用户名: 密码: 验证码:
大气CO_2、CH_4和CO浓度资料再分析及源汇研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文主要对瓦里关多年大气CO_2、CH_4和CO浓度资料进行了再分析及源汇研究,所使用的CO_2、CH_4和CO浓度资料的时间段分别为1995~2008年,2002~2006年和2004年7月~2007年6月。根据历史标定比对实验结果的再分析及再标定实验,校正和更新了CO标准尺度;对多级质量控制方法对有效数据筛选的影响进行了探讨,研究建立了数据处理和质量控制方法,并将大气CO_2、CH_4和CO浓度时间序列分别更新至X2007、NOAA04和WMO2000的最新尺度。利用局部近似回归法对大气CO_2、CH_4和CO浓度进行本底值筛分,获得1995~2008年间CO_2浓度的本底数据、源抬升数据和吸收汇数据(受陆地生态系统植被的吸收的影响)分别占了72%±5%、17%±4%和11%±2%;从1995~2000年到2004~2008年,源抬升浓度百分比由14~15%上升至18%~19%,说明瓦里关大气CO_2浓度受到人类活动的影响正在逐年增强;吸收汇的数据量比例变化相对稳定(10~14%),反映了近几年瓦里关地区陆地生态系统对CO_2吸收汇的作用相对稳定。大气CH_4和CO浓度本底数据百分比分别占~58%和~43%,表明在观测期间受到较强的区域源和汇的影响。
     1997~2008年的5d后向轨迹(500hPa)分析表明,影响瓦里关的气流主要来自西部地区,但是夏季主要受到来自东部或东南部气流的影响,且因该类轨迹途径人口密集地区,>90%的为污染气团。典型个例分析显示,不同季节大气CO_2、CH_4和CO浓度高值与来自青海西北部(尤其是格尔木地区)和瓦里关东南或东部(西宁和兰州一带)的空气团轨迹关系密切;其浓度低值则对应于来自西藏西北部、青海和新疆南部地区的空气团。轨迹聚类统计分析结果也呈类似特征,2002~2007年大气CO和CH_4浓度高值受来自瓦里关东南或东部地区(西宁、兰州一带)气团的影响(夏季尤其明显),可看作污染扇区;而春、秋和冬季则以来自西北方向的气流为主导,约50%该来向的气团轨迹会抬升CO和CH_4浓度,因此并不单纯为污染或清洁气流;来自西藏和青海省南部的气团轨迹对CO_2、CH_4和CO浓度的抬升几乎无贡献,可看作清洁扇区。本研究中值得注意的是几乎所有来自格尔木地区的轨迹都会使大气CO_2、CH_4和CO浓度抬升,说明中国西部地区经济发展和能源结构改变对温室气体浓度时空分布的影响;另注意到夏季来自甘肃或宁夏黄河沿岸的农业区(如水稻种植区)气团会使CH_4浓度抬升明显,显示了CH_4的农业种植来源。冬季瓦里关大气CO_2、CH_4和CO的抬升浓度两两之间呈显著的正相关(r2>0.7, p<0.01),说明3者具有相同的来源(如化石燃料和生物质燃烧)。尝试利用CO比值相关法估算的2005年和2006年中国CO_2排放量分别为6214.7 Mt和6320.6Mt,与清单统计方法估计的结果接近。CH_4排放量分别为16.44 Mt (2005年)和20.11 Mt(2006年)。
     大气CO_2、CH_4和CO多年日变化其季节差异性方面,1995~2008年冬春季节大气CO_2浓度呈白天高(高值出现在11:00~15:00),早晨和夜间低的特征,主要是由于植物的光合作用减弱,白天周边居民活动及土壤呼吸释放CO_2等使白天浓度高于夜间;研究期间夏季和秋季由于白天陆地生态系统植物吸收CO_2的汇增强,且对流旺盛,扩散条件好使其浓度有所稀释,16:00~18:00出现一天之中的最小值。CO_2浓度的平均日振幅夏季最大(2.3ppm),春季和冬季最小(都为~0.7ppm),主要与陆地生态系统在不同生长周期与大气之间气体交换的差异有关。大气CH_4(2002 ~2006)和CO(2004年7月~2007年6月)浓度多年日变化规律与CO_2类似,但是夏季CH_4和CO浓度在下午较低的原因与CO_2有所不同,前2者主要由于它们与OH的光化学作用很强而导致其浓度较低,而后者则是由于植物的光合作用导致。季节变化方面,1995~2008年瓦里关大气CO_2浓度夏秋低(8月最低),冬春高(4月最高),与美国夏威夷Mauna Loa(155.57W , 19.52N , 3397m asl)、德国Schneefernerhaus(47.25N, 10.59E, 2962 m asl)和美国Niwot Ridge(40.05N,105.59W, 3523m asl)总体变化趋势类似,但有一定的相位差异,主要受各站下垫面特征差异及其所在区域源汇相互作用的强弱的影响;2002~2006年,瓦里关大气CH_4浓度在夏季出现高值(6~8月达到最大值),冬春较低,而Mauna Loa和Niwot Ridge则完全相反。这是夏季瓦里关地区排放源增强(居民放牧增多)和来自东南部地区污染气团输送的双重作用的结果;而Mauna Loa和Niwot Ridge纬度较低,夏季CH_4的光化学作用占主导而使其浓度较低。2004年6月~2007年7月,CO浓度春季(3月和4月)最高,秋季(9月和10月)最低,与瑞士Jungfraujoch(46.55N, 7.99E, 3580m asl)、Niwot Ridge和Mauna Loa大体趋势基本一致。瓦里关大气CO_2、CH_4和CO多年平均季振幅分别约为9.0ppm、11ppb和26ppb,与Mauna Loa、Niwot Ridge和Schneefernerhaus的季振幅有所不同。变化趋势方面,大气CO_2本底浓度呈逐年快速增长,瓦里关大气CO_2本底浓度增长率从1991~1995年的+1.3 ppm yr-1(1991~1994年的CO_2数据来自瓦里关flask瓶采样数据)增长到2000~2004年的约+2.4ppm yr-1,与全球平均状况类似。
     分别采用以干洁自然大气配制和工业来源的标气进行测试(其CO_2浓度范围为350~700ppm),探讨不同技术测量大气CO_2浓度时的同位素效应,初步结果表明,当del13C值在自然丰度范围时,其测量偏差△CO_2绝对值最小(|△CO_2|<1.0ppm);测量工业源的标气样品(del13C为-9~-28‰)时其偏差较大(可高达10ppm)。发现当标气样品的CO_2浓度较高时,系统之间的测量偏差呈非线性增加,推测CO_2浓度太高和del13C值太负均有可能导致系统之间测量偏差较大。不同技术测量CO_2的同位素效应的定量校正尚需进一步的研究。
Mixing ratios of atmospheric carbon dioxide (CO_2), methane (CH_4) and carbon monoxide (CO) observed at Mount Waliguan (WLG), a global background station in remote western China, were re-analyzed and evaluated. The data periods are 1995~2008, 2002~2006 and July 2004~June 2007 for CO_2, CH_4 and CO respectively. Corrections for drift in reference gases were also included in the data revision according to the history calibrations and intercomparison experiments. The measurement data of CO_2, CH_4 and CO at WLG have been updated to latest X2007, NOAA04 and WMO2000 scale respectively. Data treatment and quality control procedure has also been established to improve scientific use and application of the data. A mathematical procedure based on robust local regression was applied to distinguish background and non-background data, as is actually to classify the impact of regional emissions or influence of polluted air parcel. From 1995 to 2008, approximately 72%±5%, 17%±4% and 11%±2% of all observed CO_2 data have been selected as background, polluted and sink data, respectively. The percent for polluted CO_2 data increased from 14-15% in 1995-2000 to 18-19%, reflecting enhanced impact from human activities (e.g. fossil fuel emissions) in recent years; the percent of data representing CO_2 sinks didn’t change much (10-14%) indicating a relatively constant uptakes from terrestrial ecosystems in the region. However, the more polluted (elevated) than the uptakes CO_2 suggested an imbalance between emissions and sinks for atmospheric CO_2 there during the past 15 years at WLG. By this method, about 58% and 52% of all data were selected as CH_4 and CO background data, respectively, indicating significant influences from regional emissions/sources.
     By analyzing 5d back-trajectory (500hPa) of 1997~2008 at WLG, it showed air parcels arriving at WLG were predominately from the west, except in summer when advection from the east and southeast prevailed. >90% of trajectories from the east typically brought polluted air to the site, having passed over populated urban areas upwind. The case study combined with trajectory analysis showed the episode of high CO_2, CH_4 and CO mixing ratios were associated with advection from the heavily populated regions east or southeast (e.g. Xining and Lanzhou) of WLG and northwest of Qinghai via Ge’ermu urban area where growing industrial activities as well as crops residue burning provide large sources of CO suggesting a large source area due to human activities; whereas, the low values were observed most frequently when air masses originated from the sparsely populated Tibet and south of Qinghai and Xinjiang Uygur Autonomous Region (XUAR). By combining the observed data with trajectory-based statistics and cluster analysis, it has been demonstrated that air masses originating from the east to southeast of WLG have the strongest impact on CO and CH_4, however, only in summer transport from this direction significant. In the other seasons, air parcels arriving via the northwest are more common. These exhibit both background and polluted characteristics. Air from the central XUAR and the Ge’ermu urban area have show enhanced CO and CO_2 levels due to the growing economy in west China as well as biomass burning in the region. Air parcels coming from the sparsely populated Tibet contribute least to enhance all CO_2, CH_4 and CO values observed at WLG. It should be noticed that mixing ratios of atmospheric CH_4 would be enhanced when air masses originated from Ningxia and northwest of Gansu agriculture areas (mainly growing rice) along the Yellow river region, especially in summer. The probability that air parcels pass over regions of clean or polluted regions were further identified using potential source contribution function (PSCF) analysis, and all the CO_2, CH_4 and CO displayed similar source region distribution as above described. Intercorrelation of atmospheric CO_2、CH_4 and CO above the background showed a very well correlation (r2>0.7, p<0.01) in winter probably in account of their common sources being mainly from fossil fuel and biomass burning. Hence, CO_2 and CH_4 emissions from fossil fuel have been estimated by using CO ratio method. Emissions for CO_2 in China were 6214.7 Mt in 2005 and 6320.6Mt in 2006 respectively, which is similar to the results by statistical method. Emissions for CH_4 in China were 16.44 Mt in 2005 and 20.11 Mt in 2006.
     Regarding diurnal variation of atmospheric CO_2 mixing ratios based on observed data from 1995 to 2008, it has been found that atmospheric CO_2 showed higher during daytime and lower in early morning and nighttime in spring and winter, the highest mixing ratios most frequently occurred at 11:00~15:00 when residents’activities (i.g. grazing, heating) increased, but in the cold season photosynthesis is very weak and make no significant impact on CO_2 levels. Whereas mixing ratios of CO_2 exhibited daytime minimum and nighttime maximum in summer and autumn, the lowest CO_2 mixing ratios presented at 16:00~18:00, as mainly due to the enhanced uptake of CO_2 by vegetations in summer in north hemisphere. In addition, the meteorological conditions of strong convection in summer are also advantageous to pollution diffusion and will decrease CO_2 mixing ratios during daytime. Meanwhile, effects of temperature inversion during evening or early morning at high altitude site like WLG also would accumulate CO_2 mixing ratios. Averaged diurnal variation of CO_2 displayed largest in summer with amplitude of 2.3ppm (part per million) but only with ~0.7ppm both in spring and summer, suggesting differences in carbon exchange between terrestrial ecosystems and atmosphere attribute to plant growing cycle over one year. Diurnal variation of atmospheric CH_4 and CO based on data during 2002~2006 and during July 2004~June 2007 respectively showed a similar pattern with CO_2 in all seasons, but with different causes of the lower mixing ratios for CO and CH_4 during daytime in summer. As we known, it’s because of photosynthesis for lower CO_2 mixing ratios in the afternoon; however, the mainly impelling force is photochemical reaction with OH radicals which would decrease mixing ratios of CH_4 and CO during daytime in summer.
     The averaged CO_2 seasonal cycle from 1995 to 2008 at WLG displayed April maximum and August minimum, declining rapidly in late spring and early summer (from May to June) and increasing in autumn (from September to November) mainly caused by plant and soil respiration as well as plant photosynthesis. The overall characteristic is similar to that of observed at Mauna Loa, Schneefernerhaus and Niwot Ridge, but exhibiting certain phase delay mainly influenced by the differences in interaction of regional sources/sinks as well as the underlying surfaces. The averaged CH_4 seasonal cycle during 2002~2006 showed minimum in spring and winter, maximum in summer (from June to August), as is totally opposite to that of observed at Mauna Loa and Niwot Ridge. The high levels of CH_4 at WLG should be attributed to enhancing regional/local sources (i.g. herd) around the site as well as the dominant polluted air flow from southeast region in summer. Another possible reason is, compared to Mauna Loa and Niwot Ridge, the photochemical effect at WLG (located at higher latitude) is weaker, as means CH_4 sink is smaller than that of at these sites with lower latitude in summer. Seasonal cycle of atmospheric CO mixing ratios from July 2004 to June 2007 exhibited maximum in spring (March and April) and minimum in autumn (September and October). This is in good agreement with the variability observed at Jungfraujoch, Niwot Ridge and Mauna Loa. Averaged seasonal amplitude of CO_2, CH_4 and CO during the observed periods was 9.0ppm, 11ppb (part per billion) and 26ppb, respectively. Mixing ratios of atmospheric CO_2 increased exponentially, as is well agree with the trend observed at Mauna Loa. The growth rate of has accelerated since measurements began at WLG in 1991 where CO_2 increased from nearly 1.3 part per million per year (ppm yr-1) in 1991-1995 (the data before 1994 obtained from flask measurement at WLG) to 2.4ppm yr-1 in the recent years, but with large year to year variations, as is closely associated with the climate events (e.g. El Nino).
     Preliminary results of isotope effect on measuring CO_2 mixing ratios by using different techniques or systems showed that the differences are within±1.0ppm for the samples with natural abundances del13C(-7.7~-9.0‰) of CO_2; The differences could increase to 10ppm when del13C decrease to about -25.0‰. And also we found that both high CO_2 concentration and low del13C can lead to large measurement bias by different techniques. However it is still need further studies to demonstrate this conclusion and to calibrate the bias due to the istope effect qutitativly.
引文
Andreas, F. R., Matthew, P. J., Robert, W. F. and James, A. D. Baseline subtraction using robust local regression estimation. J Quant Spectrosc Radiat Transfer. 2001. 68(2), 179-193.
    Angert A., S. Biraud, C. Bonfils, W. Buermann, I. Fung, CO2 seasonality indicates origins of post-Pinatubo sink, Geophys. Res. Lett., 2004, 31, L11103, doi:10.1029/2004GL019760.
    Aoki, S., T. Nakazawa, S. Murayama and S.Kawaguchi, Measurements of atmospheric methane at the Japanese Antarctic station, Syowa, Tellus, Ser. B, 1992, 44, 273~281.
    Ashbaugh, L.L., Malm, W.C. and Sadeh, W.Z., A residence time probability analysis of sulfur concentrations at Grand Canyon National Park. Atmospheric Environment, 1985, 19(8), 1263~1270.
    Bakwin, P. S., Tans, P. P., Hurst, D. F. and Zhao C. 1998. Measurements of carbon dioxide on very tall towers: Results of the NOAA/CMDL program, Tellus, Ser. A and Ser. B, 50B, 401-415.
    Baker D F, Law R M, Gurney K R, et al. TransCom 3 inversion intercomparison: impact of transport model errors on the interannual variability of regional O2 fluxes, 1988~2003. Glob Biogeochem Cycles, 2006, 20: GB1002, doi: 10.1029/2004GB002439.
    Battle, M., et al., Atmospheric gas concentrations over the past century measured in air from firrn at South Pole. Nature, 1996, 383, 231~235.
    Bartlett, K. B., and R. C. Harriss. Review and assessment of methane emissions from wetlands. Chemosphere. 1993,26:261~320.
    Bartlett, D. S., K. B. Bartlett, J. M. Hartman, R. C. Harriss, D. I. Sebacher, R. Pelletier-Travis, D.D. Dow, and D. P. Brannon.. Methane emissions from the Florida Everglades:Patterns of variability in a regional wetland ecosystem. Global Biogeochem. Cycles. 1989, 3:363~374.
    Bacastow R B, Keeling C D. Atmospheric carbon dioxide concentration and the observed airborne fraction. In: Bolin B, ed. Carbon Cycle Modelling (SCOPE 16). New York: John Wiley and Sons, 1981. 100~112
    Begum, B.A., Kim, E., Jeong, C.-H., Lee, D.-W. and Hopke, P.K., Evaluation of the potential source contribution function using the 2002 Quebec forest fire episode. Atmospheric Environment, 2005, 39, 3719~3724.
    Bey, I., D. J. Jacob, R. M. Yantosca, J. A. Logan, B. D. Field, A. M. Fiore, Q. Li, H. Y. Liu, L. J. Mickley, and M. G. Schultz, Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 2001, 106, 23,073~23,096.
    Bender, M., et al., Variability in the O-2/N-2 ratio of southern hemisphere air, 1991-1994: Implications for the carbon cycle. Global Biogeochem. Cycles, 1996, 1, 9~21.
    Berner, W., H. Oeschger, and B. Stauffer,Information on the CO2 cycle from ice core studies. Radiocarbon, 1980, 22, 227~235.
    Bekki, S., K. S. Law, and J. A. Pyle, Effects of ozone depletion on atmospheric CH4 and CO concentrations, Nature, 1994, 371, 595~597.
    Beno·t Wastine, et al.,“Evaluation of the Envirosense 3000i Analysers for Continuous CO2 / CH4 Measurements by CRDS,”Rapport CEA-R-6218, CommissariatáL’énergie Atomique, 2009.
    Biraud, S., Ciais, P., Ramonet,M., Simmonds, P., Kazan,V., Monfray, P., O’Doherty,S., Spain, G. and Jennings, S. G. Quantification of carbon dioxide, methane and chloroform emissions over Ireland from
    atmospheric observations at Mace Head, Tellus, Ser. A and Ser. B, 2002. 54B, 41-60.
    Blake, D. R., Mayer, E. W., Tyler, S. C., Makide, Y., Montague, D. C. and Rowland, F. S. Global increase in atmospheric methane concentrations between 1978 and 1980. Geophys. Res. Lett. 1982. 9, 4, doi:10.1029/GL009i004p00477.
    Bolin B., Changes of land biota and their importance for the carbon cycle. Science, 1977, 196: 613~615.
    Bousquet P, Ciais P, Peylin P et al. Inverse modeling of annual atmospheric CO2 sources and sinks 1. Method and control inversion. J. Geophys. Res., 1999, 104, 26161~26178.
    Bousquet P, Peylin P, Ciais P, et al. Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science, 2000, 290: 1342~1346.
    Bruhl C, Crutzen P J. Reductions in the anthropogenic emissions of CO and their effect on CH4. Chemosphere : Global Change Sci , 1999 , 1 : 249~254.
    Canadell JG, Le QuéréC, Raupach MR et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(47): 18866~18870.
    Cao MK, Prince S, Li KR et al. Response of terrestrial carbon uptake to climate interannual variability in China. Global Change Biology, 2003, 9: 536~546.
    Chappellaz J., Barnola J. M., Raynaud D. et al., Ice-core record of atmospheric methane over past 160000 years, Nature, 1990, 345:127~131.
    Chen H., Winderlich J., Gerbig C., et al, High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) during BARCA. Atmospheric Measurement Techniques, 2010, 3: 375~386
    Conway, T. J., P. P. Tans, L. S. Waterman, K. W. Thoning, D. R. Kitzis, K. A. Masarie, and N. Zhang,
    Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory global air sampling network, J. Geophys. Res., 1994, 99, 22831~22855.
    Crosson E.R., A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide and water vapor. Applied Physics, 2008, B92: 403~408
    Cunnold, D. M., Steele, L. P. P., Fraser, J., Simmonds, P. G., Prinn, R. G., Weiss, R. F., Porter, L. W., Doherty,
    S. O., Langenfelds, R. L., Krummel, P. B., Wang, H. J., Emmons, L., Tie, X. X. and Dlugokencky, E. J. In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985-2000 and resulting source inferences, J. Geophys, Res. 2002. 107(D14),10.1029/2001JD001226.
    David K, et al., Capacity for methane oxidation in landfill cover soils measured in Laboratory - Scale Soil Microcosms.APPl. and Environ.Microbiol. 1995, 61:592~601.
    Daniel, J. S. and Solomon, S.: On the climate forcing of carbon monoxide, J. Geophys. Res. Atmos., 1998, 103, 13249–13260.
    Delmas, R.J., J.M. Ascencio, and M. Legrand, Polar ice evidence that atmospheric CO2 20,000 yr BP was 50% of present. Nature, 1980, 284, 155~157.
    Dettinger, M. D. and M. Ghill. Seasonal and interannual variations of atmospheric CO2 and climate, Tellus, 1998, 50B, 1~24.
    Denman, K. L., G. Brasseur, A. Chidthaisong, P. Ciais, P. M. Cox, R. E. Dickinson, D. Hauglustaine,
    C.Heinze, E. Holland, D. Jacob, U. Lohmann, S.Ramachandran, P. L. da Silva Dias, S. C. Wofsy and X.
    Zhang, 2007: Couplings Between Changes in the Climate System and Biogeochemistry. In: Climate
    Change 2007: The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    Dlugokencky, E. J., Steele, L. P., Lang,P. M. and Masarie, K. A. The growth rate and distribution of atmospheric methane, J. Geophys. Res. 1994. 99, 17021-17043
    Dlugokencky, E. J., Myers, R. C., Lang, P. M., Masarie, K. A., Crotwell, A. M., Thoning, K. W., Hall, B. D.,
    Elkins, J. W. and Steele, L. P. Conversion of NOAA atmospheirc dry air CH4 mole fractions to a
    gravimetrically prepared standard scale, J. Geophys. Res. 2005. 110, D18306, doi:10.1029/2005JD006035,
    Dlugokencky, E. J., Bruhwiler, L. M. P., White, J. W. C., Emmons, L. K., Novelli, P. C., Montzka, S. A., Masarie, K. A., Lang, P. M., Crotwell, A. M., Miller, J. B. and Gatti. L. V. Observational constraints on recent increases in the atmospheric CH4 burden, Geophys. Res. Lett. 2009. 36, L18803, doi:10.1029/2009GL039780.
    Dlugokencky E J, Lang, P M, Steele L P et al, Experimental techniques for NOAA/CMDL in-situ methane measurements at Mauna Loa and Point Barrow observatories. NOAA Tech. Memo. NOAA
    Environmental Research Laboratories, Boulder, Colorado,1992.
    Dlugokencky, E. J., et al. Conversion of NOAA atmospheric dry air CH4 mole fractions to a gravimetrically prepared standard scale, J. Geophys. Res.-Atmos., 2005, 110, Article D18306
    Dlugokencky, E. J., L. P. Steele, P. M. Lang, and K. A. Masarie, The growth rate and distribution of atmospheric methane. Geophys. Res., 1994, 99: 17021-17043.
    Dlugokencky, E. J., E. G. Dutton, P. C. Novelli, P. P.Tans, K. A. Masarie, K. O. Lantz, and S. Mardronich, Changes in CH4 and CO growth rates after the eruption of Mt. Pinatubo and their link with changes in tropical tropospheric UV flux,Geophys. Res. Lett., 1996, 23, 2761~2764.
    Dlugokencky, E. J., B. P. Walter, K. A. Masarie, P. M. Lang and E. S. Kasischke, Measurements of an anomalous global methane increase during 1998, Geophys. Res. Lett., 200, 28, 499~502.
    Dlugokencky, E. J., L. Bruhwiler, J. W. C. White, L. K. Emmons, P. C. Novelli, S. A. Montzka, K. A. Masarie, P. M. Lang, A. M. Crotwell, J. B. Miller, and L. V. Gatti Observational constraints on recent increases in the atmospheric CH4 burden, Geophys. Res. Lett., 2009, 36, L18803.
    Dlugokencky, E.J., K.A. Masarie, P.M. Lang, and P.P. Tans,Continuing decline in the growth rate of theatmospheric methane burden. Nature, 1998, 393, 447~450.
    Draxler, R.R. and Hess, G.D., An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition. Australian Meteorological Magazine, 1998, 47, 295~308.
    Duncan, B. N., Logan, J. A., Bey, I., Megretskaia, I. A., Yantosca, R. M., Novelli, P. C., Jones, N. B., and Rinsland, C. P.: Global budget of CO, 1988–1997: Source estimates and validation with a global model,
    J. Geophys. Res. Atmos., 2007, 112, D22301,doi:10.1029/2007JD008459. Esler, M.B., D.W.T. Griffith, S.R. Wilson, and L.P. Steele, Precision trace gas analysis by FT-IR spectroscopy, Anal. Chem., 2000,72 (1),206~215 and 216~221,
    EPA (Environmental Protection Agency). Air quality criteria for carbon monoxide, Rep. EPA/ 600/ 8290/ 045F ,Office of Health and Environmental Assessment , Environmental Criteria and Assessment Office. Research Triangle Park, NC, Available from: NTIS, Springfield, VA, 1991. PB932167492.
    Etheridge, D.M., et al., Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and fi rn. J. Geophys. Res., 1996, 101, 4115~4128.
    Etherridge, D. M., L. P. Steele, R. J. Francey, and R. L.Langenfelds, Atmospheric methane between 1000
    A.D. and present: Evidence of anthropogenic emissions and climatic variability, J. Geophys. Res., 199, 103, 15979~15993,
    Expert group recommendations, The 14th WMO/IAEA meeting of experts on carbon dioxide concentration and related tracers measurement techniques, (Helsinki, 10-13 September 2007), WMO/TD No.1487: 1~3
    Fan S, Gloor M, Mahlman J et al. A large terrestrial carbon sink in north America implied by atmospheric and oceanic carbon dioxide data and models. Science, 1998, 282:442~446.
    Fang J, Chen A, Peng C et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 2001, 292: 2320~2322.
    Folini, D., Ubl, S., and Kaufmann, P.: Lagrangian particle dispersion modeling for the high Alpine site Jungfraujoch, J. Geophys. Res. Atmos., 2008, 113, D18111, doi:10.1029/2007jd009558.
    Forrer, J., Ruttimann, R., Schneiter, D., Fischer, A., Buchmann, B., and Hofer, P.: Variability of trace gases at the high-Alpine site Jungfraujoch caused by meteorological transports processes, J. Geophys. Res. Atmos., 2000, 105, 12241–12251.
    Frankenberg, C., Bergamaschi, P., Butz, A., Houweling, S., J. Meirink, F., Notholt, J., Petersen, A. K., Schrijver, H., Warneke, T. and Aben, I. Tropical methane emissions: A revised view from SCIAMACHY onboard ENVISAT. Geophys. Res. Lett. 2008, 35, L15811, doi:10.1029/2008GL034300.
    Francey, R. J., P. P. Tans, C. E. Allison, I. G. Enting, J.W. C. White, and M. Trolier, Changes in oceanicand terrestrial carbon uptake since 1982, Nature, 1995, 373, 326~330,
    Francey, R.J., and G.D. Farquhar, An explanation of C-13/C-12 variations in tree rings. Nature, 1982, 297, 28~31.
    Fraser, P.J., M.A.K. Khalil, R.A. Rasmussen, and A.J. Crawford,Trends of atmospheric methane in the southern hemisphere. Geophys.Res. Lett., 1981, 8, 1063~1066.
    GAWSIS: GAW Station Information System: http://gaw.empa.ch/gawsis, access: May 15, 2009.
    Gerbig, C., Schmitgen, S., Kley, D., Volz-Thomas, A., Dewey, K., and Haaks, D.: An improved fast-response vacuum-UV resonance fluorescence CO instrument, J. Geophys. Res. Atmos., 1999, 104, 1699–1704.
    GLOBALVIEW-CO2: Cooperative Atmospheric Data Integration Project - Carbon Dioxide. CD-ROM, NOAA ESRL, Boulder, Colorado [Also available on Internet via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW]. 2010.
    GLOBALVIEW-CH4: Cooperative Atmospheric Data Integration Project - Methane. CD-ROM, NOAA ESRL, Boulder, Colorado [Also available on Internet via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/ch4/GLOBALVIEW]. 2010.
    Gloor, M., Bakwin, P., Hurst, D., Lock, L., Draxler, R. and Tans, P. What is the concentration footprint of a tall tower? J. Geophys. Res. 2001, 106(D16), 17831-17840.
    Gloor M, Fan Songmiao, Pacala S, et al. Optimal sampling of the atmosphere for purpose of inverse modeling: A model study. Global Biogeochemical Cycles, 2000, 14(1):407-428.
    Graedel, T.E., and J.E. McRae, On the possible increase of atmospheric methane and carbon monoxide concentrations during the last decade. Geophys. Res. Lett., 1980, 7, 977~979.
    Gu, L., D. D. Baldocchi, S. C. Wofsy, J. W. Munger, J.J. Michalsky, S. P. Urbanski, and T. A. Bonden,Response of a deciduous forest to the MountPinatubo eruption enhanced photosysthesis, Science, 2003, 299, 2035~2038.
    Griffith Peter R, de Haseth James A. Fourier Transform Infrared Spectrosmetry. New York: John Wiley & Sons , 1986. 274.
    Griffith, D.W.T.,, Nicholas D., Krummel, P, Fraser P., Marcel van der Schoot and Colin, Allison. The UOW FTIR trace gas analyser: comparison with LoFlo, AGAGE and tank measurements at Cape Grim and Gaslab. Baseline Atmospheric Program (Australian) 2007~2008, 2010
    Griffith, D.W.T., Synthetic calibration and quantitative analysis of gas phase infrared spectra, Applied Spectroscopy, 1996, 50 (1), 59~70,
    Griffith, D. W. T.. FTIR measurements of atmospheric trace gases and their fluxes. Handbook of Vibrational Spectroscopy. J. M. Chalmers and P. R. Griffiths, John Wiley & Sons. 2002, 4: 2823~2841.
    Griffith, D.W.T., and B. Galle, Flux measurements of NH3, N2O and CO2 using dual beam FTIR spectroscopy and the flux-gradient technique, Atmos. Environ., 2000,34 (7), 1087~1098.
    Hansen, J., A.Lacis, R. Ruedy, and M. Sato, Potential Clim. Impact of Mount-Pinatubo Eruption, Geophys. Res. Lett., 1992, 19(2), 215~218.
    Haan, D. and D. Raynaud, Ice core record of CO variations during the last two millennia: atmospheric mplications and chemical interactions within the Greenland ice, Tellus, 1998, 50B, 253~262.
    Harriss, R. C., D. I. Sebacher, K. B. Bartlett, D. S. Bartlett, and P. M. Crill. Sources of atmospheric methane in the south Florida environment. Global Biogeochem. Cycles 1988, 2:231~243.
    http://unfccc.int/ghg_data/items/3800.php
    Holloway, T., Levy, H., and Kasibhatla, P. Global distribution of carbon monoxide, J. Geophys. Res. Atmos., 1162000, 105, 12123~12147.
    Houweling, S., Roeckmann,T., Aben, I., Keppler, F., Krol, M., Meirink, J.F., Dlugokencky, E.J. and Frankenberg, C. 2006. Atmospheric constraints on global emissions of methane from plants. Geophys. Res. Lett. 33, doi:10.1029/2006GL026162.
    Huang Y & Sun WJ Changes in topsoil organic carbon of croplands in mainland China over the last two decades. Chinese Science Bulletin, 2006, 51: 1785~1803.
    IPCC, Climate Change 2007: The Physical ScienceBasis. Contribution of Working Group I to the Fourth Assessment Report of the IntergovernmentalPanel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.
    IPCC, Climate Change 2001: The Science Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY,USA, 881pp, 2001.
    Indermühle, A., et al., Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature, 1999, 398, 121~126.
    Janssens IA, Freibauer A, Ciais P et al. Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science, 2003, 300: 1538~1542.
    Keeling, C. D., Bacastow, R. B., Bainbridge, A. E., Ekdahl, C. A. Jr., Guenther, P. R. and Waterman, L. S. Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus 1976a, 28, 538–551.
    Keeling, C.D., The concentration and isotopic abundances of carbon dioxide in rural and marine air. Geochim. Cosmochim. Acta, 1961, 24, 277~298.
    Keeling, C.D., Rewards and penalties of monitoring the Earth. Annu.Rev. Energy Environ., 23, 25~82.
    Keeling, R.F., and S.R. Shertz, 1992: Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon-cycle.Nature, 1998, 358, 723~727.
    Keeling, C. D., T. P. Whorf, M. Wahlen, and J. van der Plicht, Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980, Nature, 1995, 375, 666~670.
    Keeling, C. D., P. R. Guether, and D. J. Moss, Scripps reference gas calibration system for carbon dioxide-in-air standards, Publ. 42, Environ. Pollut. Monit. and Res. Programme, World Meteorol. Organ., Geneva, Switzerland. 1986.
    Keeling, C. D., Adams, J. A. Jr., Ekdahl, C. A. Jr. and Guenther, P. R.. Atmospheric CO2 variations at the South Pole. Tellus 28, 1976b, 552~564.
    Keppler F, Hamilton J T, Brass M, R?ckmann T. 2006. Methane emissions from terrestrial plants under aerobic conditions. Nature 439(7073): 187-191.
    Kaiser, A., Schelfinger, H., Spangl,W.,Weiss, A., Gilge, S., Fricke, W., Ries, L., Cemas, D., and Jesenovec,
    B.: Transport of nitrogen oxides, carbon monoxide and ozone to the Alpine Global Atmosphere Watch stations Jungfraujoch (Switzerland), Zugspitze and Hohenpeissenberg (Germany), Sonnblick (Austria) and Mt. Krvavec(Slovenia), Atmos. Environ., 2007, 41, 9273~9287,
    Khalil, M. A. K. and Rasmussen, R. A.: Carbon-Monoxide in the Earths Atmosphere– Indications of a 117Global Increase, Nature, 1988, 332, 242~245.
    Khalil, M. A. K., R. A. Rasmussen, and M. J. Shearer. Flux measurement and sampling strategies: Applications to methane emissions from rice fields. J. Geophys. Res. 1998, 103:25,211~25,218.
    Khalil, M.A. K, Rasmussen, R. A. The global cycle of carbon monoxide: trends and mass balance . Chemosphere , 1990, 20: 227~242.
    Khalil M A K, Rasmussen R A. Causes on increasing atmospheric methane: depletion of hydroxyl radicals and the rise of emissions. Atmos. Environ. , 1985, 19: 397~407.
    Khalil MAK, Rasmussen R A. Global decrease in atmospheric carbon monoxide concentration. Nature, 1994, 370: 639~641.
    Lambert, G., P. Monfray, B. Ardouin, G. Bonsang,, A.Gaudry, V. Kazan and G. Polian, Year-to-year changes in atmospheric CO2, Tells, 1995, 47B, 35~55.
    Lang, P M, Steele L P, Martin R C et al., Atmospheric methane data for the period 1983-1985 from the NOAA/GMCC global cooperative flask sampling network. NOAA Tech. Memo. ERL CMDL-1, NOAA
    Environmental Research Laboratories, Boulder, Colorado, 90pp, 1990.
    Levin, I., Graul, R. and Trivett, N. B. A. Long-term observations of atmospheric CO2 and carbon isotopes at continental sites in Germany, Tellus, Ser. A and Ser. B, 1995, 47B, 23~34.
    Lelieveld J, Crutzen P J, Dentener F J. Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus, 1998, 50B(2):128-150.
    Lee K, Wanninkhof R, Takahashi T, et al. Low interannual variability in recent oceanic uptake of atmospheric carbon dioxide. Nature,1998, 396: 155~159.
    Le QuéréC, Raupach MR, Canadell JG et al. Trends in the sources and sinks of carbon dioxide. Nature Geoscieces, 2009, 2: 831~836.
    Le QuéréC, R?denbeck C, Buitenhuis ET et al. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science, 2007, 316: 1735~1738.
    Lewis SL, Lopez-Gonzalez G, SonkéB et al. Increasing carbon storage in intact African tropical forests. Nature, 2009, 457: 1003~1006.
    Lelieveld ,J .And Crutzen ,P. J .Methane emissions into the atmosphere ,an overview ,in :van Amstel ,A. R. ,Methane and Nitrous Oxide ,International IPCC workshop ,Amersfoort ,The Netherland. 1993. 143~163.
    Lintner B R. Characterizing global CO2 interannual variability with empirical orthogonal function/principal component (EOF/PC) analysis. Geophys Res Lett, 2002, 29(19): 1921, doi: 10.1029/2001GL014419
    Masarie K A, Steele L P and Lang P M, A rule-based expert system for evaluating the quality of long-term, in situ, gas chromatographic measurement of atmospheric methane, Climate Monitoring and Diagnostics Laboratory, Boulder, Colorado, November 1991
    Masarie, K.A., R.L. Langenfelds, C.E. Allison, T.J. Conway, E.J. Dlugokencky, R.J. Francey, P.C. Novelli, L.P. Steele, P.P.Tans, B. Vaughn, and J.W.C. White, NOAA/CSIRO flask air intercomparison experiment: A strategy for directly assessing consistency among atmospheric measurements made by independent laboratories, J. Geophys. Res., 2001, 106(D17), 20,445~20,464
    Mauzerall D L, Narit a D, Akimot o H , et al . S easonal charact eri st ics of t ropospheric ozone producti on and mixin g rat iosover East Asia: A global th ree dim ensi on al ch emical t ran sport model analysi s. J . Geophy s. Res. , 2000, 105 ( D14) :17985~17910
    Machida, T., et al., Increase in the atmospheric nitrous oxide concentration during the last 250 years. Geophys. Res. Lett., 1995, 22, 2921~2924.
    Matsueda, H., S. Taguchi, H.Y. Inoue, and M. Ishii, A large impact of tropical biomass burning on CO and CO2 in the upper troposphere. Science in China (Series C), 2002, 45, 116~125.
    Mckeen S A, Hsie E Y, Liu S C. A study of the dependence of rural ozone precursors in the eastern United State. J . Geophys. Res. , 1991 , 96 (D8) : 15377~15394.
    Miller, J. B., Gatti, L. V., D'Amelio, M., Crotwell, A., Dlugokencky, E. J., Bakwin, P., Artaxo, P., Tans, P. P.. Airborne measurements indicate large methane emissions from the eastern Amazon basin. Geophys. Res. Lett. 2007, 34, 10.
    Mosier A ,Schimel D ,Valentine D ,Bronson K,and Parton W.Methane and nitrous oxide fluxes in native ,fertilized and cultivated grasslands.Nature (London) . 1991, 350: 330~332.
    Morimoto, S., S. Aoki, T. Nakazawa, and T.Yamanouchi, Temporal variations of the carbon isotopic ratio of atmospheric methane observed at Ny Alesund, Svalbard from 1996 to 2004, Geophys.Res. Lett., 2006, 33, L01807, doi:10.1029/2005GL024648.
    Mu Q, Zhao M, Running SW et al. Contribution of increasing CO2 and climate change to the carbon cycle in China’s ecosystems. Journal of Geophysical Research, 2008, 113, G01018, doi:10.1029/2006JG000316.
    Nakazawa, T., S. Morimoto, S. Aoki and M. Tanaka, Time and space variations of the carbon isotopic ratio of tropospheric carbon dioxide over Japan, Tellus, 1993, 45B, 258~274.
    Nakazawa, T., S. Morimoto, S. Aoki and M. Tanaka, Temporal and spatial variations of the carbon isotopic ratio of atmospheric carbon dioxide in the western Pacific region, J. Geophys. Res., 1997, 102, 1271~1285.
    Neftel, A., et al., Ice core sample measurements give atmospheric CO2 content during the Past 40,000 Yr. Nature, 1982, 295, 220~223.
    Neftel, A., E. Moor, H. Oeschger, and B. Stauffer, Evidence from polar ice cores for the increase in atmospheric CO2 in the past centuries. Nature, 1985, 315, 45~47.
    Novelli, P. C., Masarie, K. A., Tans, P. P., and Lang, P. M.: Recent Changes in Atmospheric Carbon-Monoxide, Science, 1994, 263, 1587~1590.
    Novelli, P. C., Masarie, K. A., and Lang, P. M.: Distributions and recent changes of carbon monoxide in the lower troposphere, J.Geophys. Res. Atmos., 1998, 103, 19015~19033,
    Novelli, P. C., Masarie, K. A., Lang, P. M., Hall, B. D., Myers, R. C., and Elkins, J. W.: Re-analysis of tropospheric CO trends: Effects of the 1997–1998 wild fires, J. Geophys. Res.-Atmos., 2003,108, 4464, doi:4410.1029/2002JD003031.
    Novelli, P. C., L. P. Steele, and P. P. Tans, Mixing ratios of carbon monoxide in the troposphere, J. Geophys. Res., 1992, 102, 12855~12861.
    Novelli P C , Masarie K A , Lang P M. Distributions and recent changes of CO in the lower troposphere. J. Geophys. Res., 1998, 103 (D15) : 19015~19033
    Novelli P C, Elkins J W, Steele P. The development and evaluation of a gravimetric reference scale for measurements of atmospheric CO. J. Geophys. Res., 1991, 96(D7): 13109~13121. Novelli P C, Steele L P, Tans P P. Mixing ratios of carbon monoxide in the troposphere. J. Geophys. Res., 1992, 97:20731~20750.
    Novelli, P. C., K. A. Masarie, and P. M. Lang, Distributions and recent changes of carbon monoxide in the lower troposphere, J. Geophys.Res., 1998, 103, 19015~19033.
    Pacala SW, Hurtt GC, Baker D et al. Consistent land– and atmosphere–based U.S. carbon sink estimates. Science, 2001, 292: 2316~2322.
    Peterson, J., Tans, P. and Kitzis. D.“CO2 Round-Robin Reference Gas Intercomparison”in Report of the Ninth WMO Meeting of Experts on Carbon Dioxide Concentration and Related Tracer Measurement Techniques, Aspendale, Vic. Australia, 1997, 1- 4 September.
    Pfister, G., Petron, G., Emmons, L. K., Gille, J. C., Edwards, D. P., Lamarque, J. F., Attie, J. L., Granier, C., and Novelli, P. C.: Evaluation of CO simulations and the analysis of the CO budget for Europe, J. Geophys. Res. Atmos., 2004, 109, doi:10.1029/2004JD004691.
    Piao SL, Ciais P, Friedlingstein P et al. Spatiotemporal patterns of terrestrial carbon cycle during the 20th century. Global Biogeochemical Cycles, 2009a, 23: GB4026, doi:10.1029/2008GB003339.
    Piao SL et al. The carbon balance of terrestrial ecosystems in China. Nature, 2009b, 458: 1009~1013. Polissar, A.V., Hopke, P.K., Paatero, P., Kaufmann, Y.J., Hall, D.K., Bodhaine, B.A., Dutton, E.G. and Harris,
    J.M., The aerosol at Barrow, Alaska: long-term trends and source locations. Atmospheric Environment, 1999, 33, 2441~2458.
    Prinn R G, Weiss R F, Fraser P G et al, A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE, J Geophys Res, 2000, 105: 17751~17792.
    QuéréC L, Aumont O, Bousquet P, et al. Two decades of ocean CO2 sink and variability. Tellus Ser B-Chem Phys Meteorol, 2003, 55:649~656.
    Ramanathan V et al . Climate chemical interactions and effects of changing atmospheric trace gases. Rev. Geophys. , 1987 , 25 (7) : 1442~1482.
    Ramonet, M. and P. Monfray, CO2 baseline concept in 3-D atmospheric transport models, Tellus, 1996, 48B, 502~520.
    Rayner, P. J., I. G. Enting, R. J. Francey and R. Langenfelds, Reconstructing the recent carbon cycle from atmospheric CO2,δ13C and O2/N2 observations, Tellus, 1999, 51B, 213~232.
    Ramonet, M., Ciais, P., Nepomniachii, I., Sidorov, K., Neubert, R.E.M., Langend?rfer, U., Picard, D., Kazan, V., Biraud, S., Gusti, M., Kolle, O., Schulze, E.-D.and Lloyd, J. Three years of aircraft-based trace gas measurements over the Fyodorovskoye southern taiga forest, 300 km North-West of Moscow, Tellus, Ser. A and Ser. B, 2002, 54B, 713-734.
    Rasmussen, R. and Khalil, M. Atmospheric Methane (CH4): Trends and Seasonal Cycles. J. Geophys. Res. 1981, 86, C10, doi:10.1029/JC086iC10p09826.
    Raich J W, Potter C S, Bhagawati D. Interannual variability in global soil respiration, 1980-1994. Glob. Change Biol, 2002, 8: 800~812.
    Reiners WA A summary of the world carbon cycle and recommendations for critical research. In: Woodwell GM, Pecan EV (eds) Carbon and the Biosphere. AEC Symposium Series 30: 368-382, NTIS
    U.S. Department of Commerce, Springfield, Virginia. Schindler DW (1999) The mysterious missing sink. Nature, 1973, 398: 105~106.
    Reimann, S., M. K. Vollmer, D. Folini, M. Steinbacher, M. Hill, B. Buchmann, R. Zander, and E. Mahieu, Observations of long-lived anthropogenic halocarbons at the high-Alpine site of Junfraujoch (Switzerland) for assessment of trends and Eruopean sources, Sci.Total Environ., 2008,doi :10.1016/j.SciTotEnv.2007.10.022
    Rigby, M., R. G. Prinn, P. J. Fraser, P. G. Simmonds, R. L. Langenfelds, J. Huang, D. M. Cunnold, L.
    P.Steele, P. B. Krummel, R. F. Weiss, S. O’Doherty, P.K. Salameh, H. J. Wang, C. M. Harth, J.ühle, and L. W. Porter, Renewed growth of atmospheric methane, Geophys. Res. Lett., 2008, 35, L22805, doi:10.1029/2008GL036037.
    Rousseau, D.D., Duzer, D., Etienne, J.L., Cambon, G., Jolly, D., Ferrier, J. and Schevin, P., Pollen record of rapidly changing air trajectories to the North Pole. Journal of Geophysical Research, 2004,109, D06116, doi:10.1029/2003JD003985.
    R?denbeck C, Houweling S, Gloor M, et al. Timedependent atmospheric CO2 inversions based on interannually varying tracer transport.Tellus Ser B-Chem Phys Meteorol, 2003, 55: 48~497.
    Ruckstuhl, A. F., Henne, S., Reimann, S., Steinbacher, M., Buchmann, B., and Hueglin, C.: Robust extraction of baseline signal of atmospheric trace species using local regression, Atmos. Meas. Tech. Discuss., 2010, 3, 5589~5612, 2010, doi:10.5194/amtd-3-5589-2010,.
    Solomon, S., D. Qin, M. Manning, R.B. Alley, T.Berntsen, N.L. Bindoff, Z. Chen, A. Chidthaisong, J.M. Gregory, G.C. Hegerl, M. Heimann, B.Hewitson, B.J. Hoskins, F. Joos, J. Jouzel, V. Kattsov, U. Lohmann, T. Matsuno, M. Molina, N.Nicholls, J. Overpeck, G. Raga, V. Ramaswamy, J. Ren, M. Rusticucci, R. Somerville, T.F. Stocker, P.Whetton, R.A. Wood and D. Wratt, Technical Summary. In: Climate Change 2007: The PhysicalScience Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA., 2007.
    Sturm, P., Leuenberger, M., Moncrieff, J. and Ramonet, M. Atmopsheric O2, CO2 , and d13C measurements from aircraft sampling over Griffin Forest, Perthshire, UK, Rapid Commun. Mass Spectrom. 2005, .19, 2399-2406.
    Stenchikov, G., A.Robock, V. Ramaswamy, M. D. Schwarzkopf, K. Hamilton, and S. Ramachandran, Arctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion, J. Geophys. Res., 2002, 107(D24), 4803, doi:10.1029/2002JD002090.
    Steele, L.P., et al., 1996: Atmospheric methane, carbon dioxide, carbon monoxide, hydrogen, and nitrous oxide from Cape Grim air samples analysed by gas chromatography. In: Baseline Atmospheric Program Australia, 1994-95. Bureau of Meteorology and CSIRO Division of Atmospheric Research, Melbourne, Australia, pp. 107~110.
    Seiler W. The cycle of atmospheric CO. Tellus, 1974, 26:116~135. Seiler W, Fishman J. The distribution of carbon monoxide and ozone in the free troposphere. J. Geophys. Res. , 1981, 86: 7255~7265.
    Seneviratne G. and Van Houlml L. H. J . CO2, CH4 and N2O emissions from a wetted tropical upland soil following surface mulch application. Soil Biol.Biochem. 1998, 30: 1619~1622.
    Sirois, A. and Bottenheim, J.W., Use of backward trajectories to interpret the 5-year record of PAN and O3 ambient air concentrations at Kejimkujik National Park, Nova Scotia. Journal of Geophysical Research, 1995, 100: 2867~2881.
    Sitch S, Huntingford C, Gedney N et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Global Change Biology, 2008, 14: 2015~2039.
    Spectral analysis follows the treatment in Phillip L. Varghese, et al.,“Collisional narrowing effects on spectral line shapes measured at high resolution,”Appl. Optics, 1984, 23, 2376~2385.
    Stephens BB, Gurney KR, Tans PP et al. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science, 2007, 316:1732~1735.
    Steuder P.A. et al., Influence of nitrogen fertilization on methane uptake in temperate forest soil.Nature. 1989. 341:314~315.
    Stohl, A., Trajectory statistics - a new method to establish source-receptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe. Atmospheric Environment, 1996, 30(4), 579-587.
    Stohl, A., Computation, accuracy and applications of trajectories - a review and bibliography. Atmospheric Environment, 1998, 32(6), 947~966.
    Tans, P. P., Fung, I. Y. and Takahashi. T. Observational constraints on the global atmospheric CO2 budget, Science 1990, 247, 1431–1438.
    Tans P P, Bakwin P S, Guenther D W. A feasible global carbon cycle observing system: a plan to decipher today's carbon cycle based on observations. Global Change Biol., 1996, 2, 309~318.
    Tanimoto, H., Sawa, Y., Matsueda, H., Yonemura, S., Wada, A., Mukai, H., Wang, T., Poon, S., Wong, A., Lee, G., Jung, J. Y., Kim, K. R., Lee, M., Lin, N. H.,Wang, J. L., Ou-Yang, C. F., and Wu, C. F.: Evaluation of standards and methods for continuous measurements of carbon monoxide at ground-based sites in Asia, Papers in Meteorology and Geophysics, 2007, 58, 85~93.
    Tanimoto, H., Sawa, Y., Yonemura, S., Yumimoto, K., Matsueda, H., Uno, I., Hayasaka, T., Mukai, H., Tohjima, Y., Tsuboi, K., and Zhang, L.: Diagnosing recent CO emissions and ozone evolution in East Asia using coordinated surface observations, adjoint inverse modeling, and MOPITT satellite data,Atmos. Chem. Phys., 2008, 8, 3867~3880, http://www.atmos-chem-phys.net/8/3867/2008/.
    Thompson, A. M., The oxidizing capacity of the Earth’s atmosphere: Probable past and future changes, Science, 1992, 256, 1157~1168.
    Thoning, K. W., Tans, P. P., and Komhyr, W. D.: Atmospheric Carbon-Dioxide at Mauna Loa Observatory. 2. Analysis of the NOAA GMCC Data, 1974–1985, J. Geophys. Res. Atmos., 1989, 94, 8549~8565.
    Tohjima, Y., K. Katsumata, I. Morino, H. Mukai, T. Machida, I. Akama, T. Amari, and U. Tsunogai, Theoretical and experimental evaluation of the isotope effect of NDIR analyzer on atmospheric CO measurement2, J. Geophys. Res., 2009, 114, D13302, doi:10.1029/2009JD011734.
    Vasconcelos, L.A.P., Kahl, J.D.W., Liu, D., Macias, E.S. and White, W.H., Spatial resolution of a transport inversion technique. Journal of Geophysical Research, 1996, 101, 19337~19342.
    WDCGG, 2010. World data center for greenhouse gases (WDCGG) data summary 34, 2010, 22: 1~22.
    WDCGG, World Data Center for Greenhouse Gases (WDCGG), Data Summary, WMO WDCGG 33, Japan: Tokyo, 2009, 33:1-105.
    WDCGG, World Data Center for Greenhouse Gases (WDCGG), Data Summary 34, Japan: Tokyo, 2010, 33:1-105.
    WMO Greenhouse Gas Bulletin. 2009. The State of Greenhouse Gases in the Atmosphere Using Global Observations through 2008, 11.
    WMO TD No. 186. 2007. 14th WMO/IAEA Meeting of Experts on Carbon dioxide, Other Greenhouse Gases, and Related Tracers Measurement Techniques. 10-13 Sept.2007, Helsinki, Finland. (WMO TD No.1487).
    WMO, Guidelines for the Measurement of Atmospheric Carbon Monoxide, GAW Report No. 192, World Meteorological Organization, Geneva, Switzerland. 2010.
    WMO, WMO Global Atmosphere Watch (GAW) Strategic Plan: 2008~2015, WMO/GAW Report No. 172, 104pp, 2007.
    WMO, WMO Greenhouse Gas Bulletine No.5, 2010. (http://www.wmo.int/pages/prog/arep/gaw/ghg/GHGbulletin.html, accessed 12 Feb. 2010)
    Wittenberg, U., M. Heimann, G. Esser, A.D. Mcguire, and W. Sauf, On the influence of biomass burning on the seasonal CO2 signal as observed at monitoring stations, Global Biogeochem. Cycles, 1998, 12, 531~544,
    Worthy, D. E., Levin, J., Trivett, I. N. B. A., Kuhlmann, A. J., Hopper, J. F. and Ernst, M. K. 1998. Seven years of continuous methane observations at a remote boreal site in Ontario, Canada, J. Geophys. Res. 103, 15995-16007.
    Wofsy S C. Where has all the carbon gone? Science, 2001,292: 2261~263.
    Woodwell GM et al. The biota and the world carbon budget. Science, 1978, 199: 141~146.
    Wen Y.P., Shao Z.Q., Xu X.B., et al., Observation and investigation of variabilities of baseline CO2 concentration over Waliguan Mountain in Qinghai Province of China. Acta Meteorologica Sinica, 1994, 8(3): 255~262
    Yan X.Y., T. Ohara, H. Akimoto. Bottom-up estimate of biomass burning in mainland China. Atmos. Enviro n. 2006, 40, 5262~5273.
    Yevich, R., and J. A. Logan, An assessment of biofuel use and burning of agricultural waste in the developing world, Global Biogeochem. Cycles, 2003, 17(4), 1095, doi:10.1029/2002GB001952.
    Yu Y, Guo Z, Wu H et al. Spatial changes in soil organic carbon density and storage of cultivated soils in China from 1980 to 2000. Global Biogeochemical Cycles, 2009, 23, GB2021.
    Zander, R., Mahieu, E., Demoulin, P., Duchatelet, P., Roland, G., Servais, C., Maziere, M. D., Reimann, S., and Rinsland, C. P.: Our changing atmosphere: Evidence based on long-term infraredsolar observations at the Jungfraujoch since 1950, Sci. Total Environ., 2008, 391, 184–195.
    Zellweger C, C. H uglin, J. Klausen, M. Steinbacher, M. Vollmer, and B. Buchmann.. Inter-comparison of four different carbon monoxide measurement techniques and evaluation of the long-term carbon monoxide time series of Jungfraujoch. Atmos. Chem. Phys., 2009, 9, 3491~3503
    Zellweger, C., et al., System and Performance Audit of Surface Ozone and Carbon Monoxide at the China GAW Baseline Observatory Waliguan Mountain (CGAWBO), WCC-Empa Report 00/3, 2000, gaw.empa.ch/audits/WLG_2000.pdf (at http://www.empa.ch/plugin/template/empa/*/7571)
    Zellweger, C., Forrer, J., Hofer, P., Nyeki, S., Schwarzenbach, B., Weingartner, E., Ammann, M., and Baltensperger, U.: Partitioning of reactive nitrogen (NOy) and dependence on meteorological conditions in the lower free troposphere, Atmos. Chem. Phys., 2003, 3779~3796.
    Zellweger, Christoph, et al., System and Performance Audit of Surface Ozone Carbon Monoxide and Methane at the Global GAW Station Mt. Waliguan, China, October 2004, WCC-Empa Report 04/3, 2004, gaw.empa.ch/audits/WLG_2004.pdf. (at http://www.empa.ch/plugin/template/empa/*/7571)
    Zhang Q, Streets D G, Carnuchael G R, et al. Asian emission in 2006 for the NASA INTEX-B mission. Atmos Chem Phys Discuss, 2009, 9:4081-4139
    Zhang, D., Tang, J., Shi, G., Nakazawa, T., Aoki, S., Sugawara, S., Wen, M., Morimoto, S., Patra, P. K.,
    Hayasaka, T. and Saeki, T. Temporal and spatial variations of the atmospheric CO2 concentration in China, Geophys. Res. Lett 2008, 35, L03801, doi:10.1029/2007GL032531.
    Zhao, C. L. and Tans, P. P. 2006. Estimating uncertainty of the WMO mole fraction scale for carbon dioxide in air. Journal of Geophysical Research-Atmospheres 111(D8).
    Zhao, C. L., Tans, P. P. and Thoning, K. W. A high precision manometric system for absolute calibrations of CO2 in dry air. J. Geophys. Res. 1997, 102, 5885-5894.
    Zhou, L.X., Zhang, X.C., Zhang, F., Yao, B., Liu, L.X., Wen, M., Xu, L., Fang,S.X., Wen,Y.P. and Gu, S. 2006b. Progress on the Background Greenhouse Gases and Related Tracers Measurement Programme in China. 14th WMO/IAEA Meeting of Experts on Carbon dioxide, Other Greenhouse Gases, and Related Tracers Measurement Techniques. 10-13 Sept. 2007, Helsinki, Finland. WMO/GAW , No.186:116-118 (WMO TD No.1487).
    Zhou, L. X., Conway, T. J., White, J. W. C., Mukai, H., Zhang, X., Wen,Y., Li, J. and MacClune, K. Long-term record of atmospheric CO2 and stable isotopic ratios at Waliguan Observatory: Backgroundfeatures and possible drivers, 1991– 2002. Global Biogeochem. Cycles 2005, 19, GB3021, doi:10.1029/2004GB002430.
    Zhou, L. X., Tang, J., Wen, Y. P., Li, J. L., Yan, P. and Zhang, X. C. The impact of local winds and long-range transport on the continuous carbon dioxide record at Mount Waliguan, China, Tellus, Ser. B 2003, 55,145-158.
    Zhou, L.X White, J. W. C., Conway, T. J., Mukai, H. MacClune, K., Zhang, X., Wen,Y. and Li, J.. Long-term record of atmospheric CO and stable isotopic ratios at Waliguan Observatory: Seasonally averaged 1991–2002 source/sink signals, and a comparison of 1998–2002 record to the 11 selected sites in the Northern Hemisphere2, Global Biogeochem. Cycles 2006a, 20, GB2001, doi:10.1029/2004GB002431.
    Zhou, L. X., Worthy, D. E., Lang,J. P. M., Ernst, M. K., Zhang, X. C., Wen, Y. P. and Li, J. L. Ten years of atmospheric methane observations at a high elevation site in Western China. Atmos. Environ. 2004, 38(40), 7041-7054.
    Zhou, L.X., Zhang, X.C., Zhang, F., Yao, B., Liu, L.X., Wen, M., Xu, L., Fang,S.X., Wen,Y.P. and Gu, S. 2006b. Progress on the Background Greenhouse Gases and Related Tracers Measurement Programme in China. 14th WMO/IAEA Meeting of Experts on Carbon dioxide, Other Greenhouse Gases, and Related Tracers Measurement Techniques. 10-13 Sept. 2007, Helsinki, Finland. WMO/GAW No.186:116-118 (WMO TD No.1487).
    Zhou GY, Liu SG, Li ZA et al. Old-Growth Forests Can Accumulate Carbon in Soils. Science, 2006, 314: 1417.
    Zhou, L. X., D. Kitzis, P. P. Tans,“Report of the Fourth WMO Round-Robin Reference Gas Intercomparison, 2002~2007”in the report of the 14th WMO/IAEA Meeting of Experts on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques, Helsinki, Finland, 10~13 September 2007, edited by T. Laurila, WMO/GAW Report No. 186, 2009.
    蔡旭晖,邵敏,苏芳, 2002.甲烷排放源逆向轨迹反演模式研究.环境科学23(5):25-30.
    陈泮勤,王效科,王礼茂(2008)中国陆地生态系统碳收支与增汇对策.北京:科学出版社, pp. 1?402.
    程红兵,王木林,温玉璞等. 2003.我国瓦里关山、兴隆温室气体CO2、CH4和N2O的北京浓度.应用气象学报,14:402~409.
    戴民汉,翟惟东,鲁中明等, 2004.中国区域碳循环研究进展与展望.地球科学进展19(1):120-130.
    董云社,章申,齐玉春等, 2000.内蒙古典型草地CO2, N2O, CH4通量的同时观测及其日变化.科学通报45(3):318-322.
    董云社,彭公炳.温带森林土壤消耗大气CO总量及影响因素研究[J ] .气候与环境研究,1997 ,2 (1) : 72~76.
    方精云,朴世龙,赵淑清, 2001. CO2失汇与北半球中高纬度陆地生态系统的碳汇.植物生态学报25(5):594-602.
    方精云,郭兆迪,朴世龙等(2007) 1981-2000年中国陆地植被碳汇的估算.中国科学(D辑), 37(6): 804–812.
    方双喜,周凌晞,藏昆鹏等,光腔衰荡光谱(CRDS)法观测我国4个本底站大气CO2浓度.环境科学学报2011,
    黄耀, 2002.中国陆地和近海生态系统碳收支研究.中国科学院院刊17(2):104-107.
    方圆圆,赵春生,李成才, 2005.利用对流层污染测量仪研究2002年东亚地区CO总量分布特征.大气科学29(3):363-371.
    耿元波,董云社,孟维奇.陆地碳循环研究进展.地理科学进展,2000, 19(4): 297-306.
    季劲钧,黄玫等(2008) 21世纪中国陆地生态系统与大气碳交换的预测研究,中国科学(D辑), 38: 211-223.
    蒋高明,黄银晓,韩兴国.城市与山地森林地区夏秋季大气CO2浓度变化初探.环境科学学报, 1998 ,18 (1) : 108~111.
    吕达仁,陈佐忠,陈家宜等.内蒙古半干旱草原土壤—植被—大气相互作用(IMGRASS)综合研究[J].地学前缘, 2002, 9(2): 295-306.
    李克让,王绍强,曹明奎(2003)中国植被和土壤碳贮量.中国科学(D辑), 33 (1): 72-80.
    李灿,许黎,邵敏等, 2003.一种大气CO2源汇反演模式方法的建立及应用.中国环境科学23(6):610-613.
    刘国华,傅伯杰,方精云(2000)中国森林碳动态及其对全球碳平衡的贡献.生态学报, 20: 733-740.
    刘强,刘嘉麒,贺怀玉.温室气体浓度变化及其源与汇研究进展[J].地球科学进展, 2000, 15(4): 453-460.
    秦瑜,赵春生, 2003.大气化学基础.北京:气象出版社.
    孙立广,朱仁斌,谢周清等, 2001.南极法尔兹半岛CH4浓度的监测.自然科学进展11(9):995-998.
    孙向阳.北京低山区土壤中CH4排放通量的研究[J].土壤与环境,2000, 9(3): 173-176.
    王庚辰,温玉璞主编, 1996.温室气体浓度和排放监测及相关过程.北京:中国环境科学出版社.
    王体健,谢旻,高丽洁等, 2004.一个区域气候-化学耦合模式的研制及初步应用.南京大学学报(自然科学)40(6):711-727.
    徐华,蔡祖聪,李小平等, 2000.冬季节土地管理对水稻土CH4排放季节变化的影响.应用生态学报11:215-218.
    颜鹏,黄健, Draxler R.北京地区SO2污染的长期模拟及不同类型排放源影响的计算与评估.中国科学D辑:地球科学,2005 ,35(增刊I) : 1672176.
    于贵瑞,张雷明,孙晓敏等, 2004.亚洲区域陆地生态系统通量观测研究进展.中国科学D 34(增2):15-29.
    王明星,刘卫卫,吕国涛等.我国西北部沙漠地区大气甲烷浓度的季节变化和长期变化趋势.科学通报, 1989, 9: 684-686.
    王明星,李晶,郑循华,等.稻田甲烷排放及产生、转化、输送机理[J].大气科学, 1998, 22(4): 600-612.
    王木林,程红兵,李兴生等.中国部分清洁地区大气中N2O的浓度.气象学报, 1997, 55(3): 363-370.
    王庚辰. 2002.中国大陆上空CO2的本底浓度及其变化,科学通报,10(47):780~783.
    温玉璞,汤洁,邵志清等. 1997.瓦里关山大气二氧化碳浓度变化及地表排放影响的研究.应用气象学报,8:129~136.
    温玉璞,邵志清,徐晓斌等. 1993.青海瓦里关大气CO2本底浓度变化规律的观测研究.中国环境科学,13(6):420~424.
    温玉璞,徐晓斌,邵志清等. 1993.用非色散红外气体分析仪进行大气CO2本底浓度的测量.应用气象学报,4(4):476~480.
    藏昆鹏,周凌晞,方双喜等,新型CO2和CH4混合标气标校流程及方法研究,环境化学,2011,2,
    藏昆鹏, CO2和CH4分析标校流程及方法研究(硕士学位论文),中国气象科学研究院, 2010
    张美根,徐永福,张仁健等, 2005.东亚地区春季黑碳气溶胶源排放及其浓度分布.地球物理学报48(1):46-51.
    张东启,张晓春,乜虹等. 2004.瓦里关大气本底观象台CO2、CH4观测过程的质量控制.应用气象学报,15:95-100.
    张仁健,王明星.大气中一氧化碳变化的模拟研究.大气科学, 2001, 25( 6) : 847~ 855
    张仁健,王明星,王跃思,大气甲烷浓度长期变化及未来趋势[J].气候与环境研究,2004,6(1):53~57.
    张晓春,蔡永祥,温玉璞等. 2005.大气CO2标准气浓度标定及采样瓶CO2浓度分析系统.气象科技,33(6):538~542.
    赵亮,李英年,赵新全,等.青藏高原3种植被类型净生态系统CO2交换量的比较.科学通报, 2005. 50 (9) : 926~932.
    赵春生,方圆圆,汤洁,等. MOPITT观测的CO分布规律及与瓦里关地面观测结果的比.应用气象学报, 200? , 18 (1) :3 6一4 1.
    赵玉成,温玉璞,德力格尔等. 2006.青海瓦里关大气二氧化碳本底浓度的变化特征.中国环境科学,(1):1~5.
    郑循华,徐仲均,王跃思,韩圣慧,黄耀,蔡祖聪,朱建国, 2002,开放式空气CO2浓度增高影响稻田-大气CO2静交换的静态暗箱法观测研究,应用生态学报, 13(10):1240-1244
    中华人民共和国气候变化初始国家信息通报.北京:中国计划出版社, 2004. 13~22
    周广胜主编, 2003.全球碳循环.北京:气象出版社.
    周凌晞,汤洁,张晓春等. 1998.气相色谱法观测本底大气中的甲烷和二氧化碳.环境科学学报,18(4):356~361.
    周凌晞,汤洁,温玉璞等. 2002.地面风对瓦里关山大气CO2本底浓度的影响分析.环境科学学报,22(2):135~139.
    周凌晞,张晓春,郝庆菊等. 2006.温室气体本底观测研究.气候变化研究进展,2(2):63~67.
    周凌晞,李金龙,汤洁等. 2004.瓦里关山大气CH4本底变化.环境科学学报,24(1):91~95.
    周凌晞,李金龙,温玉璞等. 2003.瓦里关山大气CO2及其δ13C本底变化.环境科学学报,23(3):295~300.
    周凌晞,温玉璞,李金龙等. 2004.地面风对瓦里关山大气CH4本底浓度的影响分析.应用气象学报,15(3):257-265.
    周凌晞,汤洁,温玉璞等. 1998.瓦里关山大气甲烷本底浓度变化特征分析.应用气象学报,9(4):385~391.
    周凌晞,汤洁, Ernst M,等.中国西部本底大气中CO的连续测量.环境科学, 2001 , 22 (3) : 1~5
    周凌晞,中国大陆地区主要温室气体本底特征研究[学位论文],北京,中国气象科学研究院. 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700