与夏花草鱼消化酶的关系.上海水产大学学报,1997,6:54-58
    125.张璐,麦康森,艾庆辉,谭北平.饲料中添加植酸酶和非淀粉多糖酶对大黄鱼生长和消化酶活性的影响.中国海洋大学学报(自然科学版),2006,36:923-928
    126.张毓人,楼允东,徐庆登,陈煊.高邮杂交鲫及其亲本消化道形态与组织学观察.水产学报,1992,16:80-85
    127.郑文彪,陈旻,潘炯华.胡子鲇消化道粘膜表面结构的扫描电镜观察.华南师范大学学报:自然科学版,1993,1:59-67
    128.周俊,文华,何瑞国,刘伟.中华鲟摄食不同水平的两种糖后淀粉酶活性的变化.大连水产学院学报,2007,22:27-31
    129.周顺伍.动物生物化学实验指导.北京:中国农业出版社,2002
    130.周兴华,郑曙明,向枭,吴青.齐口裂腹鱼对膨化和非膨化饲料粗蛋白质的离体消化率.粮食与饲料工业,2005,3:41-43
    131.朱爱意,褚学林.大黄鱼(Pseudosciaena crocea)消化道不同部位两种消化酶的活力分布及其受温度、pH的影响.海洋与湖沼,2006,37:561-567
    132.庄平,章龙珍,田宏杰,赵峰,宋超.盐度对施氏鲟幼鱼消化酶活力的影响.中国水产科学,2008,15:198-203
    133.Abaurrea-Equisoain M A, Ostos-Garrido M V. Cell types in the esophageal epithelium of Anguilla anguilla (Pisces, Teleostei). Cytochemical and ultrastructural characteristics. Micron,1996a,27:419-429
    134.Abaurrea-Equisoain M A, Ostos-Garrido M V. Enterocytes in the anterior intestine of Oncorhynchus mykiss:Cytological characteristics related to osmoregulation. Aquaculture,1996b,139:109-116
    135.Agrawal V, Sastry K, Kaushab S. Digestive enzymes of three teleost fishes. Acta Physiol Acad Sci Hung,1975,46:93-98
    136.Alarcon F J, Diaz M, Moyano F J, Abellan E. Characterization and functional properties of digestive proteases in two sparids; gilthead seabream Sparus aurata and common dentex Dentex dentex. Fish Physiol Biochem,1998,19:257-267
    137.Alarcon F J, Moyano F J, Diaz M. Use of SDS-page in the assessment of protein hydrolysis by fish digestive enzymes. Aquaculture International,2001,9:255-267
    138.Albrecht M P, Ferreira M F N, Caramaschi E P. Anatomical features and histology of the digestive tract of two related neotropical omnivorous fishes (Characiformes; Anostomidae). J Fish Biol,2001,58:419-430
    139.Applebaum S, Perez R, Lazo J, Holt G. Characterization of chymotrypsin activity during early ontogeny of larval red drum (Sciaenops ocellatus). Fish Physiol Biochem,2001,25:291-300
    140.Arellano J M, Storch V, Sarasquete C. Ultrastructural study on the intestine of Senegal sole, Solea senegalensis. JAppl Ichthyol,2002,18:154-158
    141.Bassompierre M, B(?)rresen T, Sandfeld P, R(?)nsholdt B, Zimmermann W, Mclean E. An evaluation of open and closed systems for in vitro protein digestion of fish meal. Aquaculture Nutrition,1997,3:153-159
    142.Batista I, Pires C. Comparative studies of the proteolytic activity of crude extracts from the digestive tract of three shark species. J Aquat Food Prod Technol,2002,11: 151-165
    143.北御门学,立野新光.ニヅマス消化酵素の研究.I. Carbohydrases.日本水产学会志,1960,26:679-684
    144.Bezerra R, Dos Santos J, Lino M, Vieira V, Carvalho Jr L. Characterization of stomach and pyloric caeca proteinases of tambaqui(Colossoma macropomum). J Food Biochem,2000,24:189-199
    145.Borlongan I. Studies on the digestive lipases of milkfish, Chanos chanos. Aquaculture,1990,89:315-325
    146.Bougatef A, Souissi N, Fakhfakh N, Ellouz-Triki Y, Nasri M. Purification and characterization of trypsin from the viscera of sardine(Sardina pilchardus). Food Chemistry,2007,102:343-350
    147.Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye-binding. Analytical Biochemistry,1976,72:248-254
    148.Cahu C, Zambonino-Infante J. Early weaning of sea bass (Dicentrarchus labrax) larvae with a compound diet:effect on digestive enzymes. Comp Biochem Physiol, 1994,109A:213-222
    149.Carter C G, Bransden M P, van Barneveld R J, Clarke S M. Alternative methods for nutrition research on the southern bluefin tuna, Thunnus maccoyii:in vitro digestibility. Aquaculture,1999,179:57-70
    150.Castillo-Yanez F J, Pacheco-Aguilar R, Garcia-Carreno F L, Toro M A N. Isolation and characterization of trypsin from pyloric caeca of Monterey sardine Sardinops sagax caerulea. Comp Biochem Physiol,2005, 140B:91-98
    151.Cataldi E, Cataudella S, Monaco G, Rossi A, Tancioni L. A study of the histology and morphology of the digestive tract of the sea-bream, Sparus aurata. J Fish Biol, 1987,30:135-145
    152.Chakrabarti I, Gani M A, Chaki K K, Sur R, Misra K K. Digestive enzymes in 11 freshwater teleost fish species in relation to food habit and niche segregation. Comp Biochem Physiol,1995,112A:167-177
    153.Chakrabarti R, Rathore R, Kumar S. Study of digestive enzyme activities and partial characterization of digestive proteases in a freshwater teleost, Labeo rohita, during early ontogeny. Aquaculture Nutrition,2006,12:35-43
    154.Chan A S, Horn M H, Dickson K A, Gawlicka A. Digestive enzyme activities in carnivores and herbivores:Comparisons among four closely related prickleback fishes (Teleostei:Stichaeldae) from a California rocky intertidal habitat. J Fish Biol, 2004,65:848-858
    155.Chen M Y, Zhang X M, Gao T X, Chen C. Effects of temperature, pH and NaCl on protease activity in digestive tract of young turbot, Scophthalmus maximus. Chinese J Oceanology Lim,2006,24:300-306
    156.Chesley L C. The concentrations of proteases, amylase, and lipase in certain marine fishes. Biol Bull,1934,66:133-144
    157.Chiu S T, Pan B S. Digestive protease activities of juvenile and adult eel (Anguilla japonica) fed with floating feed. Aquaculture,2002,205:141-156
    158.Chong A S C, Hashim R, Chow-Yang L, Ali A B. Partial characterization and activities of proteases from the digestive tract of discus fish (Symphysodon aequifasciata). Aquaculture,2002a,203:321-333
    159.Chong A S C, Hashim R, Ali A B. Assessment of dry matter and protein digestibilities of selected raw ingredients by discus fish (Symphysodon aequifasciata) using in vivo and in vitro methods. Aquaculture Nutrition,2002b,8:229-238
    160.Clarke A J, Witcomb D M. A study of the histology and morphology of the digestive tract of the common eel(Anguilla anguilla). JFish Biol,1980,16:159-170
    161.Correa C F, de Aguiar L H, Lundstedt L M, Moraes G. Responses of digestive enzymes of tambaqui (Colossoma macropomum) to dietary cornstarch changes and metabolic inferences. Comp Biochem Physiol,2007,147A:857-862
    162.Cuvier-Peres A, Kestemont P. Development of some digestive enzymes in Eurasian perch larvae Perca fluviatilis. Fish Physiol Biochem,2001,24,279-285
    163.Dabrowski K, Glogowski J. Studies on the role of exogenous proteolytic enzymes in digestion processes in fish. Hydrobiologia,1977,54:129-134
    164.Dai X, Shu M, Fang W. Histological and ultrastructural study of the digestive tract of rice field eel, Monopterus albus. J Appl Ichthyol,2007,23:177-183
    165.Das K M, Tripathi S D. Studies on the digestive enzymes of grass carp, Ctenophrayngodon idella Val. Aquaculture,1991,92,21-32
    166.de la Parra A M, Rosas A, Lazo J P, Viana M T. Partial characterization of the digestive enzymes of Pacific bluefin tuna Thunnus orientalis under culture conditions. Fish Physiol Biochem,2007,33:223-231
    167.De Silva S S, Cumaranatunga P R T, De Silva C D. Food, feeding ecology and morphological features of four co-occurring cyprinids (Pisces:Cyprinidae). Neth J Zool,1979,30:54-73
    168.Debnath D, Pal A K, Sahu N P, Yengkokpam S, Baruah K, Choudhury D, Venkateshwarlu G. Digestive enzymes and metabolic profile of Labeo rohita fingerlings fed diets with different crude protein levels. Comp Biochem Physiol,2007, 146B:107-114
    169.Dimes L E, Garcia-Carreno F L, Haard N F. Estimation of protein digestibility:III. Studies on the digestive enzymes from the pyloric ceca of rainbow trout and salmon. Comp Biochem Physiol,1994,109A:349-360
    170.Dimes L, Haard N. Estimation of protein digestibility-I. Development of an in vitro method for estimating protein digestibility in salmonids (Salmo gairdneri). Comp Biochem Physiol,1994,108A:349-362
    171.Eid A E, Matty A J. A simple in vitro method for measuring protein digestibility. Aquaculture,1989,79:111-119
    172.El-Beltagy A E, El-Adawy T A, Rahma E H, El-Bedawey A A. Purification and characterization of an acidic protease from the viscera of bolti fish (Tilapia nilotica). Food Chemistry,2004,86:33-39
    173.Erlanger B, Kokowsky N, Cohen W. The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys,1961,95:271-278
    174.Eshel A, Lindner P, Smirnoff P, Newton S, Harpaz S. Comparative study of proteolytic enzymes in the digestive tracts of the European sea bass and hybrid striped bass reared in freshwater. Comp Biochem Physiol,1993,106A:627-634
    175.Ezeasor D N, Stokoe W M. Scanning electron microscopic study of the gut mucosa of the rainbow trout Salmo gairdneri Richardson. JFish Biol,1980,17:529-539
    176.Ezeasor D N, Stokoe W M. Light and electron microscopic studies on the absorptive cells of the intestine, caeca and rectum of the adult rainbow trout, Salmo gairdneri, Rich. JFish Biol,1981,18:527-544
    177.Ezeasor D N. The fine structure of the gastric epithelium of the rainbow trout, Salmo gairdneri, Richardson. J Fish Biol,1981,19:611-627
    178.Ezquerra J M, Garcia-Carreno F L, Carrillo O. In vitro digestibility of dietary protein sources for white shrimp (Penaeus vannamei). Aquaculture,1998,163:123-136
    179.Fang L S, Chiou S F. Effect of salinity on the activities of digestive proteases from the tilapia fish, Oreochromis niloticus in different culture environments. Comp Biochem Physiol,1989,93A:439-443
    180.Fernandez I, Moyano F J, Diaz M, Martinez T. Characterization of a-amylase activity in five species of Mediterranean sparid fishes (Sparidae, Teleostei). J Exp Mar Biol Ecol,2001,262:1-12
    181.Fish G. R. The comparative activity of some digestive enzymes in the alimentary canal of tilapia and perch. Hydrobiologia,1960,15:161-178
    182.Fountoulaki E, Alexis M N, Nengas I, Venou B. Effect of diet composition on nutrient digestibility and digestive enzyme levels of gilthead sea bream (Sparus aurata L.). Aquaculture Research,2005,36:1243-1251
    183.Fox J M, Lawrence A L. Evaluation of in vitro apparent protein digestibility by shrimp using gut enzyme extracts. J World Aquacult Soc,2009,40:325-336
    184.Fraisse M, Woo N Y S, Noaillac-Depeyre J, Murat J. Distribution pattern of digestive enzyme activities in the intestine of the catfish (Ameiurus nebulosus L.) and of the carp (Cyprinus carpio L.). Comp Biochem Physiol,1981,70A:443-446
    185.Garcia-Carreno F L, Albuquerque-Cavalcanti C, Toro M A N, Zaniboni-Filho E. Digestive proteinases of Brycon orbignyanus (Characidae, Teleostei):characteristics and effects of protein quality. Comp Biochem Physiol,2002,132B:343-352
    186.Gargiulo A M, Ceccarelli P, Dall'aglio C, Pedini V. Ultrastructural study on the stomach of Tilapia spp (Teleostei). Anat Histol Embryol,1997,26:331-336
    187.Gargiulo A M, Ceccarelli P, Dall'aglio C, Pedini V. Histology and ultrastructure of the gut of the Tilapia (Tilapia spp.), a hybrid teleost. Anat Histol Embryol,1998,27: 89-94
    188.Gawlicka A, Parent B, Horn M H, Ross N, Opstad L, Torrissen 0 J. Activity of digestive enzymes in yolk-sac larvae of Atlantic halibut (Hippoglossus hippoglossus): indication of readiness for first feeding. Aquaculture,2000,184:303-314
    189.German D, Horn M, Gawlicka A. Digestive enzyme activities in herbivorous and carnivorous prickleback fishes (Teleostei:Stichaeidae):ontogenetic, dietary, and phylogenetic effects. Physiol Biochem Zool,2004,77:789-804
    190.Gildberg A. Digestive enzyme activities in starved pre-slaughter farmed and wild-captured, Atlantic cod (Gadus morhua). Aquaculture,2004,238:343-353
    191.Gimenez V F A, Diaz A C, Velurtas S M, Fenucci J L. In vivo and in vitro protein digestibility of formulated feeds for Artemesia longinaris (Crustacea, Penaeidae). Braz Arch Biol Techn,2009,52:1379-1386
    192.Girgis S. On the anatomy and histology of the alimentary tract of an herbivorous bottom-feeding Cyprinoid fish, Labeo horie (Cuvier). J Morphol,1952,90:317-362
    193.Glass H J, MacDonald N L, Moran R M, Stark J R. Digestion of protein in different marine species. Comp Biochem Physiol,1989,94B:607-611
    194.Grau A, Crespo S, Sarasquete M, Canales M. The digestive tract of the amberjack Seriola dumerili, Risso:a light and scanning electron microscope study. J Fish Biol, 1992,41:287-303
    195.Gregorowski M D, Coetzee H L, Loots G P. Ultrastructure of the cardiac and pyloric glands of the gastric mucosa of the South African hedgehog, Atelerix frontalis. J Morphol,1993,216:351-359
    196.Guo B Y, Xie C X, He S P, Abbas K, Wang H L, Xiong D M, Zhang H J, Tong X. Analysis of genetic diversity in Glyptosternum maculatum (Sisoridae, Siluriformes) populations with AFLP markers. Environ Biol Fish,2009,85:201-206
    197.Guo X, Zhang Y, He S, Chen Y. Mitochondrial 16S rRNA sequence variations and phylogeny of the Chinese sisorid catfishes. Chinese Sci Bull,2004,49:1586-1595
    198.Guo X, He S, Zhang Y. Phylogenetic relationships of the Chinese sisorid catfishes:a nuclear intron versus mitochondrial gene approach. Hydrobiologia,2007,579:55-68
    199.Hardy, B. The future requirements of the feed industry. In:Fuller M F ed., In Vitro Digestion for Pigs and Poultry. Oxon:CAB International Wallingford, UK,1991
    200.Hau P, Benjakul S. Purification and characterization of trypsin from pyloric caeca of bigeye snapper (Pricanthus macracanthus). JFood Biochem,2006,30:478-495
    201.He S P. The phylogeny of the Glyptostrnoid fishes (Teleostei:Siluriformes, Sisoridae). Cybium,1996,20:115-159
    202.He S P, Cao W X, Chen Y Y. The uplift of Qinghai-Xizang (Tibet) Plateau and the vicariance speciation of glyptosternoid fishes (Siluriformes:Sisoridae). Sci China Ser C,2001,44:644-651
    203.Hidalgo M C, Urea E, Sanz A. Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture,1999, 170:267-283
    204.Hirji K N, Courtney W A M. Leucine aminopeptidase activity in the digestive tract of perch, Perca fluviatilis L. J Fish Biol,1982,21:615-622
    205.Hjelmeland K, Pedersen B H, Nilssen E M. Trypsin content in intestines of herring larvae Clupea harengus, ingesting inert polystyrene spheres or live crustacean prey. Marine Biology,1988,98:331-335
    206.Hofer R. The adaptation of digestive enzymes to temperature, season and diet in roach, Rutilus rutilus L. and rudd Scardinius erythrophthalmus L.1. Amylase. J Fish Biol,1978,14:565-572
    207.Hofer R, Schiemer F. Proteolytic activity in the digestive tract of several species of fish with different feeding habits. Oecologia,1981,48:342-345
    208.Hofer R. Protein digestion and the proteolytic activity in the digestive tract of an omnivorous cyprinid. Comp Biochem Physiol,1982,72A:55-63
    209.Hora S L. Notes on the fishes in the Indian Museum, V. On the composite genus Glyptosternon McClelland. Rec Indian Mus,1923,25:1-44
    210.Hora S L, Silas E. Notes on fishes in India Museum, XLVII. Revision of the glyptosternoid fishes of the family Sisoridae, with descriptions of new genera and species. Rec Indian Mus,1951,49:5-29
    21 l.Hora S L. Silas E G. Evolution and distribution of glyptosternoid fishes of the family Sisoridae (order:Siluridae). Proc Nat Inst Sci India,1952,18:309-322
    212.Jeong Y, Wei C-I, Preston J F, Marshall M R. Purification and characterization of proteases from hepatopancreas of crawfish (Procambarvs clarkii). J Food Biochem, 2000,24:311-332
    213.Jonas E, Ragyanszki M, Olah J, Boross L. Proteolytic digestive enzymes of carnivorous (Silurus glanis L.), herbivorous (Hypophthalmichthys molitrix Val.) and omnivorous (Cyprinus carpio L.) fishes. Aquaculture,1983,30:145-154
    214.Kapoor B, Smit H, Verighina I. The alimentary canal and digestion in teleosts. Adv Mar Biol,1975,13:109-239
    215.Kapoor D, Dayal R, Ponniah A G. Fish biodiversity of India. New Delhi:National Bureau of Fish Genetic Resources Lucknow India,2002
    216.Kishimura H, Hayashi K, Miyashita Y, Nonami Y. Characteristics of two trypsin isozymes from the viscera of Japanese anchovy(Engraulis japonica). J Food Biochem,2005,29:459-469
    217.Klahan R, Areechon N, Yoonpundh R, Engkagul A. Characterization and activity of digestive enzymes in different Sizes of Nile Tilapia (Oreochromis niloticus L.). Kasetsart Journal (Natural Science),2009,43:143-153
    218.Kolkovski S. Digestive enzymes in fish larvae and juveniles—implications and applications to formulated diets. Aquaculture,2001,200:181-201
    219.Kristjansson M M. Purification and characterization of trypsin from the pyloric caeca of rainbow trout (Oncorhynchus mykiss). JAgric Food Chem,1991,39:1738-1742
    220.Krogdahl A, Bakke-McKellep A M. Fasting and refeeding cause rapid changes in intestinal tissue mass and digestive enzyme capacities of Atlantic salmon (Salmo salar L.). Comp Biochem Physiol,2005,141A:450-460
    221.Kumar S, Garcia-Carreno F L, Chakrabarti R, Toro M A N, Cordova-Murueta J H. Digestive proteases of three carps Catla catla, Labeo rohita and Hypophthalmichthys molitrix:partial characterization and protein hydrolysis efficiency. Aquaculture Nutrition,2007,13:381-388
    222.Kunitz M. Crystalline soybean trypsin inhibitor:Ⅱ. General properties. J Gen Physiol, 1947,30:291-310
    223.Kuperman B I, Kuz'mina V V. The ultrastructure of the intestinal epithelium in fishes with different types of feeding. J Fish Biol,1994,44:181-193
    224.Kuz'mina V V, Kuz'mina Y G, Borok Y 0. Level of total proteolytic activity in some species of fish from the Volga Basin. Jlchthyol,1990,30:119-125
    225.Kuz'mina V V, Golovanova I L, Izvekova G I. Influence of temperature and season on some characteristics of intestinal mucosa carbohydrases in six freshwater fishes. Comp Biochem Physiol,1996,113B:255-260
    226.Kuz'mina V V. Influence of age on digestive enzyme activity in some freshwater teleosts. Aquaculture,1996,148:25-37
    227.Lazo J P, Mendoza R, Holt G J, Aguilera C, Arnold C R. Characterization of digestive enzymes during larval development of red drum (Sciaenops ocellatus). Aquaculture,2007,265:194-205
    228.Letelier M, Repetto Y, Aldunate Y, Morello A. Acid and alkaline phosphatase activity in Trypanosoma cruzi epimastigotes. Comp Biochem Physiol,1985,81B:47-51
    229.Liquori G E, Ferri D, Scillitani G. Fine structure of the oxynticopeptic cells in the gastric glands of the ruin lizard, Podarcis sicula campestris De Betta,1857. J Morphol,2000,243:167-171
    230.Liu K, Lee M, Joung S, Chang Y. Age and growth estimates of the sharptail mola, Masturus lanceolatus, in waters of eastern Taiwan. Fisheries Research,2009,95: 154-160
    231.Liu Z Y, Wang Z, Zhang J. An acidic protease from the grass carp intestine (Ctenopharyngodon idellus). Comp Biochem Physiol,2008,149B:83-90
    232.Lopez-Vasquez K, Castro-Perez C A, Val A L. Digestive enzymes of eight Amazonian teleosts with different feeding habits. J Fish Biol,2009,74:1620-1628
    233.Lundstedt L, Melo J F B, Gilberto M. Digestive enzymes and metabolic profile of Pseudoplatystoma corruscans (Teleostei:Siluriformes) in response to diet composition. Comp Biochem Physiol,2004,137B:331-339
    234.Ma H, Cahu C, Zambonino J, Yu H, Duan Q, Le Gall M, Mai K. Activities of selected digestive enzymes during larval development of large yellow croaker (Pseudosciaena crocea). Aquaculture,2005,245:239-248
    235.Marcos M F P G, Batbola I F, Duboc L F. Feeding habits and morphometry of digestive tracts of Geophagus brasiliensis (Osteichthyes, Cichlidae), in a lagoon of high Tibagi river, Parana State, Brazil. Publication UEPG. Ciencias Biologicase da Saude, Ponta Grossa,2004,10:37-45
    236.Martinez A, Serra J L. Proteoltyic activities in the digestive tract of anchovy (Engraulis encrasicholus). Comp Biochem Physiol,1989,93B:61-66
    237.Meister M, Humbert W, Kirsch R, Vivien-Roels B. Structure and ultrastructure of the oesophagus in sea-water and fresh-water teleosts (Pisces). Zoomorphology,1983, 102:33-51
    238.Morrison C M, Wright J R Jr. A study of the histology of the digestive tract of the Nile tilapia. JFish Biol,1999,54:597-606
    239.Moyano F J, Saraquete M C.A screening of some digestive enzyme activity of gilthead sea bream(Sparus aurata) lavae. Eur Aquacult Soc-Special Publ,1993,19: 416
    240.Moyano F J, Diaz M, Alarcon F J, Sarasquete M C. Characterization of digestive enzyme activity during larval development of gilthead seabream (Sparus aurata). Fish Physiol Biochem,1996,15:121-130
    241.Moyano F J, Savoie L. Comparison of in vitro systems of protein digestion using either mammal or fish proteolytic enzymes. Comp Biochem Physiol,2001,128A: 359-368
    242.Munilla-Moran R, Stark J R. Metabolism in marine flatfish VI. Effect of nutritional state of digestion in turbot, Scophtalmus maximus (L.). Comp Biochem Physiol,1990, 95B:625-634
    243.Munilla-Moran R, Stark J R, Barbour A. The role of exogenous enzymes in digestion in cultured turbot larvae (Scophthalmus maximus L.). Aquaculture,1990,88: 337-350
    244.Munilla-Moran R, Saborido-Rey F. Digestive activity in Marine Species:II. Amylase activities in gut from seabream (Sparus aurata), Turbot (Scophthalmus maximus) and redfish (Sebastes mentella). Comp Biochem Physiol,1996a,113B:827-834
    245.Munilla-Moran R, Saborido-Rey F. Digestive enzymes in marine species. I. Proteinase activities in gut from redfish (Sebastes mentella), seabream (Sparus aurata) and turbot (Scophthalmus maximus). Comp Biochem Physiol,1996b,113B: 395-402
    246.Murray H M, Wright G M, Goff G P. A comparative histological and histochemical study of the post-gastric alimentary canal from three species of pleuronectids, the Atlantic halibut, the yellowtail flounder and the winter flounder. J Fish Biol,1996, 48:187-206
    247.Nagase G. Contribution to the physiology of digestion in Tilapia mossambica Peters: Digestive enzymes and the effects of diets on their activity. J Comp Physiol,1964, 49A:270-284
    248.Natalia Y, Hashim R, Ali A B, Chong A S C. Characterization of digestive enzymes in a carnivorous ornamental fish, the Asian bony tongue Scleropages formosus (Osteoglossidae). Aquaculture,2004,233:305-320
    249.Noaillac-Depeyre J, Gas N. Ultrastructural and cytochemical study of the gastric epithelium in a fresh water teleostean fish (Perca fluviatilis). Tissue Cell,1978,10: 23-37
    250.Oozeki Y, Bailey K. Ontogenetic development of digestive enzyme activities in larval walleye pollock, Theragra chalcogramma. Marine Biology,1995,122: 177-186
    251.Osman A H K, Caceci T. Histology of the stomach of Tilapia nilotica (Linnaeus, 1758) from the River Nile. JFish Biol,1991,38:211-223
    252.Ostos Garrido M V, Nunez Torres M I, Abaurrea-Equisoain M A. Histological, histochemical and ultrastructural analysis of the gastric mucosa in Oncorhynchus mykiss. Aquaculture,1993,115:121-132
    253.Papoutsoglou E, Lyndon A. Distribution of a-amylase along the alimentary tract of two Mediterranean fish species, the parrotfish Sparisoma cretense L. and the stargazer, Uranoscopus scaber L. Mediterranean Mar Sci,2003,4:115-124
    254.Papoutsoglou E, Lyndon A. Digestive enzymes along the alimentary tract of the parrotfish Sparisoma cretense. JFish Biol,2006,69:446-460
    255.Pedersen B H, Nilssen E M, Hjeldman K. Variations in the content of trypsini and trypsinogen in larval herring Clupea harengus digesting copepod nauplii. Marine Biology,1987,94:171-181
    256.Peng Z G, He S P, Zhang Y G. Phylogenetic relationships of glyptosternoid fishes (Siluriformes:Sisoridae) inferred from mitochondrial cytochrome b gene sequences. Mol Phylogenet Evol,2004,31:979-998
    257.Rathore R M, Kumar S, Chakrabarti R. Digestive enzyme profile of Cyprinus carpio during ontogenic development. J World Aquacult Soc,2005,36:37-41
    258.Regan C T. A synopsis of the species of the silurid genera Parexostoma, Chimarrhichthys, and Exostoma. Ann Mag Nat Hist,1905,15 (7):182-185
    259.Robyt J F, Whelan W J. The β-amylases. In:Radley J A ed., Starch and Its Derivates. London:Academic Press,1968
    260.Rodrigues A P 0, Pauletti P, Kindlein L, Cyrino J E P, Delgado E F, Machado-neto R. Intestinal morphology and histology of the striped catfish Pseudoplatystoma fasciatum (Linnaeus,1766) fed dry diets. Aquaculture Nutrition,2009,15:559-563
    261.Romero J J, Castro E, Diaz A M, Reveco M, Zaldivar J. Evaluation of methods to certify the'premium'quality of Chilean fish meals. Aquaculture,1994,124:351-358
    262.Sabapathy U, Teo L H. A quantitative study of some digestive enzymes in the rabbitfish, Siganus canaliculatus and the sea bass, Lates calcarifer. J Fish Biol,1993, 42:595-602
    263.Sanchez-Chiang L, Cisternas E, Ponce O. Partial purification of pepsins from adult and juvenile salmon fish Oncorhynchus keta. Effect of NaCl on proteolytic activities. Comp Biochem Physiol,1987,87B:793-797
    264.Sarkar S, Ganguly S, Basu T, Medda C. Changes of alkaline phosphatase activity during the early period of three bundh-bred Indian major carps Labeo rohita (Ham) Catla catla (Ham) and Cirrhinus mrigala (Ham). Isr JAquacult,1996,48:40-46
    265.Scocco P, Menghi G, Ceccarelli P. Histochemical differentiation of glycoconjugates occurring in the tilapine intestine. JFish Biol,1997,51:848-857
    266.Shipton T A, Britz P J. Evaluation of an in vitro digestibility technique for the prediction of protein digestibility in the South African abalone, Haliotis midae L. Aquaculture Nutrition,2002,8:15-21
    267.Sis R F, Ives P J, Jones D M, Lewis D H, Haensly W E. The microscopic anatomy of the esophagus, stomach and intestine of the channel catfish, Ictalurus punctatus. J Fish Biol,1979,14:179-186
    268.Sovik S L, Rustad T. Effect of season and fishing ground on the activity of lipases in byproducts from cod (Gadus morhua). Food Sci Technol,2005,38:867-876
    269.Sovik S L, Rustad T. Effect of season and fishing ground on the activity of cathepsin B and collagenase in by-products from cod species. Food Sci Technol,2006,39: 43-53
    270.Talwar P K, Jhingran A G. Inland fishes of India and adjacent countries. Rev Fish Biol Fisher,1992,2:135-136
    271.Tengjaroenkul B, Smith B, Caceci T, Smith S. Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis niloticus L. Aquaculture,2000,182:317-327
    272.Torrissen K R. Characterization of proteases in the digestive tract of Atlantic salmon (Salmo salar) in comparison with rainbow trout(Salmo gairdneri). Comp Biochem Physiol,1984,77B:669-674
    273.Tramati C, Savona B, Mazzola A. A study of the pattern of digestive enzymes in Diplodus puntazzo (Cetti,1777) (Osteichthyes, Sparidae):evidence for the definition of nutritional protocols. Aquaculture International,2005,13:89-95
    274.Ugwumba A. Carbohydrases in the digestive tract of the African bony-tongue Heterotis niloticus (Pisces:Osteoglossidae). Hydrobiologia,1993,257:95-100
    275.Uys W, Hecht T, Walters M. Changes in digestive enzyme activities of Clarias gariepinus (Pisces:Clariidae) after feeding. Aquaculture,1987,63:243-250
    276.Uys W, Hecht T. Assays on the digestive enzymes of sharptooth catfish, Clarias gariepinus. Pisces:Clariidae. Aquaculture,1987,63:303-313
    277.Walford J. Replacing live foods with microencapsulated diets in the rearing of seabass(Lates calcarifer) larvae:do the larvae ingest and digest protein membrane microcapsules? Aquaculture,1991,92:225-235
    278.Walford J, Lam T J. Development of the digestive tract and proteolytic enzyme activity in seabass(Lates calcarifer) larvae and juveniles. Aquaculture,1993,109: 187-205
    279.Walter H E. Proteinases:methods with hemoglobin, casein and azocoll as substrates. In:Bergmeyer H U ed., Methods of Enzymatic Analysis, Vol. V. Weinheim:Verlag Chemie,1984
    280.Wang Q, Gao Z X, Zhang N, Shi Y, Xie X L, Chen Q X. Purification and characterization of trypsin from the intestine of hybrid Tilapia(Oreochromis niloticus ×O. aureus). JAgric Food Chem,2010,58:655-659
    281.Worthington V. Worthington Enzyme Manual. Enzymes and Related Biochemicals New Jersey:Worthington Chemical, US.1993
    282.Yashpal M, Kumari U, Mittal S, Mittal A K. Morphological specializations of the buccal cavity in relation to the food and feeding habit of a carp Cirrhinus mrigala:A scanning electron microscopic investigation. J Morphol,2009,270:714-728
    283.Zambonino-Infante J, Cahu C. Influence of diet on pepsin and some pancreatic enzymes in sea bass (Dicentrarchus labrax) larvae. Comp Biochem Physiol,1994, 109A:209-212

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700