用户名: 密码: 验证码:
甘薯体细胞胚胎再生及遗传转化的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘薯(Ipomoea batatas Lam.)是一种重要的粮食和经济作物,其块根和茎叶所含营养均十分丰富,用途极广,既可以作为人类的粮食、食品和蔬菜,又能作为工业原料和饲料。甘薯遗传上的高度杂合性和多倍性,种间、种内广泛存在的杂交不亲和性和低结实率。严重制约了甘薯生产发展,培育高产、优质、抗逆性强、无病毒、耐储藏的优良甘薯品种,仍是育种工作者的首要任务。常规育种技术在甘薯品种改良方面有其局限性,遗传转化技术在提高甘薯的产量、品质和病虫害抗性方面有很大潜力。
     建立一个有效的再生体系,是遗传转化成功的必备条件。与其它植物相比,甘薯是一种再生比较困难的植物。甘薯的再生频率基因型间差异很大,尚未建立一个基因型适用性较广的植株再生系统。甘薯有1100多个品种,目前被研究过的不过数十种,报道有较高植株再生频率并成功进行遗传转化的甘薯材料仅十余种,如“Jewel”、“White Star”、“栗子香”、“高系14”等。绝大多数甘薯主栽品种的再生频率很低。因而,虽然甘薯的基因工程研究取得了一定的进展,但甘薯至今没有一例转基因植株进入商品化的应用。
     向甘薯基因组中导入外源基因的方法有多种,其中农杆菌介导法最为有效,转入的外源基因多以单拷贝插入,便于育种工作的利用。川薯34,是西南地区的一个优良主栽品种。本试验建立了川薯34等品种较高频率的体细胞胚胎再生体系。在此基础上,利用GUS-intron融合基因的瞬时表达,研究了川薯34有效的遗传转化条件,为进一步通过基因工程改良其品质奠定了良好的基础。主要实验结果如下:
     1.通过对不同植物激素组合及甘薯不同再生途径的比较试验,建立了3个甘薯基因型较高频率的体细胞胚胎再生体系,其中川薯34、川薯8129-4、徐薯18的最高植株再生率分别达到了49.9%、29.7%、14.7%。
     2.从川薯34的体胚苗中,筛选出了L22、L8两个高频体胚发生材料,可以为遗传转化工作提供良好的受体。
     3.通过GUS-intron融合基因的瞬时表达,确定了川薯34有效的遗传转化条件。优化后的遗传转化条件为:用O.D.值为0.5的农杆菌LBA4404/pIG121菌液侵染川薯34的叶片、叶柄60min,侵染时用超声波辅助处理受体材料1min,在侵染液和共培养培养基中都附
    
    西南农业天学硕下学位论又
    摘要
    加200腼ol/LAS,黑暗下共培养3d。采用此转化条件GUS报告基因瞬时转化频率可达30%
    左右,井可以进一步稳定表达。
Sweet potato is an important food and economic crop. There is abundant nutrition in their storage root and leaf. It is widely used for man's food and materials of industry. The nucleus type of sweet potato is homogenous hexaploid. The chromosome background is rather complex. The self-crossing is sterile. Crossing in specific and interspecific crossing are non-compatible or leading to low seed ratio in sweet potato. Conventional breeding technology has localization in variety improvement while transgenic technology has great potential to increase the production,
    improve quality and resist plant diseases and pests.
    An efficient regeneration system is very important for successful transformation. Comparing
    with other plants, regeneration of sweet potato is very difficult. The difference of regeneration frequency is great in different genotypes. There are about 1100 varieties while only ten of them have been studied. Several varieties have been reported for high regeneration frequency and been successful transformed, such as Jewel, White Star, Lizixiang, Gaoxi14 and so on. Most of popular varieties have such a low regeneration frequency that there is not one transgenic plant that has been commercially used though the genetic engineering have made much progress.
    There are several methods to introduce foreign gene into the genome of sweet potato, but only the Agrobacterium-mediated transformation is most effective. The foreign gene is transformed in single copy by this means and so convenient for breeding. Chuanshu34 is an excellent variety in southwest area. This experiment established high frequency regeneration system of Chuanshu34, Chuanshu8129-4 and Xushu18 via somatic embryogenesis, optimized the transformation conditions of Chuanshu34 by transient expression of GUS-intron gene. These work founded the base for next step to improve quality of sweet potato by gene engineering technology.
    
    
    The primary results are listed as following:
    1.Established 3 high frequency somatic embryo regeneration systems of different genotype by testing different plant hormones. The regeneration frequency of Chuanshu34, Chuanshu8129-4, Xushu18 was 49.9%, 29.7%, 14.7% respectively.
    2.L22 and L8 with high frequent embryogenesis, the two lines were chosen from plantlets of Chuanshu34. Explants from them were good for genetic transformation.
    3. Optimized the transformation factors through GUS-intron transient expression. The most effective transformation factors were detailed as below:
    Inoculation bacterium was O.D.600=0.5. The explant was leaf or petiole of Chuanshu34, inoculation time was 60 min, and the explant was sonicated for 1 min to increase the tansformation frequency. Inoculation bacterium and co-cultivated medium were added 200umol/LAS. Co-culture took place in dark for 3 days. Transient expression frequency detected by reporter gene was 30% or so and transgene can steadily express in next step.
引文
1.崔凯荣,戴若兰.植物体细胞胚胎发生的分子生物学.北京:科学出版社,2000.
    2.戴起伟.邱瑞镰,朱崇文,等.甘薯生产和科研现状及“九五”育种目标.江苏农业科学.1995,(5):22~25.
    3.高峰,龚一富,林忠平,等.根癌农杆菌介导的甘薯遗传转化及转基因植株的再生.作物学报,2001,27(6):751~756.
    4.郭小丁,伍欣译.通过根癌农杆菌介导获得甘薯转基因植株.国外农学.杂粮作物,1998,18(1):15~17.
    5.江苏徐州甘薯研究中心主编.中国甘薯品种志.北京:农业出版社,1993.
    6.开国银,许明,郑回勇.甘薯遗传转化的研究进展.福建农业大学学报,2001,30(2):158~164.
    7.刘庆昌,翟红,王玉萍.甘薯细胞工程和分子育种的研究现状.作物杂志,2003,6:1~3.
    8.刘庆昌,鲁迪慧,马彪,等.甘薯细胞悬浮培养及有效植株再生.农业生物技术学报,1996,3:238~242.
    9.刘庆昌,陆漱韵.我国甘薯育种的发展方向.作物杂志,1996,(5):12~13.
    10.刘庆昌,罗建钦,周海鹰,等.甘薯高频率体细胞发生及植株再生.农业生物技术学报,1993,1(1):84~89.
    11.陆漱韵,刘庆昌,李惟基.甘薯育种学.北京:中国农业出版社,1998,249~283.
    12.罗红蓉,张勇为,张义正.根癌农杆菌转化甘薯高频率获得抗性愈伤组织的研究.四川大学学报,2002,39:21~24.
    13.王大箴,郗光辉,王建军,等.山东省甘薯推广品种茎尖菜用价值的研究.中国甘薯,1996,8:87~93.
    14.王关林,方宏筠.植物基因工程原理与技术.北京:科学出版社,1998.
    15.王意宏,李洪民,钮福祥.甘薯的营养及化学组成的再认识.中国甘薯,1994,7:214~218.
    16.吴纪中,戴起伟,谢一芝,等.甘薯离体遗传转化研究进展.杂粮作物,2000,20(2):13~17.
    17.阎文昭,吴洁,王大一,等.将水稻半胱氨酸蛋白酶抑制剂(Oryzacystatin Ⅰ)基因导入甘薯品种.分子植物育种,2004,2(2):203~207.
    18.杨英,李合生.甘薯块根抗黑斑病的生理机制.华中农业大学学报,1993,12(2):112~116.
    19.叶彦复,李伯权.全方位提高甘薯质量与效益的方案和实践.中国甘薯,1994,7:77~81.
    20.翟红,刘庆吕.甘薯胚性悬浮细胞遗传转化的研究.中国农业科学,2003,36(5):487~491.
    21.张宝红,丰嵘.甘薯体细胞胚发生和人工种子的制作.西北农业大学学报,1993,21(3):82~86.
    22.张宝红,丰嵘.甘薯叶片和茎段培养直接高频植株再生.科学通报,1993,38(1):72~75.
    23.张宝红.甘薯组织培养与植株再生.西南农业学报,1995,8(3):41~45.
    24.张钰,黄永芬,汪清胤.细胞分裂素生物合成基因转化植物的研究进展.生物技术.1998,
    
    8(4):1~4.
    25.张允刚,郭小丁,唐君,等.脱毒甘薯组织快繁技术的研究.江苏农业科学,1999.4:37~39.
    26. Al-Juboory KH and Skirvin RM.Shoot regeneration from Agrobacterium-transformed sweetpotato in vitro. Sweetpotato Tech.for 21st Century.Tusgekee Univ,, Alabama, USA, 1991,67~71.
    27. Al-Mazrooei S, Bhatti MH and Henshaw GG.Opitimization of somatic embryogenesis in fourteen cultivars of sweet potato [Ipomoea batatas (L.) Lam.]. Plant Cell Reports, 1997,16:710~714.
    28. Belarmino MM, Abe T, Sasahara T.Efficient plant regeneration from leaf calli of Ipomoea batatas (L.) Lam.and its related species. Japan J.Breed, 1992,42:109~114.
    29. Bieniek ME, Harrell RC and Cantliffe DJ.Enhancement of somatic embryogenesis of Ipomoea batatas in solid clutures and prduction of mature somatic embryos in liquid cultures for application to a bioreactor production system. Plant Cell Tiss. Org. Cult., 1995,41:1~8.
    30. Blakesley D, Suad Al-Mazrooei and Henshaw GG. The preservation of embryogenie tissue of sweet potato (Ipomoea batatas): use of sucrose and dehydration for cryoproteetion. Plant Cell Reports, 1995,14:259~263.
    31. Carelli MLD, Skirvin RM and Harry DE.Transformation and regeneration studies of 'Jewel' sweetpotato. Sweetpotato Technology for the 21st Century. Tuskegee University, Alabama, USA, 1992,52~60.
    32. Carswell GK, Locy RD.Root and shoot initiation by leaf, stem and storage root explants of sweet potato. Plant Cell Tissue Organ Culture, 1984,3:229~236.
    33. Cavalcante Alves JM, Sihachakr D, Allot M, et al. Isozyme modifications and plant regeneration through somatic embryogenesis in sweet potato (Ipomoea batatas (L.) Lam.). Plant Cell Reports, 1994,13:437~441.
    34. Chee RP and Cantliffe DJ.Composition of embryogenic suspension cultures of Ipomoea batatas Poir. and production of individualized embryos. Plant Cell Tiss. Org. Cult., 1989,17:39~52.
    35. Chee RP and Cantliffe DJ.Selective enhancement of Ipomoea batatas Poir. embryogenie and non-embryogenic callus growth and production of embryos in liquid culture. Plant Cell Tiss. Org. Cult.,1988,15:149~159.
    36. Chee RP, Schuitheis JR, Cantiffe DJ.Plant recovery from sweet potato somatic embryos. Hortscience, 1990,25:795~797.
    37. Cipriani G, Fuentes S, Bello V, et al. Transgenic expression of rice cyssteine proteinase inhibitors for the development of resistance against sweetpotato feathery mottle virus.
    
    Scientist and Farmer: Partners in research for the 21st century Program Report 1999-2000.Peru: CIP Press, 2001,267-271.
    38. Cipriani G, Michaud D, Brunelle F, et al. Expression of soybean proteinase inhibitor in sweetpotato. CIP Program Report, 1997-1998,271~277.
    39. Dellaporta S,W ,od J and Hicks B.A plant DNA minipreparation:Version Ⅱ .Plant Mol. Biol. Reporter, 1983,1: 19~21.
    40. Desamero NV, Rhodes BB and Decoteau DR , et al.Picolinic acid induced direct somatic embryogenesis in sweetpotato. Plant Cell Tiss. Org. Cult., 1994,37:103~110.
    41. Dhir SK, Oglesby J and Bhagsari AS.Plant regeneration via somatic embryogenesis, and transient gene expression in sweet potato protoplasts. Plant Cell Reports, 1998,17:665~4569.
    42. Dodds JH, Benavides J, Buitron F, et al. Biotechnology Applied to Sweetpotato Improvement.Sweetpotato Tech. For 21st Century. Tusgekee University, Alabama, USA, 1992,7~19.
    43. Dodds JH, Merzodorf C, Zambrano V, et al. Potential use ofAgrobacterium-mediated gene transfer to confer insect resistance in sweetpotato. Sweetpotato Pest Management, A Global Perspective.Westiview Press, 1990,205~220.
    44. Egnin M and Prakash CS. Transgenic sweetpotato (Ipomoea batatas) expressing a synthetic storage protein gene exhibits high levels of total protein and essential amino acid. In vitro, 1997,33(3): 42~52.
    45. Eilers RJ. Cell and tissue manipulations of sweet potato [M,S. Thesis]. Urbana: University of Illinois, 1987.192.
    46. Espinoza NO, Yang MS, Janynes JM, et al. Regeneration of plants of sweet potato (Ipomoea batatas L.) transformed by Agrobacterium rhizogenes containing a synthetic protein gene. Bioessay, 1987,6:261~267.
    47. Gama MICS, Leite RP,Ir, Cordeiro AR, et al. Transgenic sweet potato plants obtained by Agrobacterium tumefaciens-mediated transformation. Plant Cell Tissue and Organ Culture, 1996,46:237~244.
    48. Genevieve Hansen and Martha SW.Recent advances in the transformation of plants. Trends in plant science, 1999,4(6): 226~231.
    49. Gosukonda RM, Prakash CS and Dessai AP.Shoot regeneration in vitro from diverse genotypes of sweetpotato and multiple shoot production per explant. HortSci., 1995,30:1074~1077.
    50. Hiider VA, Gatehouse AMR, Sheerman SE, et al. A novel mechanism of insect resistance engineered into tobacco. Nature, 1987,330:161~163.
    
    
    51. Hrosch RB, Fry JE. Hoffmann D, et al. A simiple and general method for transferring genes into plants. Science, 1985,227:1229~1231.
    52. Jarret RL, Salazar S and Fernandez RZ.Somatic embryogenesis in sweetpotato. HortSci., 1984,19:397~398.
    53. Jefferson R A, Kavanagh T A, Bevan M. GUS fusions: β-glucuronidase as a senstitive and versatile gene fusion marker in higher plants. EMBO J, 1987, 6:3901~3907.
    54. Jefferson R A.Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol. Biol. Rep.,5 (4):387~405.
    55. Johnson RJ,Narvaez GA and Ryan C.Expression of proteinase inhibitors Ⅰ and Ⅱ in transgenic tobacco plants:Effects on natural defense against Manduca Sexta larvae. Proc. Natl. Acad. Sci. USA, 1989,86:9871~9875.
    56. Larkin PJ, Rcowcroft WR. Somaclonal variation-a novel source of variability from cell cultures for plant improvement. Theor.Appl. Genet. 1981,60:197~214,
    57. Lin SM, Peer CR, Chert DM, et al. Breeding goals for sweet potato in Asia and the Pacific-a survey of sweet potato production and utilization.Proe.Am.Soc. Hort.Sci., 1983,42~60.
    58. Liu Qc, Zhai H, Lu DH, et al. An efficient system of embryogenic suspension cultures and plant regeneration in sweetpotato. CIP Program Report, 1997-1998,265~270.
    59. Liu QC,Luo JQ,Zhou HY,et al .High frequency somatic embryogenesis and plant regeneration in sweetpotato, Ipomoea batatas(L.) Lam.J.Agr.Biotech.,1993,1(1):84~89.
    60. Liu Qingchang,Mi Kaixia, Lu Dihui,et al.Establishment of Embryogenic Cell Suspension Cultures in Sweet Potato, Ipomoea batatas(L.)Lam..作物学报, 1997,23(1):22~26.
    61. Michaud DL, Cantin L, Raworth DA, et al. Assessing the stability of cystatin/cysteine proteinase complexes using mildly-denaturing gelatin/polyacrylamide gel electrophoresis. Electrophoresis, 1996,17:74~79.
    62. Mordn R,Garcia R,López A,et al.Transgenic sweet potato plants carrying the delta-endotoxin gene from Bacillus thuringiensis var.tenebrionis.Plant Science, 1998,139:175~184.
    63. Muhammad Herman, Dinar Ambarwati A and Sisharmini A.Developing transgenie sweetpotato for resistance to insect pests and diseases. CIP Program Report, 1997-1998,191-199.
    64. Murata T, Okada Y, Fukuoka H, et al. Genetic transformation of sweetpotato.Proc.1st Chinese-Japanese Symp.Sweetpotato & Potato.Beijing: Beijing Agri.Univ.Press, 1995,369~374.
    65. Newell CA, Lowe JM, Merryweather A, et al. Transformation of sweet potato (Ipomoea batatas Lam.) with Agrobacterium tumefaciens and regeneration of plants expressing cowpea
    
    trysin inhibitor and snowdrop lectin. Plant Science, 1995,107:215~227.
    66. Nishiguchi M, Uehara Y and Komaki.Stable transformation of sweet potato by electroporation. In vitro, 1992,28(3): 122~126.
    67. Otani M, Mii M, Handa T, et al. Transformation of sweet potato (Ipomoea batatas (L.) Lam.) plants by A grobacterium rhizogens. Plant Science, 1993,94:151~159.
    68. Otani M, Shimada T, Kamada H, et al. Fetile transgenic plants of Ipomoea trichocarpa Ell. Induced by different strains of Agrobacterium rhizogenes. Plant Sci., 1996,116:169~175.
    69. Otani M, Wakita Y and Shimada T.Genetic transformation of sweet potato (Ipomoea batatas (L.) Lam.) by Agrobacterium tumefaciens.Proc.Ⅳ IS on In Vitro Cult. & Hort. Breeding, 1995, 193~195.
    70. Padmanabhan K, Cantliffe DJ and Harrell RC.A comparison of shoot-forming and non-shoot-forming somatic embryos of sweet potato [Ipomoea batatas (L.) Lam.] using computer vision and histological analyses. Plant Cell Reports, 1995,17:685~692.
    71. Padmanabhan K, Cantliffe DJ and Harrell RC.Computer vision analysis of somatic embryos of sweet potato [lpomoea batatas (L.) Lam.] for assessing their ability to convert to plants. Plant Cell Reports, 1998,17:681~684.
    72. Porobo-dessai A, Blay ET, Prakash CS, et al. Expression of GUS gene with an intron in sweet potato and garden egg plant. In vitro, 1992,28(3): 112~123.
    73. Prakash CS, Varadarajan U.Genetic transformation of sweet potato by particle bombardment. Plant Cell Reports, 1992,11:53~57.
    74. Prakash CS, Zheng Q and Porobo-dessai A.Development of transgenic sweetpotato and analysis of transgene expression. HortScience, 1995,30(3): 441.
    75. Prakash CS, Zheng Q and Porobo-dessai A.High efficiency transformation and regeneration of transgenic sweetpotato plants. In vitro, 1995,31(3): 22~28.
    76. Sakai T.Production of transformant of lpomoea triloba L.Proc. of the 1st Chinese-Japanese Symp. On Sweet potato and Potato.Beijing: Beijing Agro.Univ.Press, 1995,375~380.
    77. Sihackakr D, Haicour R, Cavalcante AJM, et al. Plant regeneration in sweetpotato (Iporaoea transformed by a chimeric isopentenyl transferase gene. Plant Physiol., 1989,91:808~811.
    78. Suseelan KN, Anjali B, Mathews H.Agrobacterium tumefaciens-induced tumor formation on some tropical dicot and monocot plants. Current Science, 1987,56(17): 888~889.
    79. Trick HN, Finer JJ. Sonication-assisted Agrobacterium mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Reports 1998,17: 482~488.
    80. Wakita Y, Otani MC,Mori M,et al.A tobacco microsomal ω-3 fatty acid desaturase gene
    
    increases the linolenic acid content in transgenic sweet potato(Ipomoea batatas).Plant Cell Reports, 2001.20:244~249.
    81. X Liu JR and Cantliffe DJ.Somatic embryogenesis and plant regeneration in tissue cultures of sweetpotato (Ipomoea batatas Poir.).Plant Cell Rep., 1984,3:112~115.
    82. Yeh KW, Lin MI, Tuan SJ,et al.Sweetpotato (Ipomoea batatas) trypsin inhibitors expressed in transgenic tobacco plants confer resistance against Spodoptera litura. Plant Cell Reports, 16:696~699.
    83. Zhang DP, Golmirzaie A, Cipriani G, et al. Developing weevil resistance in sweet potato with genetic transformation. CIP Program Report, 1995-1996,205~210.
    84. Zheng Qi, Dessai AP and Prakash CS.Rapid and repetitive plant regeneration in sweetpotato via somatic embryogenesis. Plant Cell Reports, 1996,15:381~385.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700