用户名: 密码: 验证码:
全球变化背景下东亚区域气候年代际时空演变的统计—动力特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球变暖的背景下,气候变化对环境、水资源、工农业生产和人民生活的影响日益显著,并越来越受到人们的关注。为了解近40年来中国区域气候及东亚季风的年代际变化规律及其成因,本文以揭示气候基本要素的空间结构及其年代际演变特征为主要目标,采用统计-动力综合分析方法(趋势转折判别模型、相关分析、EOF-SVD综合分析等),分析了中国大陆气候型年代际演变趋势及其转折特征;重点研究了东亚冬、夏季风的年代际时空演变特征和全球变暖背景下东亚区域的非均匀热力空间结构年代际演变特征,并分析了两者之间的相关联系;研究了中国东部日照时数、低云量等气象要素的年代际演变特征,初步探讨了气溶胶区域气候效应及其与东亚季风年代际变化的相关联系;并采用区域气候模式对东亚海陆热力差异演变特征的影响效应进行了模拟试验。本文获取了以下主要研究结果:
    NCEP/NCAR再分析资料可信度分析:本文采用计算标准化均方根误差、相关分析以及EOF分解等多种客观分析统计方法,讨论了NCEP/NCAR再分析资料在中国区域气候变化研究中的可信度的季节特征及其空间差异。从时间上看,NCEP/NCAR再分析风速资料在春、夏、秋季具有一定的可信度,但冬季的可信度较差;表面气温则是冬季的可信度最好,夏季的可信度较差。从空间来看,NCEP再分析风速、表面气温资料在中国东部地区的可信度均好于西部,表现出较显著的区域性差异特征,且随着高度升高,风速资料的可信度增大。
    气候型年代际转折空间结构特征:采用趋势转折判别模型对1961~2000年中国区域站点及分区的冬、夏季气候型年代际转折特征进行了分析。通过逐站检验,揭示了站点“群体”气候型年代际转折的区域“同步性”特征,即气候型年代际转折发生年份相近,且转折后趋势一致的站点呈明显的带状区域分布。站点“群体”及分区气候型的年代际转折检验结果表明,冬季气温由降温趋势转为增温趋势年代际转折的发生时间北方早于南方,夏季则是北方晚于南方,但转折后冬、夏季的增温趋势均为北方地区比南方地区显著;夏季降水最近一次的年代际趋势转折大多发生在20世纪80年代,转折后南方大部地区为增加趋势,北方除了西北地区西部外以减少趋势为主,呈显著的“南涝北旱”变化趋势。
    区域气候与东亚季风空间结构年代际演变特征:利用1961~2000年NCEP/NCAR
Under global warming background, the impacts of climate change on environment, water resource,agriculture, industry and people's life are becoming more and more remarkable and drawing more andmore attention. In order to study the change laws and their causes of regional climate in China and EastAsia monsoon (EAM) in recent 40 years, it is very necessary and urgent to disclose the spatial structureand its interdecadal change (IC) features of climatic basic factors. In virtue of the statistic-dynamicsynthetical methods such as climatic trend turning discriminating model (PLFIM), correlation analysis,EOF-SVD compositive analysis, this paper analyzes the ICs and trend turning characteristics of climatemodes in China, with emphases on the researches of spatial-temporal features of the ICs of EAM andthe heterogeneous thermal structure in East Asia under global warming and the correlation of ICsbetween EAM and the sea–land thermal difference in East Asia–West Pacific (SLTD). In addition, wealso studied the IC characters of meteorologic factors, such as sunshine duration and low cloud cover(LCC) etc. in East China and discussed the relations between IC of EAM and regional climate effect ofaerosol. Finally, the RegCM3 is used to investigate the influence effects of the changes of SLTD.
    The confidence of NCEP/NCAR reanalysis data: The seasonal characters and spatial differencesof the confidence of NCEP/NCAR reanalysis data in China are studied by using varied statisticalmethods, such as normalized root mean square (RMS), correlation analysis and empirical orthogonalfunction analyze (EOF) etc. Viewed from time, the confidence of reanalysis wind data in spring,summer and autumn is preferable, but that in winter is worse. The confidence of surface air temperature(SAT) data is best in winter and worst in summer. Viewed from space, the confidences of reanalysiswind and SAT data in eastern China are better than those in western China. Along with the heightincreases, the confidence of reanalysis wind data is better.
    The spatial structures of interdecadal turning of climate modes: Using climatic trend turningdiscriminating model (PLFIM), the interdecadal turnings of climate modes (CMIT) in winter andsummer of varied stations and sub-regions in China during 1961?2000 have been investigated. Resultsshow that the stations with close occurrence years of CMIT and coincident trends after the turningsexhibit a zonal distribution, indicating a notable regional “in-phase” feature. The test results of stationsand sub-regions show that the occurrence time of interdecadal trend turning (ITT) of temperature fromdecrease to increase in northern China is earlier than that in southern China in winter, while theoccurrence time in northern China is later than that in southern China in summer. The warming trendafter turning in northern China is more significant than that in southern China in both winter andsummer. The last ITTs of summer precipitation mostly occur in 1980s;afterwards, summer precipitationincreases in southern China and decreases in northern China except in Northwest China, exhibiting anotable “south-flooding and north-drought” trend.
    The interdecadal change characteristics of spatial structures of regional climate and EAM:The temporal and spatial distributions of the IC of EAM and SLTD in recent 40 years and theirrelationship are studied based on NCEP/NCAR reanalysis data and monthly observational data in China,such as SAT and precipitation, and using some statistic methods, such as running mean, correlationanalysis and EOF-SVD compositive analysis. Results suggest that the first eigenvector of interdecadalcomponent (FEIC) of sea level pressure (SLP) in winter displays a “negative in north and positive insouth” spatial structure, and its time coefficient (TC) happens a turning from negative to positive in thelast 1970s, reflecting the weakening and southward extending of East Asia winter monsoon (EAWM).The FEIC of SAT in winter exhibits a spatial distribution with distinctive warming over northern landand little change over southern land and sea, and its TC occurs a turning from negative to positive in theearly 1980s, suggesting the change of SLTD with decreasing in north and increasing in south. Theinterdecadal spatial-temporal changes (ISTC) of the above two meteorological elements are inaccordance, indicating the close correlation between the IC of EAWM and the ISTC of SAT in winter.Using SVD, it is found that the interdecadal correlation between SLP and SAT in winter over land ismore significant than that over sea, suggesting the IC of EAWM may be a regional response of theclimate in East Asia to the heterogeneous spatial structure of global warming. According to the analysisresults of ISTC of SAT in spring and 850hPa wind in summer and their correlation, it is discovered thatthe southerly at 850hPa over eastern China weakens decade by decade. The FEIC of 850hPa windexhibits the northerly or east-northerly anomalies in the eastern of East Asia, South China Sea and theeastern of Bay of Bengal, suggesting the weakening of East Asia summer monsoon (EASM). The year1978 is the turning point when its TC turns from negative to positive;that is to say, the EASM becomesweak after this year. The FEIC of SAT in spring displays a spatial structure with “positive in north andnegative in south” over land and positive over sea, indicating the decreasing of SLTD in spring. Its TCalso occurs a turning from negative to positive in 1978, suggesting that on the interdecadal time scale,SLTD between the south of East Asia and the West Pacific is characterized by two periods with differentintensity and they are consistent with the two periods with varied intensity of EASM. The results bySVD also show that there exists an important relation between the interdecadal weakening trend ofEASM and the ISTC of SAT in spring. As a whole, the interdecadal weakening trend of EASM isclosely correlated to the heterogeneous spatial structure of SAT over East Asia-West Pacific in spring.The spatial evolution of aerosol and its regional climatic effects: The primary discussion onaerosol influence domains and their regional climatic effects in Beijing and its peripheral in winter andEast China in summer half year in recent about 20 years are performed, and the viewpoint that aerosolregional climatic effect have a certain spatial range is proposed in this paper. Results show that thereexists an aerosol influence domain in Beijing and its south peripheral and the IC of sunshine duration,LCC and fog days show a distinctive difference within and out of the aerosol influence domain in
    winter. The regional climate changes including decreasing sunshine duration, increasing LCC and fogdays exist in Beijing and its south peripheral, which are consistent with such trend that aerosol opticaldepth (AOD) in this region increases in recent 20 years. It is found in further investigation that thecorrelation coefficient fields of AOD with sunshine duration and SAT in summer half year in easternChina show a “south negative and north positive” distribution and the significant negative correlationregion is located in the south of eastern China that is also the significant positive correlation regionbetween AOD and LCC, which is similar to the marked interdecadal increasing region of summerprecipitation. It denotes that the regional climatic effects including increasing LCC and precipitation butdecreasing sunshine duration and SAT in summer half year might be caused by increasing aerosol in thesouth of eastern China. It also suggests that in summer half year, the aerosol influence domain overeastern China is located in its south. By calculating the correlation coefficients of AOD with verticalvelocity and meridional wind in summer half year in eastern China, it is found that the regional climaticeffects of aerosol have some impacts on the EASM.The response of regional climate to the change of SLTD: Shown for the sensitivityexperiments by RegCM3, it will cause reduction of east-west direction SLP difference and weakeningof low level northerly wind if winter long wave cooling rate over the northeast of East Asia is decreasedin RegCM3, which indicates that the regional climatic response to greenhouse effect is a possiblereason of the weakening of EAWM. In RegCM3, decreasing SAT over the southeast China andincreasing SAT over the ocean to south of China will lead to the weakening of the intensity of WestPacific subtropical high and leaning to south of its location in summer, as well as the weakening ofEASM. Furthermore, it will cause the “south-increasing and north-decreasing” distribution of summerprecipitation in East China. It is similar to the simulation result of the sensitivity experiment withdecreasing solar heating rate over the south of eastern China in spring and summer. These resultssuggest that the regional climatic response to the change of SLTD associated with aerosol influenceeffect is related to the variety of EASM intensity. These simulation results of sensitivity experimentsreasonably validate the diagnosis results of the ISTC of EAM.
引文
1. 王绍武. 20 世纪气候学理论研究的十项成就. 地球科学进展,2000,15(3):277~282
    2. 陈隆勋,朱文琴,王文,等. 中国近 45 年来气候变化的研究. 气象学报,1998,56(3):257~271
    3. 王遵娅,丁一汇,何金海,等. 近 50 年来中国气候变化特征的再分析. 气象学报,2004,62(2):228~236
    4. 陈隆勋,周秀骥,李维亮,等. 中国近 80 年来气候变化特征及其形成机制. 气象学报,2004,62(5):634~645
    5. 王绍武,龚道溢,叶瑾琳,等. 1880 年以来中国东部四季降水量序列及其变率. 地理学报,2000,55(3):281~293
    6. 王绍武,董光荣. 中国西部环境特征及其演变,中国西部环境演变评估(第一卷). 北京:科学出版社,2002,29~37
    7. 于淑秋,林学椿,徐祥德. 我国西北地区近 50 年降水和温度的变化. 气候与环境研究,2003,8(1):9~18
    8. 施雅风,沈永平,胡汝骥. 西北气候由暖干向暖湿转型的信号/影响和前景初步探讨. 冰川冻土,2002,24(3): 219~226
    9. Hu, Z. Z., S. Yang and R. G. Wu. Long-term climate variations in China and global warming signals. Journal of Geophysical Research, 2003, 108, No.D19, 4614
    10. 丁一汇,张锦,徐影,等. 气候系统的演变及其预测. 北京:气象出版社,2003,32~45
    11. 陈隆勋,劭永宁,张清芬,等. 近 40 年来我国气候变化的初步分析. 应用气象学报,1991,2(2):164-173
    12. 姚辉. 中国西北地区气温分区及其变化的初步分析研究. 应用气象学报,1994,5(2):238~240
    13. 王宝灵. 中国西北地区 6 月降水量最近 30 年明显递增. 气象,1997,23(6):39~45
    14. 谢庄,崔继良,刘海涛,等. 华北和北京的酷暑天气 I. 历史概况及个例分析. 气候与环境研究,1999,4(4):323~333
    15. 陆日宇. 华北汛期降水量年代际和年际变化之间的线性关系. 科学通报,2003,48(7):718~722
    16. 黄荣辉,张庆云. 华北降水的年代际变化及其对经济的影响, 关于华北地区水资源合理开发利用论文集. 北京:水利电力出版社,1990,95~101
    17. 张庆云,陈烈庭. 近 30 年来中国气候的干湿变化. 大气科学,1991,15(5):72~81
    18. 黄荣辉,徐予红,周连童. 我国夏季降水的年代际变化及华北干旱化趋势. 高原气象,1999,18(4):465~476
    19. Gong D Y and Ho Changhoi. Shift in the summer rainfall over the Yangtze River valley in the late 1970s. Geophysical research letters, 2002, 29 (10): 1436, 10.1029/2001GL014523
    20. 王东兴,陶诗言. 北半球夏季 110oE 跨赤道气流的结构及其与台风活动的关系. 大气科学,1984,8(4):443~449
    21. 陶诗言,朱文妹,赵卫. 论梅雨的年际变异. 大气科学,1988(特刊):13~21
    22. 陶诗言,李吉顺,王昂生. 东亚季风与我国洪涝灾害. 中国减灾,1997,7(4):17~24
    23. 黄荣辉、周连童. 我国重大气候灾害特征、形成机理和及预测研究. 自然灾害学报,2002,11(1):1~9
    24. 丁一汇,孙颖,李跃凤,等. 20 世纪 90 年代东亚严重旱涝事件的大尺度条件分析,我国旱涝重大气候灾害及其形成机理研究. 北京:气象出版社,2003,260~275
    25. 魏凤英,张京江. 华北地区干旱的气候背景及其前兆强信号. 气象学报,2003,61(3):354~363
    26. 张顺利,陶诗言. 1998 年夏季中国暴雨洪涝灾害的气象水文特征. 应用气象学报,2001,12(4):442~457
    27. 张顺利,陶诗言. 青藏高原对 1998 年长江流域天气异常的影响. 气象学报,2002,60(4):442~452
    28. 郭其蕴. 东亚冬季风的变化与中国气温异常的关系. 应用气象学报,1994,5(2):218~225
    29. 龚道溢. 气候变暖与我国夏季洪涝灾害风险. 自然灾害学报,l999,8(3):30~37
    30. Guo Y f, Yu Y Q, Liu X Y, et al. Simulation of climate change induced by CO2 increasing for East Asia with IAP/LASG GOALS Model. Advances in Atmospheric Sciences, 2001, 18(1):53~66
    31. 郭其蕴、沙万英. 我国北方冬季气温的变暖及其原因分析. 地理集刊(22 号),北京:科学出版社,l993,56~64
    32. IPCC, Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the international Panel on Climate Change, Houghton J T, Ding Y H, Griggs D J, Noguer M, van der Linden P J, Dai X, Maskell K, Johnson C A, eds, UK: Cambridge University Press, 2001, 787pp
    33. Menon S, J Hansen, L Nazarenko and Y F Luo. Climate effects of black carbon aerosols in China and India. Science, 2002, 2250~2253
    34. Xu Q. Abrupt change of the mid-summer climate in central east China by the influence of atmospheric pollution, Atmospheric Environment, 2001, 35: 5029~5040
    35. Halley E. An historical account of the trade winds and the monsoons, observable in the seas between and near the tropics, with an attempt to assign the physical cause of the said winds. Phil Trans Roy Soc London, 1686,16: 153~168
    36. Hadley G. Concerning the cause of the general trade winds. Phil Trans, 1735, 29: 58~62
    37. 张家诚. 大气科学的季节变化和季风的科学概念,全国热带夏季风学术会议文集. 昆明:云南人民出版社,1983,1~9
    38. 曾庆存,李建平. 南北两半球大气的相互作用和季风的本质. 大气科学,2002,26(4):433~448
    39. 孙秀荣,陈隆勋,何金海. 东亚海陆热力差指数与东亚夏季风强度关系探讨,南海夏季风建立日期的确定与季风指数,北京:气象出版社,2001,96~108
    40. 叶笃正,陶诗言,李麦村. 在六月和十月大气环流的突变,气象学报,1958,29(2):249~263
    41. Wang H J. The weakening of the Asian monsoon circulation after the end of 1970's, Advance in Atmospheric Sciences, 2001, 18(3): 376~386
    42. Xue F. Interannual to interdecadal variation of East Asian summer monsoon and its association with the global atmospheric circulation and sea surface temperature. Advance in Atmospheric Sciences, 2001, 18(4): 567~575
    43. 王绍武,朱锦红. 国外关于年代际气候变率的研究. 气象学报,1999,57(3):376~384
    44. 李崇银,李桂龙,龙振夏. 中国气候年代际变化的大气环流形势对比分析. 应用气象学报,1999,10(增刊):1~8
    45. Tao S Y and L X Chen. A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C P Chang and T N Krishnamurti Eds, Oxford Press, 1987, 60~92
    46. Wang H J. The instability of the East Asian summer monsoon~ENSO relations. Advance in Atmospheric Sciences, 2002, 19 (1): 1~11
    47. 郭其蕴,蔡静宁,劭雪梅,等. 东亚夏季风的年代际变率对中国气候的影响. 地理学报,2003,58(4):569~576
    48. 戴新刚,汪萍,丑纪范. 华北汛期降水多尺度特征与夏季风年代际衰变. 科学通报,2003,48(23):2483~2487
    49. 李峰、何金海. 东亚夏季风与北太平洋 SSTA 关系的年代际变化特征及其机制研究. 南京气象学院学报,2001,24(2):199~206
    50. Huang R H, Zhou L T and Chen W. The progresses of recent studies on the variabilities of the East Asia monsoon and their causes. Advance in Atmospheric Sciences, 2003, 20(1): 55~69
    51. 徐建军、朱乾根、周铁汉. 近百年东亚冬季风的突变性和周期性. 应用气象学报,1999,10(1):1~8
    52. Chen W, Graf H F, Huang R H. The interannual variability of East Asian winter monsoon and its relation to the summer monsoon. Advance in atmospheric sciences, 2000, 17 (1) : 48~60
    53. 施能. 近 40 年东亚冬季风强度的多时间尺度变化特征及其与气候的关系. 应用气象学报,1996,7(2):175~182
    54. 武炳义、黄荣辉、高登义. 冬季北极喀拉海、巴伦支海海冰面积变化对东亚冬季风的影响. 大气科学,1999,23(3):267~275
    55. 陈海山、孙照渤、闵锦忠. 欧亚大陆冬季积雪异常与东亚冬季风及中国冬季气温的关系. 南京气象学院学报,1999,22(4):609~615
    56. Wu B Y and Wang J. Possible impacts of winter Arctic oscillation on Siberian High, the East Asian winter monsoon and sea-ice extent. Advance in Atmospheric Sciences, 2002, 19(2): 297~320
    57. 雷永荟、吴洪宝. 东亚冬季风异常的空间结构及与海陆热力差异的联系. 南京气象学院学报,2002,25(2):145~152
    58. 王会军,姜大膀. 一个新的东亚冬季风强度指数及其强弱变化之大气环流场差异. 第四纪研究,2004,24(1):19~27
    59. 罗云峰,周秀骥,李维亮. 大气气溶胶辐射强迫及气候效应的研究现状. 地球科学进展,1998,13(6):572~581
    60. 罗云峰,吕达仁,周秀骥,等. 30 年来我国大气气溶胶光学厚度平均分布特征分析. 大气科学,2002,26(6):721~730
    61. Kaiser D P and Qian Y. Decrease trends in sunshine duration over China for 1954~1998: indication of increased haze pollution? Geophysical research letters, 2002, 29 (21), 2042, doi:10.1029/2002GL016057
    62. 李成才,毛节泰,刘启汉,等. 利用 MODIS 研究中国东部地区气溶胶光学厚度的分布和季节变化特征. 科学通报,2003,48(19):2094~2100
    63. Massie S T, O Torres, S J Smith. Total Ozone Mapping Spectrometer (TOMS) observations of increases in Asia aerosol in winter from 1979 to 2000. Journal of Geophysical Research, 2004, 109 (D18211), doi:10.1029/2004JD004620
    64. 周秀骥,李维亮,罗云峰. 中国地区大气气溶胶辐射强迫及区域气候效应的数值模拟. 大气科学,1998,22(4):418~427
    65. Taylor K E and J E Penner. Response of climate system to atmospheric aerosols and greenhouse gases, Nature, 1994, 369 : 734~737
    66. Rotstayn L D and U. Lohmann. Tropical rainfall trends and the indirect aerosol effect. Journal of Climate, 2002, 15 (15): 2103~2116
    67. Feichter J, E Roeckner, U Lohmann, et al. Nonlinear Aspects of the Climate Response to Greenhouse Gas and Aerosol Forcing. Journal of Climate, 2004, 17: 2384~2398
    68. 赵风生,石广玉. 气溶胶气候效应的一维模式分析. 大气科学,1994,18(6):902~909
    69. 钱永甫,黄媛媛. 臭氧、云和气溶胶对纬带平均气候的影响,地理学报,1994,49(3):266~273
    70. 胡荣明,石广玉. 中国地区气溶胶的辐射强迫及其气候响应试验. 大气科学,1998,22(6):919~925
    71. 钱云,符淙斌,胡荣明,等. 工业SO2排放对东亚和我国温度变化的影响,气候与环境研究,1996,1(2):143~149
    72. 符淙斌,黄燕. 亚洲的全球变化问题. 气候与环境研究,1996,2:97~112
    73. 罗云峰. 中国地区气溶胶光学厚度特征及其辐射强迫和气候效应的数值模拟. 北京大学博士论文,1998
    74. 张立盛. 硫酸盐和烟尘气溶胶辐射强迫的模拟和估算. 中国科学院大气物理研究所博士论文,1999
    75. Qian Y and F Giorgi. Interactive coupling of regional climate and sulfate aerosol models over eastern Asia. Journal of Geophysical Research, 1999, 104 (D6): 6477~6499
    76. 王喜红. 东亚地区人为硫酸盐气溶胶气候效应的数值研究. 中国科学院大气物理研究所博士学位论文,2000
    77. 王喜红,石广玉. 东亚地区人为硫酸盐的直接辐射强迫. 高原气象,2001,20(3):258~263
    78. 王喜红,石广玉. 东亚地区云和地表反照率对硫酸盐直接辐射强迫的影响. 气象学报,2002,60(6):758~765
    79. Hu R M, Sergc P, Michel D and et al., Why is the climate forcing of sulfate aerosols so uncertain? Advances in Atmospheric Sciences, 2001, 18 (6): 1103~1120
    80. 张立盛,石广玉. 相对湿度对气溶胶辐射特性和辐射强迫的影响. 气象学报,2002,60(2):230~237
    81. 石广玉,王喜红,张立盛,等. 人类活动对气候影响的研究。II. 对东亚和中国气候变化的影响. 气候与环境研究,2002,7(2):255~261
    82. 高学杰,林一骅,赵宗慈. 用区域气候模式模拟人为硫酸盐气溶胶在气候变化中的作用. 热带气象学报,2003,19(2):169~176
    83. Qian Y, L. Ruby Leung, Steven J Ghan and F Giorgi. Regional climate effects of aerosols over China: modeling and observation. Tellus, 2003, 55B, 914~934
    84. 高庆先,任阵海, 姜振远. 人为排放气溶胶引起的辐射强迫研究. 环境科学研究,1998,11(1):5~9
    85. Li X. W., X. J. Zhou, et al. The cooling of Sichuan province in recent 40 years and its probable mechanisms. Acta Metrorologica Sinica, 1995, 9 (1) : 57~68
    86. Oke T R. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 1982, 108: 1~24
    87. Hanna S R, J V Ramsdell and H E Cramer. Urban Gaussian diffusion parameters. Modeling the Urban Boundary Layer. Boston: Amer Meteor Soc, 1987, 337~379
    88. 徐祥德. 城市化环境大气污染模型动力学问题. 应用气象学报,2002,13(特刊):1~12
    89. 徐祥德,丁国安,周丽,等. 北京城市冬季大气污染动力~化学过程区域性三维结构特征. 科学通报,2003,48(1):496~502
    90. 徐祥德,周丽,周秀骥,等. 城市环境大气重污染过程周边源影响域. 中国科学(D 辑),2004,34(10):958~966
    91. 沈清基. 城市生态与城市环境. 上海:同济大学出版社,1998,212~234
    92. 章澄昌,周文贤. 大气气溶胶教程. 北京:气象出版社,1995,112~123
    93. Torres O, Bhartia P K, Herman J R, et al. A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements. J Atmos Sci, 2002, 59 (1): 398~413
    94. Curt C., Krishna M. A., Michael F., et al. Intercomparison of climate data sets as a measure of observational uncertainty. Lawrence Livermore National Laboratory: UCRL-ID-147371, 2002
    95. Wallace J M, Smith C, Christopher S B, Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. Journal of Climate, 1992, 5 (6): 561~576
    96. Tomé A R, Miranda P M A. Piecewise linear fitting and trend changing points of climate parameters. Geophysical research letters, 2004, 31: 78~82
    97. Kalnay, E., M. Kanamitsu, R. Kistler, et al, The NCEP/ NCAR 40-year reanalysis project, Bull. Amer. Meteor. Soc., 1996, 77: 437~471
    98. Wu Renguang , and Xie Shangping , On equatorial pacific surface wind changes around 1997 : NCEP/NCAR reanalysis versus COADS observation , J . Climate , 2003 , 16 (1): 167~173
    99. Zhang Yi, K. R. Sperber, and J. S. Boyle, Climatology and interannual variation of the East Asian winter monsoon: results from the 1979-95 NCEP/NCAR reanalysis, Mon. Wea. Rev., 1997, 125 (10): 2605~2619
    100. Annamalai H., J. M. Slingo, K. R. Sperber, et al, The mean evolution and variability of the Asian summer monsoon: Comparison of ECMWF and NCEP/NCAR reanalysis, Mon. Wea. Rev., 1999, 127: 1157~1186
    101. 张琼、钱永甫, 用 NCEP/ NCAR 再分析辐射资料估算月平均地表反射率, 地理学报, 1999 , 59 (4) , 309~317
    102. 熊喆, 区域气候模式对东亚气候及其年际变率的模拟和分析, 中国科学院大气物理研究所博士学位论文,2001
    103. 王淑瑜, 东亚区域气候模拟和土壤湿度初始化问题研究, 中国科学院大气物理研究所博士学位论文, 2003
    104. Renfrew , I. A., G. W. K. Moore, P. S. Guest, et al, A comparison of surface layer and surface turbulent flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalysis, Journal of Physical Oceanography , 2002 , 32 (2): 384~400
    105. Shen, S. S. P., P. Dzikowski, Li Guilong, et al, Interpolation of 1961-97 daily temperature and precipitation data onto alberta polygons of ecodistrict and soil landscapes of data, Journal of Applied Meteorology , 2001 , 40 (12): 2162~2177
    106. Reid, P. A., P. D. Jones, O. Brown et al1, Assessments of the reliability of NCEP circulation data and relationship with surface by direct comparison with station based data, Climate Research, 2001, 17 (3): 247~261
    107. Poccard, I., S. Janicot, and P. Camberlin, Comparison of rainfall structure between NCEP/NCAR reanalysis and observed data over tropical Africa, Climate Dynamics, 2000 , 16 (12): 897~915
    108. Basist, A. N., Comparison of tropospheric temperatures derived from the NCEP/NCAR reanalysis, NCEP operational analysis, and the microwave sounding unit, Bull. Amer. Meteor. Soc., 1997, 78 (7): 1431~1447
    109. Josey, S. A., A comparison of ECMWF, NCEP/NCAR, and SOC surface heat fluxes with moored buoy measurements in the subduction region of the Northeast Atlantic, J. Climate, 2001, 14 (8): 1780~1789
    110. 苏志侠、吕世华、罗思维,美国 NCEP/NCAR 全球再分析资料及其初步分析,高原气象,1999,18(2):209~218
    111. 赵天保,艾丽坤,冯锦明,NCEP 再分析资料和中国站点观测资料的分析与比较,气候与环境研究,2004,19(2):278~294
    112. 李川、张廷军、陈静,近 40 年青藏高原地区的气候变化-NCEP 和 ECMWF 地面气温及降水再分析和实测资料对比分析,高原气象,2004,23(增刊):97~103
    113. 魏丽、李栋梁,青藏高原地区 NCEP 新再分析地面通量资料的检验,高原气象,2003,22(5):478~487
    114. 魏丽、李栋梁,NCEP/NCAR 再分析资料在青藏铁路沿线气候变化研究中的适用性,高原气象,2003,22(5):488~494
    115. 宋敏红、吴统文、钱正安,高原地区 NCEP 热通量再分析资料的检验及在夏季降水预测中的应用,高原气象,2000,19(4):467~475
    116. Curt C., M. A. Krishna, F. Michael et al, Intercomparison of climate data sets as a measure of observational uncertainty, UCRL-ID-147371, 2001.
    117. Santer B. D., J. J. Hnilo, T. M. L. Wigley et al, Uncertainties in observationally based estimates of temperature change in the free atmosphere, J. Geophy. Res. 1999, 104, D6, 6305-6333
    118. Santer B. D., T. M. L. Wigley, D. J. Gaffen et al, Interpreting differential temperature trends at the surface and in the lower troposphere, Science, 2000, 287: 1227-1232
    119. 徐影、丁一汇、赵宗慈,美国 NCEP/ NCAR 近 50 年全球再分析资料在我国气候变化研究中可信度的初步分析,应用气象学报,2001,12(3):337~347
    120. 朱抱真, 丁一汇, 罗会邦. 关于东亚大气环流和季风的研究. 气象学报,1990,48(1):4~16
    121. Lau K M, Li M. The monsoon of East Asia and its global association-A survey. Bull Amer Meteor Soc, 1984, 65: 114~125
    122. Yasunari T. The monsoon year -A new concept of the climatic year in the Tropics. Bull Amer Meteor Soc, 1991, 72: 937~ 957
    123. 陈隽, 孙淑清. 东亚冬季风异常与全球大气环流变化 I. 强弱冬季风影响的对比研究. 大气科学,1999,23(1):101~111
    124. 孙淑清, 孙柏民. 东亚冬季风环流异常与中国江淮流域夏季旱涝天气的关系. 气象学报,1995,53(4):440~450
    125. 布和朝鲁. 东亚季风气候未来变化的情景分析——基于 IPCC SRES A2 和 B2 方案的模拟结果.科学通报,2003,48(7):737~742
    126. 陈隆勋,朱乾根,罗会邦,等. 东亚季风. 北京:气象出版社,1991,304~318
    127. 任福民,翟盘茂. 1951~1990 年中国极端气温变化分析. 大气科学,1998,22(2):217~227
    128. 伍荣生主编. 现代天气学原理. 北京:高等教育出版社,2002,224~232
    129. Zhai Panmao, Anjian Sun, Fumin Ren, et al. Change of climate extremes in China, Climate Change, 1999, 42(1): 203~218
    130. 施能,杨永胜. 1873—1996 年东亚冬、夏季风强度指数及其主要特征. 南京气象学院学报,1998,21(2):208~214
    131. 崔晓鹏,孙照渤. 东亚冬季风强度指数及其变化的分析. 南京气象学院学报,1999,22(3):321~325
    132. 布和朝鲁,纪立人. 东亚冬季风活动异常与热带太平洋海温异常. 科学通报,1999,44(3):252~259
    133. 李爱贞,刘厚凤,张桂芹. 气候系统变化与人类活动. 北京:气象出版社,2003. 62~79
    134. 施能,朱乾根,吴彬贵. 近 40 年东亚夏季风及我国夏季大尺度天气气候异常. 大气科学,1996,20(5):575~583
    135. 高学杰,赵宗慈,丁一汇,等. 温室效应引起的中国区域气候变化的数值模拟. 第二部分:中国区域气候的可能变化. 气象学报,2003,61(1):29-38
    136. 黄刚. 东亚夏季风环流异常指数与夏季气候变化关系的研究. 应用气象学报,1999,10(增刊):61~69
    137. Zhou T J, Yu R C. Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 2005, 110, D08104, doi: 10.1029/2004JD005413
    138. Yu R C, Wang B, Zhou T J. Tropospheric cooling and summer monsoon weakening trend over East Asia. Geophysical Research Letters, 2004, 31, L22212, doi: 10.1029/ 2004GL021270
    139. 王炜,汤大钢,刘红杰,等. 中国华北地区冬季大气污染物航空测量(II)—空中大气气溶胶污染特征研究. 环境科学研究,2000,13(1):11~13
    140. 王体建,闵锦忠,孙照渤,等. 中国地区硫酸盐气溶胶的分布特征. 气候与环境研究,2000,5(2):165~174
    141. Twomey S A. Radiative properties of clouds. In: Jennings S G Ed. Aerosol Effects on Climate. Tucson: The Univ of Arizona press, 1993. 275~276
    142. Pueschel R F. Potential climate effects of anthropogenic aerosols. In: Jennings S G Ed. Aerosol Effects on Climate. Tucson: The Univ of Arizona press, 1993. 110~132
    143. 徐祥德,汤绪. 城市化环境气象学引论. 北京:气象出版社,2002. 139~170
    144. 刘家铭. 气溶胶对中国长期降水趋势的可能影响. 气候变化通讯,2002,1(1):9
    145. Ding Y. H. and Y. Sun. A study on anomalous activities of East Asia summer monsoon during 1999. J. Meteor. Soc. Japan, 2001, 79, 1119~1137
    146. 罗勇. 关于黑碳气溶胶气候效应的科学争论及其政策意义. 气候变化通讯,2003,2(2):11~12
    147. Lohmann U., A glaciation indirect aerosol effect caused by soot aerosols. Geophys. Res. Lett., 2002, 29(10):1029~1032
    148. Kattenberg G. A. and Coauthors, Climate models-Projections of future climate. Climate Change 1995, Houghton J. T. et al., Eds., Cambridge University Press, 1996, 285~358
    149. Visser H., R. J. M. Folkert, J. Hoekstra, et al., Identifying key sources of uncertainty in climate change projections. Climate Change, 2000, 45: 421~457
    150. Giorgi F., R. Francisco, Evaluating uncertainties in the prediction of regional climate change. Geophys. Res. Lett., 2000, 27: 1295~1298
    151. Giorgi F., L. O. Mearns, Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “reliability ensemble averaging” (REA) method. J. Climate, 2002, 15: 1141~1158
    152. Tebaldi C., R. L. Smith, D. Nychka, et al., Quantifying uncertainty in projections of regional climate change: a Bayesian approach to the analysis of multimodel ensembles. J. Climate, 2005, 18: 1524~1540
    153. Dickinson R. E., R. M. Errico, F. Giorgi, et al., A regional climate model for the western United States. Climate Change, 1989, 15: 383~422
    154. Giorgi F., Simulation of regional climate using a limited area model nested in a general circulation model. J. Climate, 1990, 3: 941~963
    155. Cullen M. J. P., The unified forecast/climate model. Meteor. Mag., 1993, 122: 81~94
    156. 高学杰,赵宗慈,丁一汇. 区域气候模式对温室效应引起的中国西北地区的气候变化的数值模拟. 冰川冻土,2003,25(2):165~169
    157. 吕世华,陈玉春. 区域气候模式对华北夏季降水的气候模拟. 高原气象,1999,18(4):632~640
    158. 刘洪利,李维亮,周秀骥,等. 长江三角洲地区区域气候模式的发展和检验. 应用气象学报,2005,16(1):24~34
    159. Anthes R. A., Y. H. Kuo, E. Y. Hsie, et al., Estimation of episodic and climatological skill and uncertaintly in regional numerical models. Quart. J. Roy. Meteor. 1989, 115: 763~806
    160. Jones R. G., J. M. Murphy, M. Noguer, Simulation of climate change over Europe using a nested regional – climate model. part I: assessment of control climate, including sensitivity to location of lateral boundaries, Quart. J. Roy. Meteor. 1995, 121: 1413~1449
    161. Seth A., F. Giorgi, The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model. J. Climate, 1998, 11: 2698~2712
    162. Dickinson, R. E., R. M. Errico, F. Giorgi, et al, A regional climate model for the western United States. Climate Change, 1989,15: 383~422
    163. Giorgi, F., Simulation of regional climate using a limited area model nested in a general circulation model. J. Climate, 1990, 3: 941~963
    164. Giorgi F., M. R. Marinuci,G. T. Bates, Development of a second generation regional climate model (RegCM2) I: Boundary layer and radiation transfer process. Mon. Wea. Rev., 1993, 121: 2794~2813
    165. Giorgi F., M. R. Marinuci, G. De Canio, et al, Development of a second generation regional climate model (RegCM2) II: Convctive processes and assimilation of lateral boundary conditions. Mon. Wea. Rev., 1993, 121: 2814~2832
    166. Grell G. A., J. Dudhia, D. R. Stauffer, A description of the fifthgeneration Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-3981STR, 1994, 1~12
    167. Dickinson R., P. Kennedy, A. Henderson-Sellers, et al, Biosphere-atmosphere transfer scheme (BATS) for the NCAR community climate model. Technical report, National Center for Atmospheric Research. 1986, 53 pp
    168. Anthes R., A cumulus parameterization scheme utilizing a one-dimensional cloud model. Monthly Weather Review, 1977, 105(3): 270~286
    169. Hsie E., R. Anthes, D. Keyser, Numerical simulation of frontogenisis in a moist atmosphere. Journal of Atmospheric Sciences, 1984, 41: 2581~2594
    170. Holtslag A. A. M., B. A. Boville, Local versus nonlocal boundary layer diffusion in a global climate model. J. Climate, 1993, 6, 1825~1842
    171. Grell G. A., Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 1993, 121, 764~787
    172. Dickinson R. E., A. Henderson-Sellers, P. Kennedy, Biosphere–Atmosphere Transfer Scheme (BATS) version 1E as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-3871STR, 1993, 72 pp
    173. Qian J.H., F. Giorgi, S. M. Fox-Rabinovitz, Regional stretched grid generation and its application to the NCAR regcm, Journal of Geophysical Research, 1999, 104: 6501~6513
    174. Zeng X. B., Zhao M., R. E. Dickinson, Intercomparison of bulk aerodynamic algoriths for the computation of sea surface fluxes using TOGA coare and TAO data. Journal of Climate, 1998, 11(10): 2628~2644
    175. Betts A. K., M. Miller, The Betts-Miller scheme, The representation of cumulus convection in numerical models of the atmosphere. Eds. K.A. Emanuel and D.J. Raymond, Meteo. Mon., American Meteorological Society, 1993, 107~121
    176. Pal J., E. Small, E. Eltahir, Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. Journal of Geophysical Research, 2000, 105, D24: 29579~29594
    177. Small E., L. Sloan, Simulating the water balance of the aral sea with a coupled regional climate-lake model, Journal of Geophysical Research, 1999, 104: 6583~6602

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700