用户名: 密码: 验证码:
典型种类气溶胶的辐射强迫及其气候效应的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业革命以来,人类活动造成的大气中气溶胶的含量显著增加。气溶胶能够直接吸收和散射红外和太阳辐射,扰动地气系统的能量收支,还能够作为云凝结核或冰核,改变云的微物理和辐射性质以及云的寿命,间接影响气候系统。尽管目前观测已经有了很大进步,但是想要通过观测评估气溶胶不同气候效应的影响非常困难。本论文在中国气象局国家气候中心大气环流模式BCC_AGCM2.0.1单向驱动中国气象科学研究院大气成分观测与服务中心研发的气溶胶理化数值模式CUACE_Aero的工作基础上,将其双向耦合,实现了一套气溶胶-辐射-气候在线耦合模式。利用该耦合模式模拟了典型种类气溶胶的浓度和光学性质,计算了气溶胶的辐射强迫,并讨论了气溶胶对全球和区域气候的
     影响。主要结论概括如下: (1)结合AEROCOM的气溶胶排放源数据,本文模拟的硫酸盐、黑碳、有机碳、沙尘和海盐气溶胶的全球年平均柱含量分别为1.74 mg m~(-2)、0.14 mg m~(-2)、1.31 mg m~(-2)、40.8 mg m~(-2)和14.7 mg m~(-2)。除了在南美洲模拟的光学厚度偏低外,模拟的总的气溶胶(包含硫酸盐、黑碳、有机碳、沙尘和海盐)的光学厚度、单次散射比和非对称因子与AERONET(AEROSOL ROBOTIC NETWORK)观测结果基本一致。模拟的单次散射比和非对称因子与观测值的平均偏差分别为4%和5%。
     (2)模拟的总的气溶胶和三种主要由人为活动引起的气溶胶(硫酸盐、黑碳和有机碳)在大气顶的直接辐射强迫的全球年平均值分别为-2.03 W m~(-2)和-0.23 W m~(-2)。其中,硫酸盐、黑碳、有机碳、沙尘和海盐气溶胶在大气顶的全球年平均直接辐射强迫分别为-0.19 W m~(-2)、+0.1 W m~(-2)、-0.15 W m~(-2)、-0.9 W m~(-2)和-0.83 W m~(-2)。总的气溶胶的直接和半直接效应造成全球大气顶和地表年平均净短波辐射通量分别减少3.1 W m~(-2)和3.9 W m-2,地表温度降低1.6oC,降水率减弱0.14 mm day-1。
     硫酸盐、黑碳和有机碳三种气溶胶在东亚地区造成的大气顶和地表夏季平均的直接辐射强迫分别为-1.4 W m~(-2)和-3.3 Wm~(-2),从而导致东亚地区夏季平均地表温度降低0.58oC,降水率减少0.15 mm day-1。上述三种气溶胶的直接和半直接效应造成夏季东亚季风区陆海表面温度和气压差减弱,局地环流发生变化,从而导致东亚夏季风减弱,中国东部和南部夏季风降水减少。
     (3)模拟的气溶胶第一类间接辐射强迫在大气顶的全球年平均值为-1.57 Wm~(-2),气溶胶第二类间接效应造成大气顶净短波辐射通量变化的全球年平均值约为-0.58 W m-2。气溶胶总的间接效应造成大气顶年平均净短波辐射通量降低2.27 Wm~(-2),地表温度下降约0.12 oC,降水率减少0.03 mm day-1。在夏季,气溶胶总的间接效应造成中国东部和南部以及周围海洋上东北或偏北气流增强,从而减弱了东亚夏季风对水汽的输送,造成中国东部和南部地区降水减少。
     (4)雪和冰中黑碳气溶胶造成的全球年平均地表辐射强迫为+0.042 W m~(-2),最大辐射强迫位于青藏高原上,年平均强迫超过+2.8 W m~(-2)。由于增强了雪和冰对太阳辐射的吸收,雪和冰中黑碳气溶胶造成全球年平均地表温度升高了0.071 oC。地表正辐射强迫在冬春季节就明显产生,导致北半球陆地上雪冰表面温度明显升高,雪融率增强,造成雪和冰提前融化。随着北极表面温度的升高,导致更多的水汽进入大气,从而使得北极上空总云量明显增加。增加的云量发射出更多的长波辐射到达地表,形成一种正反馈机制。但是,云量的增多使得总的云辐射强迫减少,可能削弱一定量的云量增多–温度升高–地表长波辐射增强的正反馈机制。
Atmospheric abundances of aerosols have increased since the preindustrial period due to anthropogenic activities. Aerosols can affect climate in several ways. First, aerosol particles can directly scatter or absorb infrared and solar radiation, thereby disturbing the energy budget of the earth-atmosphere system. Second, aerosol particles acting as cloud condensation or ice nuclei can change cloud microphysical and radiative properties and cloud lifetime, and hence indirectly affect the climate. It is very difficult to assess the impact of different effects of aerosols by measurements, although improvements have been made lately. Thus, we finish an on-line coupled model of aerosol?radiation?climate based on the AGCM developed by the National Climate Center of the China Meteorological Administration (NCC/CMA), called BCC_AGCM2.0.1, unidirectionally driving a physical and chemical model of aerosols (CUACE_Aero) developed by the Center for Atmosphere Watch and Services of Chinese Academy of Meteorological Sciences in this work. The concentrations and optical properties of typical aerosols are simulated, and the radiative forcing of aerosols and their effects on global and regional climate are discussed based on the above coupled model. The major conclusions are as follows:
     (1) The simulated global annual mean column burdens of sulfate, black carbon (BC), organic carbon (OC), dust and sea salt are 1.74 mg m~(-2), 0.14 mg m~(-2), 1.31 mg m~(-2), 40.8 mg m~(-2)and 14.7 mg m~(-2), respectively, using the source emissions that are derived primarily from AEROCOM data. The simulated optical depth, single scattering albedo, and asymmetry parameter of total aerosols (including sulfate, BC, OC, dust, and sea salt) are basically consistent with AERONET observations, except for an obvious underestimated aerosol optical depth (AOD) over South America. The mean relative errors of the simulated single scattering albedo and asymmetry parameter against observations are 4% and 5%, respectively.
     (2) The simulated global annual means of direct radiative forcing (DRF) due to total aerosols and three species of aerosol mainly produced by human activities (sulfate, BC, and OC) at the top of the atmosphere (TOA) are -2.03 W m~(-2) and -0.23 W m~(-2) respectively, under all sky conditions. The global annual mean DRFs of sulfate, BC, OC, dust and sea salt at the TOA are -0.19 W m~(-2), +0.1 W m~(-2), -0.15 W m~(-2), -0.9 W m~(-2) and -0.83 W m~(-2), respectively. The annual mean changes of the net shortwave radiative flux at the TOA and surface due to the direct and semi-direct effects of total aerosols are approximately -3.1 W m~(-2) and -3.9 W m~(-2), respectively. Consequently, the global annual means of the surface temperature and precipitation rate decrease by 1.6oC and 0.14 mm day-1, respectively.
     The summer seasonal average DRFs due to sulfate, BC, and OC in East Asia at the TOA and surface are -1.4 W m~(-2) and ?3.3 Wm~(-2), respectively, leading to decreases of 0.58oC and 0.14 mm d-1 in the summer means of surface temperature and precipitation rate in this area, respectively. The differences of land-sea surface temperature and surface pressure are reduced and the local circulation is changed in East Asian monsoon region due to the direct and semi-direct effects of these aerosols, thus leading to the weakening of East Asian summer monsoon, and moreover decreasing of the summer monsoon precipitation in south and east China.
     (3) The study yields a global annual mean of ?1.57 W m~(-2) for the first indirect radiative forcing of aerosols at the TOA. The second indirect effect of aerosols leads to global annual mean changes in net shortwave flux of ?0.58 W m~(-2) at the TOA. The total aerosol indirect effect (AIE) reduces the global annual means of net shortwave flux at the TOA, surface temperature and precipitation rate by 2.27 W m~(-2), 0.12oC and 0.03 mm day-1, respectively. In summer, the northeasterly or northerly flows in most areas of east and south China and over the nearby oceans are enhanced due to the total AIE, which weakens the transport of warm and moist air carried by the East Asian summer monsoon, and decreases the summer monsoon precipitation in east and south China.
     (4) The results show that the global annual mean surface radiative forcing due to BC in snow/ice is +0.042 W m~(-2), with maximum forcing found over the Tibetan Plateau and regional mean forcing exceeding +2.8 W m~(-2). The global annual mean surface temperature is increased 0.071oC due to BC in snow/ice. Positive surface radiative forcing is clearly shown in winter and spring which increases the surface temperature of snow/ice in the Northern Hemisphere. Snow-melt rates are also increased greatly, leading to earlier snowmelt and peak runoff timings. With the rise of surface temperature in the Arctic, more water vapor could be released into the atmosphere, allowing for easier cloud formation, which could lead to higher thermal emittance in the Arctic. However, the total cloud radiative forcing could be decreased due to the increasing of cloud cover, which will offset some of the cloud positive feedback mechanism.
引文
1. Abdul-Razzak, H., and S. J. Ghan, A parametrization of aerosol activation: 3. Sectional representation. J. Geophys. Res., 2002, 107(D3), 4026, doi:10.1029/2001JD000483.
    2. Adams, P. J., J. H. Seinfeld, D. Koch, L. Mickley, and D. Jacob, General circulation model assessment of direct radiative forcing by the sulfate-nitrate-ammonium-water inorganic aerosol system. J. Geophys, Res., 2001, 106(D1), 1097–1111.
    3. Adler, R. F., et al., The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol., 2003, 4, 1147–1167.
    4. Albrecht, B., Aerosols, cloud microphysics, and fractional cloudiness. Science, 1989, 245, 1227–1230.
    5. Alfaro, S. C., A. Gaudichet, L. Gomes, and M. Maille, Modeling the size distribution of a soil aerosol produced by sandblasting. J. Geophys. Res., 1997, 102, 11239–11249.
    6. Alfaro, S. C., and L. Gomes, Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distribution in source areas. J. Geophys. Res., 2001, 106, 18075–18084.
    7. Andreae, M. O., Climatic effects of changing atmospheric aerosol levels. In: A. Henderson-Sellers, ed., World Survey of Climatology. Vol. 16: Future Climates of the World. Elsevier, Amsterdam, 1995, 341–392.
    8. Andreae, M. O., et al., Atmospheric science: smoking rain clouds over the Amazon. Science, 2004, 303(5662), 1337–1341.
    9. Andreae, M. O., T. W. Andreae, R. J. Ferek, and H. Raemdonck, Longrange transport of soot carbon in the marine atmosphere. Sci. Total Environ., 1984, 36, 73–80.
    10. Andronache, C., L. J. Donner, C. J. Seman, et al., Atmospheric sulfur and deep convective clouds in tropical Pacific: A model study. J. Geophys. Res., 1999, 104, 4005–4024.
    11. Atkinson, R., D. L. Baulch, R. A. Cox, J. R. F. Hampson, J. A. Derr, and J. Troe, Evaluated kinetics and photochemical data for atmospheric chemistry: Supplement III. J. Phys. Chem. Ref. Data, 1989, 88, 881–1097.
    12. Ayash, Development of an interactive model for studying aerosol-climate interactions using the Canadian aerosol module-Canadian climate center general circulation model modeling framework. Ph. D. Thesis, 2007, 207pp.
    13. Bahrmann, C. P., and V. K. Saxena, Influence of air mass history on black carbon concentrations and regional climate forcing in southeastern United States. J. Geophys. Res., 1998, 103, 23153–23161.
    14. Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 2005, 438, 303–309.
    15. Beheng, K. D., A parameterization of warm cloud microphysical conversion processes. Atmos. Res., 1994, 33, 193–206.
    16. Bellouin, N., A. Jones, J. Haywood, S. A. Christopher, Updated estimare of aerosol direct radiative forcing from satellite observations and comparison against the Hadley Centre climate model. J. Geophys. Res., 2008, 113, doi:10.1029/2007JD009385.
    17. Binkowski, F. S., and U. Shankar, The Regional Particulate Matter Model, 1, Model description and preliminary results. J. Geophys. Res., 1995, 100, 26191–26209.
    18. Bizjak, M., J. Tursic, M. Lesnjak, and T. Cegnar, Aerosol black carbon and ozone measurements at Mt. Krvavec EMEP GAW station, Slovenia. Atmos. Environ., 1999, 33, 2783–2787.
    19. Bond, T. C., D. G. Streets, K. F. Yarber, S. M. Nelson, J. H. Woo, and Z. Klimont, A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res., 2004, 109(D14203), doi: 10.1029/2003JD003697.
    20. Bond, T. C., E. Bhardwaj, R. Dong, et al., Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000. Global. Biogeochem. Cycles, 2007, 21, doi:10.1029/2006GB002840.
    21. Borys, R. D., D. H. Lowenthal, S. A. Cohn, et al., Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snowfall rate. Geophys. Res. Lett., 2003,
    30, doi:10.1029/2002GL016 855.
    22. Boucher, O., Air trafficmay increase cirrus cloudiness. Nature, 1999, 397, 30–31.
    23. Brasseur, G. P., D. A. Hauglustaine, S. Walters, P. J. Rasch, J.-F. Muller, C. Granier, and X. X. Tie, MOZART, a global chemical transport model for ozone and related chemical tracers, 1, Model description. J. Geophys. Res., 1998, 103, 28265–28289.
    24. Brenguier, J. L., et al., Radiative properties of boundary layer clouds: droplet effective radius versus number concentration. J. Atmos. Sci., 2000, 57, 803–821.
    25. Brenguier, J. L., H. Pawlowska, and L. Schuller, Cloud microphysical and radiative properties for parametrization and satellite monitoring of the indirect effect of aerosol on climate. J. Geophys. Res., 2003, 108(D15), 8632, doi:10.1029/2002JD002682.
    26. Briegleb, B. P., Delta-Eddington approximation for solar radiation in the NCAR Community Climate Model. J. Geophys. Res., 1992, 97, 7603–7612.
    27. Castro, L. M., C. A. Pio, R. M. Harrison, and D. J. T. Smith, Carbonaceous aerosol in urban and rural European atmospheres: Estimation of secondary organic carbon concentrations. Atmos. Environ., 1999, 33, 277–2781.
    28. Chen, Y., and J. E. Penner, Uncertainty analysis of the first indirect aerosol effect. Atmos.Chem. Phys., 2005, 5, 2935–2948.
    29. Chesselet, R., M. Fontugne, P. Buat-Menard, U. Ezat, and C. E. Lambert, The origin of particulate organic carbon in the marine atmosphere as indicated by its stable carbon isotopic composition. Geophys. Res. Lett., 1981, 8, 345– 348.
    30. Chow, J. C., J. G. Watson, E. M. Fujita, Z. Q. Lu, D. R. Lawson, and L. L. Ashbaugh, Temporal and spatial variations of PM2.5 and PM10 aerosol in the Southern California Air-Quality Study. Atmos. Environ., 1994, 28, 2061–2080.
    31. Chung, C. E., and V. Ramanathan, Weakening of North Indian SST Gradients and the Monsoon Rainfall in India and the Sahel. J. Climate, 2006, 19, 2036–2045.
    32. Chung, S. H., and J. H. Seinfeld, Global distribution and climate forcing of carbonaceous aerosols. J. Geophys. Res., 2002, 107, doi:10.1029/2001JD001397.
    33. Chung, S. H., and J. H. Seinfeld, Climate response of direct radiative forcing of anthropogenic black carbon. J. Geophy. Res., 2005, 110 (11102), doi:10.1029/2004JD005441.
    34. Chylek, P., L. Kou, B. Johnson, F. Boudala, and G. Lesins, Black carbon concentrations in precipitation and near surface air in and near Halifax, Nova Scotia. Atmos. Environ., 1999,
    33, 2269–2277.
    35. Coakley, J. A. Jr., R. L. Bernstein, and P. A. Durkee, Effect of ship-track effluents on cloud reflectivity. Science, 1987, 237, 1020–1022.
    36. Cofala, J., M. Amann, Z. Klimont, and W. Schopp, Scenarios of World Anthropogenic Emissions of SO2, NOx , and CO up to 2030, Internal report of the Transboundary Air Pollution Programme, International Institute for Applied Systems Analysis, Laxenburg, Austria, 2005, 17pp.
    37. Collins, W. D., Parameterization of generalized cloud overlap for radiative calculations in general circulation models. J. Atmos. Sci., 2001, 58, 3224–3242.
    38. Collins, W. D., et al., Description of the NCAR Community Atmosphere Model (CAM3). Technical report NCAR/TN-464+STR, National Center for Atmospheric Research, Boulder, Colorado, 2004, 226pp
    39. Collins, W. D. et al., The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Clim., 2006, 19, 2144–2161.
    40. Collins, W. D., J. K. Hackney, and D. P. Edwards, A new parameterization for infrared emission and absorption by water vapor in the National Center for Atmospheric Research Community Atmosphere Model. J. Geophys. Res., 2002, 107(D22), 4664, doi:10.1029/2001JD001365.
    41. Cui, Z. Q., K. S. Carslaw, Y. Yin, and S. Davies, A numerical study of aerosol effects on the dynamics and microphysics of a deep convective cloud in a continental environment. J.Geophys. Res., 2006, 111, D05201, doi:10.1029/2005JD005981.
    42. D’Almeida, G. A., P. Koepke, and E. P. Shettle, Atmospheric Aerosols: global climatology and radiative characteristics, A. Deepak Publishing, Virginia, U.S.A., 1991, pp561.
    43. Davidson, C. I., S. Lin, and J. F. Osborn, Indoor and outdoor air pollution in the Himalayas. Environ. Sci. Technol., 1986, 20, 561–567.
    44. DeMore, W. B., S. P. Sander, D. M. Golden, R. F. Hampson, C. J. Howard, A. R. Ravishankara, C. E. Kolb, and M. H. Molina, Chemical kinetics and photochemical data for use in stratospheric modeling. JPL Publ., 1992, 92-20.
    45. Dentener, F., S. Kinne, T. Bond, O. Boucher, J. Cofala, S. Generoso, P. Ginoux, S. Gong, J. Hoelzemann, A. Ito, L. Marelli, J. Penner, J.-P. Putaud, C. Textor, M. Schulz, G.v.d. Werf, and J. Wilson, Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos. Chem. Phys., 2006, 6, 4321–4344.
    46. Duan, J. C., J. H. Tan, D. X. Cheng, X. H. Bi, E. J. Deng, G. Y. Sheng, J. M. Fu, M. H. Wong, Sources and characteristics of carbonaceous aerosol in two largest cities in Pearl River Delta Region, China. Atmos. Environ., 2007, 38, 2895–2903.
    47. Duce, R. A., Sources, distributions and fluxes of mineral aerosols and their relationship to climate. In "Aerosol Forcing of Climate." (R. J. Charlson, and J. Heintzenberg, Eds.), John Wiley & Sons Ltd, 1995, 43–72.
    48. Eagan, R., P. V. Hobbs, and L. Radke, Measurements of CCN and cloud droplet size distributions in the vicinity of forest fires. J. Appl. Meteorol., 1974, 13, 537–553.
    49. Fecan, F., B. Marticorena, and G. Bergametti, Parameterization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Ann. Geophys., 1999, 17, 149–157.
    50. Feingold, G., W. L. Eberhard, D. E. Veron, and M. Previdi, First measurements of the Twomey indirect effect using ground-based remote sensors. Geophys. Res. Lett., 2003, 30, doi:10.1029/2002GL016633.
    51. Ferek, R. J., D. A. Hegg, P. V. Hobbs, P. Durkee, and K. Nielsen, Measurements of ship-induced tracks in clouds off the Washington coast. J. Geophys. Res., 1998, 103, 23199–23206.
    52. Fischer-Burns, I., D. F. Banse, and J. Feichter, Future impact of anthropogenic sulfate aerosol on North Atlantic climate. Clim. Dyn., 2008, 32(4), 511–524.
    53. Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch, Present-day climate forcing and response from lack carbon in snow. J. Geophys. Res., 2007, 112, D11202, doi:10.1029/2006JD008003.
    54. Flanner, M. G., C. S. Zender, P. G. Hess, N. M. Mahowald, T. H. Painter, V. Ramanathan, and P. J. Rasch, Springtime warming and reduced snow cover from carbonaceous particles.Atmos. Chem. Phys., 2009, 9, 2481–2497.
    55. Fuchs, N. A., and A. G. Sutugin, Highly dispersed aerosols, in Topics in Current Aerosol Research, edited by G. M. Hidy and J. R. Brock, Pergamon, New York, 1971, 60pp.
    56. Garrett, T. J. and C. Zhao, Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 2006, 440, 787–789.
    57. Ghan, S. J., C. C. Chuang, R. C. Easter, and J. E. Penner, A parameterization of cloud droplet nucleation, part II, Multiple aerosol types. Atmos. Res., 1995, 36, 39–54.
    58. Ghan, S. J., R. C. Easter, E. G. Chapman, H. Abdul-Razzak, Y. Zhang, L. R. Leung, N. S. Laulainen, R. D. Saylor, and R. A. Zaveri, A physically based estimate of radiative forcing by anthropogenic sulfate aerosol. J. Geophys. Res., 2001, 106, 5279–5293.
    59. Giorgi, F., and W. L. Chameides, Rainout lifetimes of highly soluble aerosols and gases as inferred from simulations with a general circulation model. J. Geophys. Res., 1986, 91, 14367–14376.
    60. Gong, S. L., and Coauthors, Canadian Aerosol Module: A size-segregated simulation of atmospheric aerosol processes for climate and air quality models 1. Module development. J. Geophys. Res., 2003, 108, 4007, doi:10.1029/2001JD002002.
    61. Gong, S. L., L. A. Barrie, and J.-P. Blanchet, Modeling sea-salt aerosols in the atmosphere,
    1, Model development. J. Geophys. Res., 1997, 102, 3805–3818.
    62. Gong, S. L., L. A. Barrie, and M. Lazare, Canadian Aerosol Module (CAM), A size-segregated simulation of atmospheric aerosol processes for climate and air quality models 2. Global sea-salt aerosol and its budgets. J. Geophys. Res., 2002, 107(D24), 4779, doi:10.1029/2001JD002004.
    63. Grenfell, T. C., B. Light, and M. Sturm, Spatial distribution and radiative effects of soot in the snow and sea ice during the SHEBA experiment. J. Geophys. Res., 2002, 107(10), 8032, doi:10.1029/2000JC000414.
    64. Grini, A., G. Myhre, J. K. Sundet, and I. S. A. Isaksen, Modeling the annual cycle of sea salt in the global 3D model Oslo CTM2: Concentrations, fluxes, and radiative impact. J. Climate, 2002, 15, 1717-1730.
    65. Hack, J. J., Parameterization of moist convection in the NCAR Community Climate Model, CCM2. J. Geophys. Res., 1994, 99(D3), 5551–5568.
    66. Hack, J. J., B. A. Boville, B. P. Briegleb, J. T. Kiehl, P. J. Rasch, and D. L. Williamson, Description of the NCAR Community Climate Model (CCM2). Technical Report NCAR/TN-382+STR, National Center for Atmospheric Research, 1993, 120pp.
    67. Han, Q., W. Rossow, and A. Lacis, Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Climate, 1994, 7(4), 465–497.
    68. Han, Q., W. Rossow, J. Chou, and R. M. Welch, Global variations of column dropletconcentration in low-level clouds. Geophys. Res. Lett., 1998, 25, 1419–1422.
    69. Hansen, A. D. A., V. N. Kapustin, and A. D. Polissar, Measurements of airborne carbonaceous aerosols in the eastern Arctic. Izv. Acad. Sci. USSR, Atmos. Ocean. Phys. Engl. Transl., 1991, 27, 429–433.
    70. Hansen, J., and Coauthors, Climate simulations for 1880-2003 with GISS modelE. Clim. Dyn., 2007, 29, 661-696, doi:10.1007/s00382-007-0255-8.
    71. Hansen, J. and L. Nazarenko, Soot climate forcing via snow and ice albedos. Proc. Natl. Acad. Sci., 2004, 101(2), 423–428.
    72. Hansen, J., et al., Efficacy of climate forcings. J. Geophys. Res., 2005, 110, D18104, doi:10.1029/2005JD005776.
    73. Hansen, J., M. Sato, and R. Ruedy, Radiative forcing and climate response. J. Geophys. Res., 1997, 102(D6), 6831–6864.
    74. Harrison, E. F., P. Minnis, B. R. Barkstrom, V. Ramanathan, R. D. Cess, G. G. Gibson, Seasonal variation of cloud radiative forcing derived from the earth radiation budget experiment. J. Geophys. Res., 1990, 95, 18687–18703.
    75. Hauglustaine, D. A., G. P. Brasseur, S. Walters, P. J. Rasch, J.-F. Muller, L. K. Emmons, and M. A. Carroll, MOZART, a global chemical transport model for ozone and related chemical tracers, 2, Model results and evaluation. J. Geophys. Res., 1998, 103, 28291–28335.
    76. Haywood, J. M., and O. Boucher, Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys., 2000, 38, 513–543.
    77. Haywood, J. M., and V. Ramaswamy, Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols. J. Geophys. Res., 1998, 103, 6043–6058.
    78. Heintzenberg, J., and C. Leck, Seasonal variation of the atmospheric aerosol near the top of the marine boundary layer over Spitzenberg related to the Arctic sulfur cycle. Tellus, 1994,
    46B, 52–67.
    79. Hendricks, J., et al., Simulating the global atmospheric black carbon cycle: A revisit to the contribution of aircraft emissions. Atmos. Chem. Phys., 2004, 4, 2521–2541.
    80. Highwood, E. J., R. P. Kinnersley, When smoke gets in our eyes: The multiple impacts of atmospheric black carbon on climate, air quality and health. Environ. Intl., 2006, 32,
    560–566.
    81. Hoffman, E. J., and R. A. Duce, The organic carbon content of marine aerosols collected on Bermuda. J. Geophys. Res., 1974, 79, 4474–4477.
    82. Hoffman, E. J., and R. A. Duce, Organic carbon in marine atmospheric particulate matter: Concentration and particle size distribution. Geophys. Res. Lett., 1977, 4, 449– 452.
    83. Houghton, J. T., L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, and K.Maskell, Eds., Climate Change 1995: The Science of Climate Change. Cambridge University Press, 1996, 572pp.
    84. IPCC, Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (the TAR). Cambridge, United Kingdom and New York, N Y, USA: Cambridge University Press. 2001, 881pp.
    85. IPCC, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller). Cambridge University Press, Cambridge, 2007, 131–217.
    86. Ito, A., and J. E. Penner, Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870–2000. Global Biogeochem. Cycles, 2005, 19(GB2028), doi: 10. 1029/2004GB002374.
    87. Jacobson, M. Z., Development and application of a new air pollution modeling system, part II, Aerosol module structure and design. Atmos. Environ., 1997, 31, 131–144.
    88. Jacobson, M. Z., Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. J. Geophys. Res., 2001, 106, 1551–1568.
    89. Jacobson, M. Z., Climate response of fossil fuel and biofuel soot, accounting for soot’s feedback to snow and sea ice albedo and emissivity. J. Geophys. Res., 2004, 109, D21201, doi:10.1029/2004JD004945.
    90. Jacobson, M. Z., R. P. Turco, E. J. Jensen, and O. B. Toon, Modeling coagulation among particles of different composition and size. Atmos. Environ., 1994, 28(7), 1327–1338.
    91. Jaenicke, R., Long-term variations of aerosol. Promet: Meteorologische Fortbildung, Offenbach a./M., 1986, 16, 13–18.
    92. Japar, S. M., W. W. Brachaczek, R. A. B. Jr., J. M. Norbeck, and W. R. Pierson, The contribution of elemental carbon to the optical properties of rural atmospheric aerosols. Atmos. Environ., 1986, 20, 1281–1289.
    93. Jiang, H., G. Feingold, and W. R. Cotton, Simulations of aerosolcloud-dynamical feedbacks resulting from of entrainment of aerosols into the marine boundary layer during the Atlantic Stratocumulus Transition Experiment. J. Geophys. Res., 2002, 107(D24), 4813, doi:10.1029/2001JD001502.
    94. Ji, Z. M., et al., Simulation of the anthropogenic aerosols over South Asia and their effects on Indian summer monsoon. Clim. Dyn., 2011, doi:10.1007/s00382-010-0982-0.
    95. Jones, A., D. L. Roberts, and J. Slingo, A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols. Nature, 1994, 370, 450–453.
    96. Jones, A., D. L. Roberts, and M. J. Woodage, Indirect sulphate aerosol forcing in a climatemodel with an interactive sulphur cycle. J. Geophys. Res., 2001, 106(17), 20293-20310.
    97. Junge, C. E., The possible influence of aerosols on the general circulation and climate and possible approaches for modelling. In: The Physical Basis of Climate and Climate Modelling: Report of the International Study Conference in Stockholm, 29 July-10 August 1974: organised by WMO and ICSU and supported by UNEP Global Atmospheric Research Programme (GARP), WMO-ICSU Joint Organising Committee. World Meteorological Organization, Geneva, 1975, 244–251.
    98. Kallberg, P., A. Simmons, S. Uppala, M. Fuentes, The ERA-40 archive. Technical report ERA-40 project rep. 17, European Centre for Medium-Range Weather Forecasts, Reading, UK, 2004, 35pp.
    99. Kaneyasu, N., and S. Murayama, High concentrations of black carbon over middle latitudes in the North Pacific Ocean. J. Geophys. Res., 2000, 105, 19881–19890.
    100. Karcher, B., and J. Strom, The roles of dynamical variability and aerosols in cirrus cloud formation. Atmos. Chem. Phys., 2003, 3, 823–838.
    101. Karcher, B., J. Hendricks, and U. Lohmann, Physically-based parameterization of cirrus cloud formation for use in global atmospheric models. J. Geophys. Res., 2006, 111, doi:10.1029/2005JD006219.
    102. Kaufman, Y. J., et al., The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proc. Natl. Acad. Sci. U.S.A., 2005a, 102(32), 11207–11212.
    103. Kaufman, Y. J., et al., Aerosol anthropogenic component estimated from satellite data. Geophys. Res. Lett., 2005b, 32, L17804, doi:10.1029/2005GL023125.
    104. Kawamoto, K., T. Nakajima, and T. Y. Nakajima, A global determination of cloud microphysics with AVHRR remote sensing. J. Climate, 2001, 14, 2054–2068.
    105. Kettle, A. J., and M. O. Andreae, Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models. J. Geophys. Res., 2000, 105, 26793–26808.
    106. Khairoutdinov, M., and Y. Kogan, A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 2000, 128, 229–243.
    107. Kiehl, J., and B. Briegleb, The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science, 1993, 260, 311–314.
    108. Kiehl, J. T., J. J. Hack, G. B. Bonan, B. B. Boville, D. L. Williamson, and P. J. Rasch, The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 1998, 11, 1131-1149.
    109. Kiehl, J. T., K. E. Trenberth, Earth’s annual global mean energy budget. Bull. Am. Meteorol. Soc., 1997, 78, 197–208.
    110. Kim, Y. P., K. C. Moon, and J. H. Lee, Organic and elemental carbon in fine particles atKosan, Korea. Atmos. Environ., 2000, 34, 3309–3317.
    111. King, M. D., et al., Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remote. Sens., 2003, 41, 442–458.
    112. Kinne, S., and Coauthors, An AeroCom initial assessment optical properties in aerosol component modules of global models. Atmos. Chem. Phys., 2006, 6, 1815–1834.
    113. Kistler, Robert, and Coauthors, The NCEP–NCAR 50–Year Reanalysis: Monthly Means CD–ROM and Documentation. Bull. Amer. Meteor. Soc., 2001, 82, 247–267.
    114. Klein, G. K., Estimating global land use change over the past 300 years: The HYDE database. Global Biogeochem. Cycles, 2001, 15: 417–433.
    115. Koch, D., Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM. J. Geophys. Res., 2001, 106(D17), 20311–20332.
    116. Koch, D., S. Menon, A. D. Genio, Distinguishing Aerosol Impacts on Climate over the Past Century. J. Climate, 2009, 22, 2659–2677.
    117. Koch, D., T. C. Bond, D. Streets, et al., Global impacts of aerosols from particular source regions and sectors. J. Geophys. Res., 2007, 112, doi:10.1029/2005JD007024.
    118. Kristjansson, J. E., Studies of the aerosol indirect effect from sulfate and black carbon aerosols. J. Geophys. Res., 2002, 107(D15), 4246, doi:10.1029/2001JD000887.
    119. Kristjansson, J. E., T. Iversen, A. Kirkevag, ?. Seland, and J. Debernard, Response of the climate system to aerosol direct and indirect forcing: Role of cloud feedbacks. J. Geophys. Res., 2005, 110, D24206, doi:10.1029/2005JD006299.
    120. Kruger, O., and H. Grassl, Albedo reduction by absorbing aerosols over China. Geophys. Res. Lett., 2004, 31, doi:10.1029/2003GL019111.
    121. Kulmala, M., A. Laaksonen, and L. Pirjola, Parameterizations for sulfuric acid/water nucleation rates. J. Geophys. Res., 1998, 103, 8301–8307.
    122. Lau, K. M. and H. T. Wu, Warm rain processes over tropical oceans and climate implications. Geophys. Res. Lett., 2003, 30, doi:10.1029/2003GL018567.
    123. Lau, K. M., K. M. Kim, Observational relationships between aerosol and Asian monsoon rainfall and circulation. Geophys. Res. Lett., 2006, 33, L21810, doi:10.1029/2006GL027546.
    124. Lau, K. M., M. K. Kim, K. M. Kim, Asian summer monsoon anomalies induced by aerosol direct forcing-the role of the Tibetan Plateau. Clim. Dyn., 2006, 26(7-8): 855–864.
    125. Liao, H., and J. H. Seinfeld, Global impacts of gas-phase chemistryaerosol interactions on direct radiative forcing by anthropogenic aerosols and ozone. J. Geophys. Res., 2005, 110(D18208), doi: 10.1029/2005JD005907.
    126. Liao, H., J. H. Seinfeld, P. J. Adams, et al., Global radiative forcing of coupled troposphericozone and aerosols in a unified general circulation model. J. Geophys. Res., 2004, 109, D16207, doi:10.1029/2003JD004456.
    127. Light, B., H. Eicken, G. A. Maykut, and T. C. Grenfell, The effect of included particulates on the spectral albedo of sea ice. J. Geophys. Res., 1998, 103, 27739–27752.
    128. Liou, K. N., Introduction to Atmospheric Radiation version 2. 2004, 614pp.
    129. Liu, X., and J. E. Penner, Ice nucleation parameterization for a global model. Meteorol. Z., 2005, 14(4), 499–514.
    130. Liu, Y., J. Sun, and B. Yang, The effects of black carbon and sulfate aerosols in China regions on East Asia monsoons. Tellus(B), 2009, 61, 642–656.
    131. Liu, Y., P. H. Daum, and R. McGraw, An analytical expression for predicting the critical radius in the autoconversion parameterization. Geophys. Res. Lett., 2004, 31, doi:10.1029/2003GL019 117.
    132. Li, Z., K.-H. Lee, Y. Wang, J. Xin, and W. M. Hao, First Observation-based Estimates of Cloud-free Aerosol Radiative Forcing across China. J. Geophys. Res., 2010, 115, D00K18, doi:10.1029/2009JD013306.
    133. Li, Z., X. Zhao, R. Kahn, M. Mishchenko, L. Remer, K.-H. Lee, M.Wang, I. Laszlo, T. Nakajima, and H. Maring, Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective. Ann. Geophys., 2009, 27,–16.
    134. Lohmann, U., and E. Roeckner, Design and performance of a new cloud micro-physics scheme developed for the ECHAM general circulation model. Clim. Dyn., 1996, 12, 557–572.
    135. Lohmann, U. and G. Lesins, Comparing continental and oceanic cloud susceptibilities to aerosols. Geophys. Res. Lett., 2003, 30, doi:10.1029/2003GL017 828.
    136. Lohmann, U., and J. Feichter, Impact of sulfate aerosols on albedo and lifetime of clouds: A sensitivity study with the ECHAM4 GCM. J. Geophys. Res., 1997, 102, 13685–13700.
    137. Lohmann, U., and J. Feichter, Global indirect aerosol effects: A review. Atmos. Chem. Phys., 2005, 5, 715–737.
    138. Lohmann, U., J. Feichter, C. Chuang, and J. E. Penner, Prediction of the number of cloud droplets in the ECHAM GCM. J. Geophys. Res., 1999, 104(D8), 9169–9198.
    139. Lohmann, U., J. Feichter, J. E. Penner, and W. R. Leaitch, Indirect effect of sulfate and carbonaceous aerosols: a mechanistic treatment. J. Geophys. Res., 2000, 105(D10), 12193–12206.
    140. Lohmann, U., K. Broekhuizen, R. Leaitch, et al., How efficient is cloud droplet formation of organic aerosols?. Geophys. Res. Lett., 2004, 31, doi:10.1029/2003GL018 999.
    141. Luo, Z., W. B. Rossow, T. Inoue, and C. J. Stubenrauch, Did the eruption of the Mt.Pinatubo volcano affect cirrus properties? J. Climate, 2002, 15, 2806–2820.
    142. Mahowald, N. M., and C. Luo, A less dusty future? Geophys. Res. Lett., 2003, 30(17), doi:10.1029/2003GL017880.
    143. Marticorena, B., and G. Bergametti, Modeling the atmospheric dust cycle. 1: Design of a soil-derived dust emission scheme. J. Geophys. Res., 1995, 100, 16415–16430.
    144. Martin, G. M., D. W. Johnson, and A. Spice, The measurement and parameterization of effective radius of droplets in worm stratocumulus clouds. J. Atmos. Sci., 1994, 51, 1823–1842.
    145. Meng, Z., D. Dabdub, and J. H. Seinfeld, Size-resolved and chemically resolved model of atmospheric aerosol dynamics. J. Geophys. Res., 1998, 103, 3419–3435.
    146. Menon, S., A. D. Del Genio, D. Koch, and G. Tselioudis, GCM simulations of the aerosol indirect effect: sensitivity to cloud parametrization and aerosol burden. J. Atmos. Sci., 2002a, 59, 692–713.
    147. Menon, S., and Coauthors, Evaluating aerosol/cloud/radiation process parametrizations with single-column models and Second Aerosol Characterization Experiment (ACE-2) cloudy column observations. J. Geophys. Res., 2003, 108(D24), 4762, doi:10.1029/2003JD003902.
    148. Menon, S., D. Koch, G. Beig, Black carbon aerosols and the third polar ice cap. Atmos. Chem. Phys. Discuss., 2009, 9, 26593–26625.
    149. Menon, S., J. Hansen, L. Nazarenko, and Y. F. Luo, Climate effects of Black Carbon Aerosols in China and India. Science, 2002b, 297, 2250–2253.
    150. Mikami, M., G. Y. Shi, I. Uno, S. Yabuki, Y. Iwasaka, M. Yasui, T. Aoki, T. Y. Tanaka, Y. Kurosaki, K. Masuda, A. Uchiyama, A. Matsuki, T. Sakai, T. Takemi, M. Nakawo, N. Seino, M. Ishizuka, S. Satake, K. Fujita, Y. Hara, K. Kai, S. Kanayama, M. Hayashi, M. Du, Y. Kanai, Y. Yamada, X. Y. Zhang, Z. Shen, H. Zhou, O. Abe, T. Nagai, Y. Tsutsumi, M. Chiba, J. Suzuki, Aeolian dust experiment on climate impact, An overview of Japan–China joint project ADEC. Global and Planetary Change, 2006, 52, 142-172.
    151. Miller, R. L., Ja. Perlwitz, and I. Tegen, Feedback upon dust emission by dust radiative forcing through the planetary boundary layer. J. Geophys. Res., 2004, 109, D24209, doi:10.1029/2004JD004912.
    152. Ming, J., C. Xiao, H. Cachier, D. Qin, X. Qin, Z. Li, and J. Pu, Black Carbon (BC) in the snow of glaciers in west China and its potential effects on albedos. Atmospheric Research, 2009, 92, 114–123.
    153. Ming, J., H. Cachier, C. Xiao, D. Qin, S. Kang, S. Hou, and J. Xu, Black carbon record based on a shallow Himalayan ice core and its climatic implications. Atmos. Chem. Phys., 2008, 8, 1343–1352.
    154. Ming, Y., and V. Ramaswamy, Nonlinear Climate and Hydrological Responses to Aerosol Effects. J. Climate, 2009, 22, 1329–1339.
    155. Ming, Y., V. Ramaswamy, P. A. Ginoux, L. W. Horowitz, and L. M. Russell, Geophysical Fluid Dynamics Laboratory general circulation model investigation of the indirect radiative effects of anthropogenic sulfate aerosol. J. Geophys. Res., 2005, 110, D22206, doi:10.1029/2005JD006161.
    156. Minnis, P., J. K. Ayers, R. Palikonda, and D. Phan, Contrails, Cirrus Trends, and Climate. J. Climate, 2004, 17, 1671–1685.
    157. Mircea, M., et al., Importance of the organic aerosol fraction for modeling aerosol hygroscopic growth and activation: a case study in the Amazon Basin. Atmos. Chem. Phys., 2005, 5, 3111–3126.
    158. Molnar, A., E. Meszaros, H. C. Hansson, H. Karlsson, A. Gelencser, G. Y. Kiss, and Z. Krivacsy, The importance of organic and elemental carbon in the fine atmospheric aerosol particles. Atmos. Environ., 1999, 33, 2745–2750.
    159. Myhre, G., Consistency between satellite-derived and modeled estimates of the direct aerosol effect. Science, 2009, 325, 187–190.
    160. Nakajima, T., A. Higurashi, K. Kawamoto, and J. Penner, A possible correlation between satellite-derived cloud and aerosol microphysical parameters. Geophys. Res. Lett., 2001, 28, 1171–1174.
    161. Nakajima, T., S.-C. Yoon, V. Ramanathan, et al., Overview of the Atmospheric Brown Cloud East Asian Regional Experiment 2005 and a study of the aerosol direct radiative forcing in east Asia. J. Geophys. Res., 2007, 112, D24S91, doi:10.1029/2007JD009009.
    162. Nenes, A., and J. H. Seinfeld, Parametrization of cloud droplet formation in global climate models. J. Geophys. Res., 2003, 108, doi:10.1029/2002JD002911.
    163. Nightingale, P., G. Malin, C. Law, A. Watson, P. Liss, M. Liddicoat, J. Boutin, and R. Upstill-Goddard, In situ evaluation of airsea gas exchange parameterizations using novel conservative and volatile tracers. Glob. Biogeochem. Cycles, 2000, 14, 373–387.
    164. Noone, K. J., and A. D. Clarke, Soot scavenging measurements in Arctic snowfall. Atmos. Environ., 1988, 22, 2773–2778.
    165. Novakov, T., T. S. Bates, and P. K. Quinn, Shipboard measurements of concentrations and properties of carbonaceous aerosols during ACE-2. Tellus, 2000, 52B, 228–238.
    166. Nunes, T. V., and C. A. Pio, Carbonaceous aerosols in industrial and coastal atmospheres. Atmos. Environ., 1993, 27A, 1339–1346.
    167. O’Dowd, C. D., M. H. Smith, and S. G. Jennings, Submicron particle, radon, and soot carbon characteristics over the northeast Atlantic. J. Geophys. Res., 1993, 98, 1123–1135.
    168. Ohara, T., H. Akimoto, J. Kurokawa, N. Horii, K. Yamaji, X. Yan, and T. Hayasaka, AnAsian emission inventory of anthropogenic emission sources for the period 1980-2020. Atmos. Chem. Phys., 2007, 7, 4419–4444.
    169. Ohta, S., and T. Okita, Measurements of particulate carbon in urban and marine air in Japanese areas. Atmos. Environ., 1984, 18, 2439–2445.
    170. Oleson, K. W., and Coauthors, Technical description of the community land model (CLM). Technical report NCAR/TN-461+STR, National Center for Atmospheric Research, Boulder, Colorado, 2004, 174pp.
    171. Olivier, J., J. Berdowski, J. Peters, J. Bakker, A. Visschedijk, and J. Bloos, Applications of EDGAR including a description of EDGAR V3.0: reference database with trend data for 1970-1995, NRP Report, 410200 051, RIVM, Bilthoven, The Netherlands, 2002.
    172. Padro, J., H. H. Neumann, and G. D. Hartog, An investigation of the ADOM dry deposition module using summertime O3 measurements above a deciduous forest. Atmos. Environ., Part A, 1991, 25, 1689–1704.
    173. Paeth, H., and J. Feichter, Greenhouse-gas versus aerosol forcing and African climate response. Clim. Dyn., 2006, 26(1), 35–54.
    174. Parka, S. U., and J. L. Jeong, Direct radiative forcing due to aerosols in Asia during March 2002. The Science of the Total Envionment, 2008, 407(1), 394–404.
    175. Parungo, F., C. Nagamoto, M. Zhou, A. Hansen, and J. Harris, Aeolian transport of aerosol black carbon from China to the ocean. Atmos. Environ., 1994, 28, 3251–3260.
    176. Penner, J. E., D. H. Lister, D. J. Griggs, Dokken, et al., Aviation and the Global Atmosphere. Cambridge Univ. Press, New York, 1999, 373pp.
    177. Penner, J. E., X. Dong, and Y. Chen, Observational evidence of a change in radiative forcing due to the indirect aerosol effect. Nature, 2004, 427, 231–234.
    178. Pham, M., J.-F. Muller, G. P. Brasseur, C. Granier, and G. Megie, A threedimensional study of the tropospheric sulfur cycle. J. Geophys. Res., 1995, 100, 26061–26092.
    179. Phillips, V. T. J., T. W. Choularton, A. M. Blyth, and J. Latham, The infl uence of aerosol concentrations on the glaciation and precipitation of a cumulus cloud. Q. J. R. Meteorol. Soc., 2002, 128(581), 951–971.
    180. Pincus, R., and M. B. Baker, Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer. Nature, 1994, 372, 250–252.
    181. Pinnick, R. G., G. Fernandez, E. Martinezandazola, B. D. Hinds, A. Hansen, and K. Fuller, Black carbon content and vertical structure to 7 km above sea-level. J. Geophys. Res., 1993, 98, 2651–2666.
    182. Pio, C. A., L. M. Castro, M. A. Cequeira, I. M. Santos, F. Belchior, and M. L. Salqueiro, Source assessment of particulate air pollutants measured at the southern European coast. Atmos. Environ., 1996, 30, 3309–3320.
    183. Pitari, G., E. Mancini, V. Rizi, and D. T. Shindell, Impact of future climate and emissions changes on stratospheric aerosols and ozone. J. Atmos. Sci., 2002, 59, 414–440.
    184. Polissar, A. V., Surface-level carbon-containing aerosol concentration in the North Atlantic. Izv. Acad. Sci. USSR, Atmos. Ocean. Phys. Engl. Transl., 1992, 28, 520–525.
    185. Pruppacher, H. R., and J. D. Klett, Microphysics of Clouds and Precipitation. Kluwer Acad., Norwell, Mass., 1997, 714pp.
    186. Putaud, J. P., F. Raes, V. R. Dingenen, et al., European aerosol phenomenology-2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos. Environ., 2004, 38(16), 2579–2595.
    187. Puxbaum, H., J. Rendl, R. Allabashi, L. Otter, and M. C. Scholes, Mass balance of the atmospheric aerosol in a South African subtropical savanna (Nylsvley, May 1997). J. Geophys. Res., 2000, 105, 20697–20706.
    188. Ramanathan, V., and G. Carmichael, Global and regional climate changes due to black carbon. Nature, 2008, 1, 221–227.
    189. Ramanathan, V., and P. Downey, A nonisothermal emissivity and absorptivity formulation for water vapor. J. Geophys. Res., 1986, 91, 8649–8666.
    190. Ramanathan, V., C. Chung, D. Kim, et al., Atmospheric brown clouds-Impacts on South Asian climate and hydrological cycle. Proc. Natl. Acad. Sci. U.S.A., 2005, 102(15), 5326–5333.
    191. Ramanathan, V., M. V. Ramana, G. Roberts, et al., Warming trends in Asia amplified by brown cloud solar absorption. Nature, 2007, 448, 575–578.
    192. Ramaswamy, V., and Coauthers, Radiative forcing of climate change. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Houghton et al., Eds.), Cambridge University Press, 2001, 349–416.
    193. Randles, C. A., and V. Ramaswamy, Absorbing aerosols over Asia: A Geophysical Fluid Dynamics Laboratory general circulation model sensitivity study of model response to aerosol optical depth and aerosol absorption. J. Geophys. Res., 2008, 113, doi:10.1029/2008JD010140.
    194. Rasch, P. J., and J. E. Kristjansson, A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J. Climate, 1998, 11, 1587–1614.
    195. Raunemaa, T., U. Kikas, and T. Bernotas, Observation of submicron aerosol, black carbon and visibility degradation in remote area at temperature- range from -24 to 20-degrees-C. Atmos. Environ., 1994, 28, 865–871.
    196. Rasch, P. J., N. W. Mahowald, and B. E. Eaton, Representations of transport, convection, and the hydrologic cycle in chemical transport models: Implications for the modeling ofshort lived and soluble species. J. Geophys. Res., 1997, 102, 28127–28138.
    197. Reddy, M. S., O. Boucher, Y. Balanski, et al., Aerosol optical depths and direct radiative perturbations by species and source type. Geophys. Res. Lett., 2005, 32, L12803, doi:10.1029/2004GL021743.
    198. Reid, J. S., T. F. Eck, S. A. Christopher, P. V. Hobbs, and B. Holben, Use of the Angstrom exponent to estimate the variability of optical and physical properties of aging smoke particles in Brazil. J. Geophys. Res., 1999, 104(D22), 27473–27490.
    199. Rosenfeld, D., and W. L. Woodley, Deep convective clouds with sustained supercooled liquid water down to–37.5°C. Nature, 2000, 405, 440–442.
    200. Rossow, W. B., and R. A. Schiffer, Advances in understanding clouds from ISCCP. Bull. Am. Meteorol. Soc., 1999, 80, 2261–2287.
    201. Rossow, W. B., and Y.-C. Zhang, Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets. Part II: validation and first results. J. Geophys. Res., 1995, 100, 1167–1197.
    202. Rotstayn, L. D., Indirect forcing by anthropogenic aerosols: A global climate model calculation of the effective-radius and cloud-lifetime effects. J. Geophys. Res., 1999, l04, 9369–9380.
    203. Rotstayn, L. D., and Ulrike Lohmann, Tropical Rainfall Trends and the Indirect Aerosol Effect. J. Climate, 2002, 15, 2103–2116.
    204. Ruellan, S., H. Cachier, A. Gaudichet, P. Masclet, and J.-P. Lacaux, Airborne aerosols over central Africa during the experiment for regional sources and sinks of oxidants (EXPRESSO). J. Geophys. Res., 1999, 104, 30673–30690.
    205. Rypdal, K., N. Rive, T. K. Berntsen, Z. Klimont, T. K. Mideksa, G. Myhre, and R. B. Skeie, Costs and global impacts of black carbon abatement strategies. Tellus, 2009, 61B, 625–641.
    206. Sato, M., J. Hansen, D. Koch, et al., Global atmospheric black carbon inferred from AERONET. Proc. Natl Acad. Sci., 2003, 100, 6319–6324.
    207. Schulz, M., and Coauthors, Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmos. Chem. Phys., 2006, 6, 5225–5246.
    208. Schumacher, C., and R. A. Houze, Stratiform precipitation production over sub-Saharan Africa and the tropical East Atlantic as observed by TRMM. Quant. J. Roy. Meteor. Soc., 2006, 132, 2235–2255.
    209. Schwartz, S. E., D. W. Harshvardhan, and C. M. Benkovitz, Influence of anthropogenic aerosol on cloud optical depth and albedo shown by satellite measurements and chemical transport modeling. Proc. Natl. Acad. Sci. U.S.A., 2002, 99, 1784–1789.
    210. Seinfeld, J. H., and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley, New York, 1998, 1326pp.
    211. Sekiguchi, M., et al., A study of the direct and indirect effects of aerosols using global satellite datasets of aerosol and cloud parameters. J. Geophys. Res., 2003, 108(D22), 4699, doi:10.1029/2002JD003359.
    212. Sherwood, S., A microphysical connection among biomass burning, cumulus clouds, and stratospheric moisture. Science, 2002, 295, 1272–1275.
    213. Shi, G. Y., H. Wang, B. Wang, S. Gong, T. Zhao, W. Li and T. Aoki, Sensitivity experiments on the effects of optical properties of dust aerosols on their radiative forcing under clear sky condition. J Meteorological Society of Japan, 2005, 83, 333–346.
    214. Slingo, A., A GCM parameterization for the shortwave radiative properties of clouds. J. Atmos. Sci., 1989, 46, 1419–1427.
    215. Slingo, J. M., The development and verification of a cloud prediction scheme for the ECMWF model. Q. J. R. Meteorol. Soc., 1987, 113, 899–927.
    216. Slinn, W. G. N., Precipitation scavenging, in Atmospheric Science and Power Production, edited by D. Randerson, Doc. DOE/TIC-27601, Tech. Inf. Cent., Off. of Sci. and Tech. Inf., U.S. Dep. Of Energy, Washington, D. C., 1984, 466–532.
    217. Smith, D. J. T., R. M. Harrison, L. Luhana, C. A. Pio, L. M. Castro, M. N. Tariq, S. Hayat, and T. Quraishi, Concentrations of particulate airborne polycyclic aromatic hydrocarbons and metals collected in Lahore, Pakistan. Atmos. Environ., 1996, 30, 4031–4040.
    218. Smith, S. D., Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 1989, 93, 15467–15472.
    219. Stouffer, R. J., and Coauthors, GFDL’s CM2 global coupled climate models. Part IV: Idealized climate response. J. Climate, 2006, 19, 723–740.
    220. Streets, D.G., et al., An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res., 2003, 108(D21), 8809, doi:10.1029/2002JD003093.
    221. Sundqvist, H., A parameterization scheme for non-convective condensation including prediction of cloud water content. Quart. J. Roy. Meteor. Soc., 1978, 104, 677–690.
    222. Takemura, T., and T. Nakajima, Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. J. Climate, 2002, 15(4), 333–352.
    223. Takemura, T., et al., Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. J. Geophys. Res., 2005, 110, D02202, doi:10.1029/2004JD005029.
    224. Textor, C., and Coauthors, Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys., 2006, 6, 1777–1813.
    225. Thompson, L. G., E. M. Thompson, M. E. Davis, P.-N. Lin, K. Henderson, and T. A. Mashiotta, Tropical glacier and ice core evidence of climate changes on annual to millenial time scales. Climatic Change, 2003, 59, 137–155.
    226. Twohy, C. H., et al., Evaluation of the aerosol indirect effect in marine stratocumulus clouds: droplet number, size, liquid water path, and radiative impact. J. Geophys.Res., 2005, 110, D08203, doi:10.1029/2004JD005116.
    227. Twomey, S. A., The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 1977, 34, 1149–1152.
    228. van der Werf, G. R., J. T. Randerson, G. J. Collatz, L. Giglio, P. S. Kasibhatla, A. F. Arellano, S. C. Olsen, and E. S. Kasischke, Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nino/La Nina period. Science, 2004, 303, 73–76.
    229. von Salzen, K., H. G. Leifhton, P. A. Ariya, L. A. Barrie, S. L. Gong, J.-P. Blanchet, L. Spacek, U. Lohmann, and L. I. Kleinman, Sensitivity of sulphate aerosol size distribution and CCN concentration over North America to SOx emissions and H2O2 concentrations. J. Geophys. Res., 2000, 105, 9741– 9766.
    230. Wang, C., A modeling study on the climate impacts of black carbon aerosols. J. Geophys. Res., 2004, 109, D03106, doi:10.1029/2003JD004084.
    231. Wang, H., G. Y. Shi, T. Aoki, et al., Radiative forcing due to dust aerosol over east Asia2Nort h Pacific region during spring 2001. Chinese Science Bulletin, 2004, 20, 2212–2219.
    232. Wang Tijian, Li Shu, Jiang Fei, Gao Lijie, Investigations of Main Factors Affecting Tropospheric Nitrate Aerosol using a Coupling Model. China Particuology, 2006, 4(6), 336–341.
    233. Wang, Z. L., H. Zhang, X. S. Shen, S. L. Gong, and X. Y. Zhang, Modeling study of aerosol indirect effects on global climate with an AGCM. Adv. Atmos. Sci., 2010, 27(5), 1064–1076.
    234. Warren, S., Optical Properties of Snow. Rev. Geophys., 1982, 20, 67–89.
    235. Warner, J., and S. A. Twomey, The production and cloud nuclei by cane fires and the effect on cloud droplet concentration. J. Atmos. Sci., 1967, 24, 704–706.
    236. Warren, S., and W. Wiscombe, A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. J. Atmos. Sci., 1980, 37, 2734–2745.
    237. Warren, S. G., C. J. Hahn, J. London, R. M. Chervin, R. L. Jenne, Global distribution of total cloud cover and cloud type amounts over the ocean. NCAR technical note NCAR/TN-317+STR, 1988, 107pp.
    238. Wilcox, E. M., G. Roberts, V. Ramanathan, Influence of aerosols on the shortwave cloud radiative forcing from North Pacific oceanic clouds: Results from the Cloud Indirect Forcing Experiment (CIFEX). Geophys. Res. Lett., 2006, 33, L21804, doi:10.1029/2006GL027150.
    239. Williams, K. D., A. Jones, D. L. Roberts, C. A. Senior, M. J. Woodage, The response of theclimate system to the indirect effects of anthropogenic sulfate aerosol. Clim. Dyn., 2001, 17, 845–856.
    240. Wiscombe, W. J., Improved Mie scattering algorithms. Appl. Opt., 1980, 19, 1505–1509.
    241. Wolff, E. W., and H. Cachier, Concentrations and seasonal cycle of black carbon in aerosol at a coastal Antarctic station. J. Geophys. Res., 1998, 103, 11033–11041.
    242. Wolff, G. T., M. S. Ruthkosky, D. P. Stroup, P. E. Korsog, M. A. Ferman, G. J. Wendel, and D. H. Stedman, Measurements of SOx, NOx, and aerosol species on Bermuda. Atmos. Environ., 1986, 20, 1229–1239.
    243. Wu, T., and Coauthors, The Beijing Climate Center atmospheric general circulation model: description and its performance for the present-day. Clim. Dyn., 2008, Doi10.1007/s00382-008-0487-2.
    244. Wu, T., and G. Wu, An empirical formula to compute snow cover fraction in GCMs. Adv. Atmos. Sci., 2004, 21, 529–535.
    245. Xiao, C., S. Liu, L. Zhao, Q. Wu, P. Li, C. Liu, Q. Zhang, Y. Ding, T. Yao, Z. Li, and J. Pu, Observed changes of cryosphere in China over the second half of the 20th century: an overview. Ann. Glaciol., 2007, 46, 382–390.
    246. Xia, X., Z. Li, B. Holben, P. Wang, T. Eck, H. Chen, M. Cribb, and Y. Zhao, Aerosol optical properties and radiative effects in the Yangtze Delta region of China. J. Geophys. Res., 2007, 112, D22S12, doi:10.1029/2007JD008859
    247. Xie, P., and P. A. Arkin, Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 1996, 9, 840–858.
    248. Xu, B., T. Yao, X. Liu, and N. Wang, Elemental and organic carbon measurements with a two-step heating-gas chromatography system in snow samples from the Tibetan Plateau. Annal. Glacio., 2006, 43, 257–262.
    249. Yaaqub, R. R., T. D. Davies, T. D. Jickells, and J. M. Miller, Trace-elements in daily collected aerosols at a site in southeast England. Atmos. Environ., 1991, 45A, 985–996.
    250. Yan, H., Design of a nested fine-mesh model over the complex topograph, Part two: parameterization of the subgrid physical processes. Plateau Meteorology, 1987, 6 (suppl), 64–139.
    251. Yin, Y., S. Wurzler, A. Levin, and T. G. Reisin, Interactions of mineral dust particles and clouds: Effects on precipitation and cloud optical properties. J. Geophys. Res., 2002, 107, doi:10.1029/2001JD001544.
    252. Zappoli, S., et al., Inorganic, organic, and macromolecular components of fine aerosols in different areas of Europe in relation to their water solubility. Atmos. Environ., 1999, 33, 2733–2743.
    253. Zhang, D. F., A. S. Zakey, X. J. Gao, et al., Simulation of dust aerosol and its regionalfeedbacks over East Asia using a regional climate model. Atmos. Chem. Phys., 2009, 9, 1095–1110.
    254. Zhang, G. J. and M. Mu, Effects of modifications to the Zhang-McFarlane convection parameterization on the simulation of the tropical precipitation in the National Center for Atmospheric Research Community Climate Model, version 3. J. Geophys. Res., 2005, 110, doi:10.1029/2004JD005617.
    255. Zhang, G. J., and N. A. McFarlane, Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmosphere-Ocean, 1995, 33, 407–446.
    256. Zhang, H., Z. L.Wang, P. W. Guo, et al., A modeling study of the effects of direct radiative forcing due to carbonaceous aerosol on the climate in East Asia. Adv. Atmos. Sci., 2009, 26(1), 57–66.
    257. Zhang, L., S.-L. Gong, J. Padro, and L. Barrie, A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmos. Environ., 2001, 35(3), 549–560.
    258. Zhang, M., W. Lin, C. S. Bretherton, J. J. Hack, and P. J. Rasch, A modified formulation of fractional stratiform condensation rate in the NCAR community atmospheric model CAM2. J. Geophys. Res., 2003, 108(D1), 4035, doi:10.1029/2002JD002523.
    259. Zhang, X., X. Wang, P. Yan, Re-evaluating the impacts of human activity and environmental change on desertification in the Minqin Oasis, China. Environ. Geol., 2008, 55, 705–715.
    260. Zhang, X. Y., and coauthors, Characterization and sources of regional-scale transported carbonaceous and dust aerosols from ifferent pathways in coastal and sandy land areas of China. J. Geophys. Res., 2005, 110(D15301), doi: 10.1029/2004JD005457.
    261. Zhang, X. Y., and Coauthors, Changes of atmospheric composition and optical properties over Beijing–2008 Olympic Monitoring Campaign. Bull. Amer. Meteor. Soc., 2009, 90, 1633–1651.
    262. Zhang, X. Y., R. Arimoto, and Z. S. An, Dust emission from Chinese desert sources linked to variations in atmospheric circulation. Journal of Geophysical Research, 1997, 102, 28041–28047.
    263. Zhang, X. Y., X. C. Zhang, Y. Q. Wang, Y. M. Zhang, Y. Li, and S. Gong, Aerosol Compositions over China. J. Geophys. Res., 2009, submitted.
    264. Zhang, Y. C., W. B. Rossow, A. A. Lacis, V. Oinas, M. I. Mishchenko, Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinements of the radiative transfer model and the input data. J. Geophys. Res., 2004, 109(D19105), doi:10.1029/2003JD004457.
    265.白乃彬,中国大陆CO2,SO2和NOx 1o×1o网格排放估计,《中国地区大气臭氧变化及其对气候环境的影响》(一).周秀骥主编,北京:气象出版社,1996,145–150.
    266.程新金,黄美元,安峻岭,王自发,徐华英,周玲,肖辉,大气污染物SOx输送方程的尺度分析.气象学报,2002,60(4),468–476.
    267.高丽洁,王体健,徐永福,闵锦忠,中国地区硫酸盐气溶胶及其辐射强迫的模拟.高原气象. 2004,23(5),610–619.
    268.韩永,王体健,饶瑞中,王英俭,大气气溶胶物理光学特性研究进展.物理学报,2008,57(11),7398–7407.
    269.韩永祥,陈永航,方小敏等,沙尘气溶胶对塔里木盆地降水的可能影响.中国环境科学,2008,28(2),102–106.
    270.黄梦宇,赵春生,周广强等,华北层状云微物理特性及气溶胶对云的影响.南京气象学院学报,2005,28(3),360–368.
    271.吉振明,高学杰,张冬峰,吴佳,徐影,亚洲地区气溶胶及其对中国区域气候影响的数值模拟.大气科学,2010,34(2),262–274.
    272.刘宇、王式功、尚可政、扬德保、祁斌,兰州市低空风时空变化特征及其与空气污染的关系.高原气象,2002,21(3),321–326.
    273.罗云峰,中国地区气溶胶光学厚度特征及其辐射强迫和气候效应的数值模拟.北京大学博士论文. 1998.
    274.毛节泰,广东、广西地区酸沉降统计模式的研究.环境科学学报,1992,12(1),28-36.
    275.秦世广,汤洁,温玉璞,黑碳气溶胶及其在气候变化研究中的意义.气象,2001,27(11),3–7.
    276.屈文军,张小曳,王亚强,王丹,李杨,曹国良,赵元茂,云南迪庆地区大气本底碳气溶胶的理化特征.中国环境科学,2006,26(3),266–270.
    277.盛立芳,高会旺,张英娟,庞华基,雷恒池,夏季渤海NOx,O3,SO2和CO浓度观测特征.环境科学,2002,23(6),31–35.
    278.孙家仁,刘煜,中国区域气溶胶对东亚夏季风的可能影响(I):硫酸盐气溶胶的影响.气候变化研究进展,2008,4(2),111–116.
    279.王宏,石广玉,王标,中国沙漠沙尘气溶胶对沙漠源区及北太平洋地区大气辐射加热的影响.大气科学,2007,31 (3),515–526.
    280.王喜红,东亚地区人为硫酸盐气溶胶气候效应的数值研究.中国科学院大气物理研究所博士学位论文. 2000.
    281.王喜红,石广玉,东亚地区人为硫酸盐的直接辐射强迫.高原气象,2001,20(3),258–263.
    282.王玉洁,黄建平,王天河,一次沙尘暴过程中沙尘气溶胶对云物理量和辐射强迫的影响.干旱气象,2006,24(3),14–18.
    283.王志立,郭品文,张华,黑碳气溶胶直接辐射强迫及其对中国夏季降水影响的模拟研究.气候与环境研究,2009,14(2),161–171.
    284.吴蓬萍,刘煜,硫酸盐气溶胶对全球水循环因子的影响.气候变化研究进展,2009,5,44–49.
    285.赵春生,彭大勇,段英,海盐气溶胶和硫酸盐气溶胶在云微物理过程中的作用.应用气象学报,2005,16(4),417–425.
    286.赵伟,刘红年,吴涧,中国春季沙尘气溶胶的辐射效应及对气候影响的研究.南京大学学报(自然科学),2008,44(6),598–607.
    287.张华,马井会,郑有飞,黑碳气溶胶辐射强迫全球分布的模拟研究.大气科学,2008,2(5),1147–1158.
    288.张小曳,中国大气气溶胶及其气候效应的研究.地球科学进展,2007,22(1),12–16.
    289.周秀骥,李维亮,罗云峰,中国地区大气气溶胶辐射强迫及区域气候效应的数值模拟.大气科学,1998,22(4),418–427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700