用户名: 密码: 验证码:
转基因抗虫棉对土壤生态系统影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以中国农业科学研究院棉花研究所(河南,安阳)的棉花农场中同一土壤类型一直种植传统非转基因常规棉(CK)和2块连续多年种植转基因抗虫棉的棉田(T-1、T-2)为对象,于棉花生长的苗期、蕾期、花铃期和吐絮期分别采集棉田表层土壤(0—20 cm),研究和比较了3块棉田土壤中可培养微生物数量、细菌群落多样性、微生物代谢功能多样性、无脊椎动物群落以及土壤线虫群落结构的变化。以2组转基因抗虫棉和其亲本常规棉为实验材料,研究转基因抗虫棉根系分泌物的成分及其对枯萎病菌生长的影响,分析转基因抗虫棉及其亲本常规棉受病原菌侵染后的生理生化特性的变化,构建转基因抗虫棉受枯萎病菌诱导后的抑制差减cDNA文库,探讨棉花抗枯萎病所涉及的信号转导、参与抗病反应的相关基因的种类与数量。以下为主要研究结果:
     (一)转基因抗虫棉对土壤微生物群落数量和多样性的影响
     随着棉花生长期的不同,棉田土壤中细菌、真菌、放线菌、反硝化细菌、亚硝化细菌和固氮菌数量都呈显著性季节变化。在全年采样过程中,不同棉田土壤中细菌、真菌、好气性固氮菌、反硝化细菌及亚硝化细菌的数量变化规律基本一致,而不同的微生物种群在生长期间的变化规律则不同。但是,与常规棉田(CK)相比,连续多年种植转基因抗虫棉(T-1、T-2)对土壤微生物群落中上述各类微生物数量没有显著影响。
     采样PCR-DGGE的方法,分析了3块棉田土壤中细菌群落多样性,结果表明与种植常规棉相比,不同年限种植转基因抗虫棉对土壤细菌群落构成和多样性没有产生明显影响,而不同采样时期对棉田土壤细菌群落构成和多样性具有明显影响。
     采用Biolog ECO平板测定了各棉田土壤微生物群落代谢特征,结果表明长期种植转基因抗虫棉在土壤微生物活性及功能多样性方面未见显著差异,但不同采样时期对土壤微生物存在一定影响。主成分分析显示糖类和酯类物质是该试验点土壤微生物主要利用的碳源,但不同采样时期微生物所利用的糖类和酯类物质各不相同,可作为区分各棉花时期对微生物影响的依据。
     (二)转基因抗虫棉对土壤动物数量和多样性的影响
     采用改良的Tullgren法收集3块棉田土壤中的中小型无脊椎动物种群,2年8次采样结果表明,2种转基因抗虫棉田和常规棉田中的土壤中小型无脊椎动物的群落构成一致,没有产生明显变化。广义混合线性模型分析证明,与种植常规棉相比,长期种植转基因抗虫棉对土壤中小型无脊椎动物的数量、群落多样性指数没有显著的影响,但是,随着棉花生长期的不同,棉田土壤无脊椎动物数量和多样性都呈显著性季节变化,并且各棉田中的土壤无脊椎动物多样性指数在棉花整个生长期内变化趋势一致。弹尾目、蜱螨目和后孔寡毛目在综合主成分中得分较高,为土壤无脊椎动物群落中的主导因子,可作为本地区未来转基因抗虫棉环境影响监测的指示物种。
     采用蔗糖梯度离心法研究了常规棉田和2种转基因抗虫棉田土壤中线虫群落组成,结果表明与种植常规棉相比,长期种植转基因抗虫棉对土壤各营养团体线虫的数量和线虫多样性都没有显著性影响,但是不同采样时期对其有显著影响。不同年限种植转基因抗虫棉田中的土壤线虫的群落结构组成没有发生明显变化。转基因抗虫棉田和常规棉田中土壤线虫成熟指数和植物寄生指数在各采样时期没有显著性差异,说明种植转基因抗虫棉对土壤自由生活线虫和植物寄生线虫没有显著影响。
     (三)转基因抗虫棉对棉花枯萎病抗性下降及其机理研究
     2种转基因抗虫棉对棉花枯萎病菌的抗性低于亲本常规棉,转基因抗虫棉的根系分泌物对枯萎病菌孢子萌发和菌丝生长均表现出显著的促进作用。棉花根系分泌物中检测出烷烃类、醇类、酸类、酯类、苯酚类、醛酮类、烯烃类、杂环类等8类物质。与亲本常规棉相比,转基因抗虫棉根系分泌物的种类及相对含量减少、出现某些烷烃类和减少某些特异物质这3种情况。
     采用扫描电镜研究了棉花苗期气孔结构,与亲本常规棉相比,转基因抗虫棉叶片气孔密度发生了显著降低,而气孔大小发生显著增加。枯萎病菌侵染后,转基因抗虫棉体内中的各种生理生化指标都发生了显著性变化,其中SOD酶、MDA和可溶性蛋白的含量较亲本显著升高,而POD酶、PAL和可溶性糖的含量较亲本显著下降。
     转基因抗虫棉和亲本常规棉花受病菌侵染后许多基因都发生了显著的变化,多数为上调基因。转基因棉花和常规棉花受枯萎病菌诱导的反应基因的种类和数量都有明显的差异:亲本常规棉受病菌侵染后发生上调的一些基因类型主要是涉及生物过程功能和分子功能,而受病原菌侵染后转基因抗虫棉体内中的上述基因功能的表达受到相应的抑制。枯萎病菌诱导后,转基因抗虫棉和常规棉体内中过氧化氢酶、乙醇脱氢酶、p-半乳糖苷酶和叶绿素A-B结合蛋白基因表达量都发生了显著性升高,但是病菌诱导后常规棉体内中上述各种酶基因表达量显著高于转基因抗虫棉。
     (四)转基因抗虫植物对土壤生态系统影响的监测技术指南
     本技术指南涵盖了转基因抗虫植物对土壤生态系统影响的布点采样、监测指标、监测技术、数理统计及结果评估等监测技术内容。可用于监测转基因抗虫植物对土壤生态系统影响。
According to the different growth stages of cottons, we collected soil samples (0-20 cm) at seedling, budding, boll forming and boll opening stage during the year 2009 and 2010, and studied the population of culturable microorganisms, the diversity of bacterial community, the functional diversity of microbial metabolism, the community structure of invertebrates as well as soil nematode in the three different cotton fields at a cotton farm in China Cotton Institution of Agricultural Scientific Academy (Anyang, Henan Province) where non-transgenic field had been planted all along and other two cotton fields where transgenic insect-resistant cotton had been planted since 1997,2002 respectively. Two kinds of transgenic insect-resistant cottons and their parental cottons as the experimental materials, the composition of root exudates from transgenic cottons and conventional cottons and the effects on the growth of Fusarium oxysporum were studied, the changes of physiological and biochemical characteristics of transgenic cottons and conventional cottons after infection by the pathogen were analyzed and the SSH cDNA libraries were also constructed to study the type and quantity of disease resistance related genes of transgenic cotton induced by Fusarium oxysporum. The results show that:
     (1) Effects of transgenic insect-resistant cottons on the population and diversity of soil microbial community
     There were no significant differences in the number of bacterial, actinomycetes, fungal, azotobacter, denitrobacteria, nitrosobacteria and the diversity indices of soil microbial in two transgenic insect-resistant cotton fields compared with that of the non-transgenic cotton field, but significantly seasonal variation in the number of each microbial and diversity indices of microbial in all three cotton fields. The populations and diversity indices of microbial have the similar tendency of changes during the whole growing period in three cotton fields, while change rules of different microbial population differs in the growth period.
     The diversity of soil bacterial in the three cotton fields was analyzed by PCR-DGGE method. The results showed that the different planting years of transgenic insect-resistant cottons have no significant effects on the composition and diversity of soil bacterial community compared to the cultivation of conventional cotton, but different sampling time has significant effects on the composition and diversity of soil bacterial community.
     The metabolic characteristics of soil microbial communities in the cotton fields were determined using Biolog-ECO plate. The results showed that long-term cultivation of transgenic insect-resistant cottons has no significant effects on the functional diversity of microbial activity, but different sampling time has some effects. Principal component analysis showed that the sugars and esters were the main carbon sources of soil microbial in these fields, but the use of sugars and esters by soil microbial were different at different sampling time, which can be used as basis to distinguish the effects of different cotton growth stages.
     (2) Effects of transgenic insect-resistant cottons on the population and diversity of soil fauna community
     Soil meso-and microarthropodas were collected from the soil samples with the modified Tullgren method to monitor environmental impact of long-term cultivation of transgenic insect-resistant cotton in field conditions. The data from 8 sampling times during the 2 years showed that it was similar for community composition of soil meso-and microarthropodas in two transgenic cotton fields and one conventional cotton field, and there were no significant variations. The generalized linear mixed model (GLMM) analysis of the 2-year data on soil arthropods showed that no significant difference was found between cotton fields in individual number and the community diversity indices of the soil meso-and microarthropodas of the main soil arthropod groups, but significant seasonal variation was observed in the individual numbers and the diversity indices of the main soil meso-and microarthropodas. The principal component analysis suggested that Collembola, Acarina and Opisthopora were relatively higher in value and could be cited as important indicator organisms to monitor environmental impacts of transgenic plants in the future in this region.
     The soil nematodes were collected from soil using sugar flotation and centrifugation method. The ecological index such as species richness, abundance, diversity index and trophic group index were analyzed. Results showed that there were no significant difference in the individual density and diversity indices of soil nematode in two transgenic cotton fields compared with that of the non-transgenic cottons, but had significant seasonal variation in the individual density of main trophie groups and diversity indices of nematode in all three cotton fields. There were no significant changes for community composition of soil nematodes in two transgenic cotton fields and one conventional cotton field. In addition, no significant difference was found between cotton fields in the indices of the functional structure of the nematode communities (Maturity Index, Plant Parasite Index and EMI index), which indicated no significant effect of continuously planting transgenic insect-resistant cottons on free-living marine nematodes and plant parasite nematodes.
     (3) The mechanism for attenuation of disease resistance in transgenic insect-resistant cotton to Fusarium wilt
     The resistance of the two insect-resistant cotton lines to F. oxysporum was inferior to the parental lines, and that their root exudates promoted fungal spore germination and mycelial growth. Alkanes, alcohols, acids, esters, phenols, aldehydes, ketones, olefins and heterocyclic were detected in root exudates of cottons. Compared with the parent conventional cottons, the kinds and relative contents of root exudates decreased, some hydrocarbons appeared and some specific substances reduced in transgenic insect-resistant cottons.
     The structure of leaf pore in cotton seedling stage was studied by scanning electron microscopy. Compared with the parent conventional cottons, the stomatal density significantly reduced, and the pore size significantly increased in transgenic insect-resistant cottons. There were significant changes of physiological and biochemical indicators in transgenic insect-resistant cottons inoculated with cotton F.oxysporum, in which SOD activity, MDA and soluble protein content were significantly higher, and POD enzymes, PAL enzymes and soluble sugar content decreased significantly compared with the parents.
     Many genes of transgenic insect-resistant cottons and parental cottons have significantly changed when inoculated with cotton F.oxysporum and mostly were up-regulated genes. There were significant differences in the types and numbers of response genes of transgenic insect-resistant cottons inoculated with cotton F.oxysporum compared to conventional cottons. Some types of up-regulated genes in parental cottons infected by pathogen mainly referred to the function of biological processes and molecular, and they were inhibited in the expression of transgenic insect-resistant cottons after infected by pathogen. The expressions of catalase, alcohol dehydrogenase,β-galactosidase and chlorophyll AB binding protein gene were significantly increased in transgenic insect-resistant cottons and conventional cottons infected by pathogen. The expression of the above genes in conventional cotton infected by pathogens was significantly higher than that of transgenic insect-resistant cottons.
     (4) Technical guide for monitoring effect of transgenic insect-resistant plants on soil ecosystem
     This technical guide covers the distribution of sampling, monitoring indicators, monitoring techniques, mathematical statistics and assessment of results in monitoring effect of transgenic insect-resistant plants on soil ecosystems. It can be used for monitoring the effect of transgenic insect-resistant plants on soil ecosystems.
引文
Ahl Goy P, Warren G, White J, Pivalle L, Fearing, PL, Vlachos D. Interaction of insect tolerant maize with organisms in the ecosystem. Mitteilungen des Biologischen Bundesamts fur Forst-und Landwirschaft, 1995,309,50-53.
    Ahmad A, Wilde GE, Zhu KY. Detectability of coleopter an specific Cry3Bb1 protein in soil and its effect on nontarget surface and below-ground arthropods. Environmental Entomology,2005,34,385-394.
    Al-Deeb M.A., Wilde G.E., Blair J.M., Todd T.C. Effect of Bt corn for corn rootworm control on nontarget soil microarthropods and nematodes. Environmental Entomology,2003,32,859-865.
    Andow DA, Zwahlen C. Assessing environmental risks of transgenic plants. Ecology letters,2006,9, 196-214.
    Arbjrk C. Effect of the insecticide deltamethrin on benthic macrosoil invertebrates:Field and laboratory studies. Rep.2004:8 Dep. of the Environment Assessment, Swedish University of Agriculture Sciences, Alnarp, Sweden.2004.
    Ayo-Odunfa VS. Free amino acids in the seed and root exudates in relation to the nitrogen requirements of rhizosphere soil Fusaria. Plant and Soil,1979,52,491-499.
    Bakonyi G, Szira F, Kiss I, Villanyi I, Seres A, Szekacs A. Preference tests with collembolas on isogenic and Bt-maize. European Journal of Soil Biology,2006,42, S132-S135.
    Bais HP,Weir TL, Perry LG, Gilroy S, Vivanco JM. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant, Biology,2006,57,233-266.
    Baumgarte S, Tebbe CC. Field studies on the environmental fate of the Cryl Ab ift-toxin produced by transgenic maize (MON810) and its effect on bacterial communities in the maize rhizosphere. Molecular Ecology,2005,14,2539-2551.
    Baute TS, Sears MK, Schaafsma AW. Use of transgenic Bacillus thuringiensis Berliner corn hybrids to determine the direct economic impact of the European corn borer (Lepidoptera:Crambidae) on field corn in Eastern Canada. Journal of Economic Entomology,2002,95,57-64.
    Bertin C, Yang X, Weston LA. The role of root exudates and allelochemicals in the rhizosphere. Plant and Soil,2003,256,67-83.
    Booth JA. Gossypaum harsutum tolerance to Verticillium ablo-atrum infection I. Amino acids exudation from aseptic roots of tolerant and susceptible cotton. Phytopathology,1969,59,43-46.
    Birch ANE, Wheatley RE. GM pest-resistant crops:assessing environmental impacts on non-target organisms. Issues in Environmental Science and Technology,2005,21,31-54.
    Bitzer RJ, Rice ME, Pilcher CD, Pilcher CL, Lam W. Biodiversity and community structure of epedaphic and euedaphic springtails (Collembola) in transgenic rootworm Bt corn. Environmental Entomology,2005, 34,1346-1376.
    Blair JM, Bohlen PJ, Freckman DW. Soil invertebrates as indicators of soil quality. In:Doran, J.W., Jones, A.J. (Eds.), Methods for Assessing Soil Quality. SSSA Special Publication No.49. Soil Science Society of America, Madison, WI, pp,1996,283-301.
    Brusetti L, Francia P, Bertolini C, Pagliuca A, Borin S, Sorlini S, Abruzzese A, Sacchi G., Viti C, Giovannetti L, Giuntini E, Bazzicalupa M, Daffonchio D. Bacterial communities associated with the rhizosphere of transgenic Bt 176 maize (Zea mays) and its non-transgenic counterpart. Plant and Soil, 2004,266,11-21.
    Buxton E, Root W. Exudates from banana and their relationship to strains of the Fusarium causing Panama wilt. Ann. Appl. Biol.,1962,50,269-282.
    Cattaneo MG, Yafuso C, Schmidt C, Huang C, Rahman M, Olson C, Kirk C E, Orr BJ, Marsh SE, Antilla L, Dutilleul P, Carriere Y. Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield. Proceedings of the National Academy of Sciences of the United States of America,2006,103,7571-7576.
    Chen DH,Ye GY,Yang CQ,Chen Y,Wu YK. Effect after introducing Bacillus thuringiensis gene on nitrogen metabolism in cotton. Field Crops Research,2004,87,235-244.
    Clark BW, Prihoda KR, Coats JR. Subacute effects of transgenic CrylAb Bacillus thuringiensis corn litter on the isopods Trachelipus rathkii and Armadillidium nasatum. Environmental Toxicology and Chemistry, 2006,25,2653-2661.
    Claudius GR, Mehrotra RS. Root exudates from lentil (Lens culinaris medic) seedlings in relation to wilt disease. Plant and Soil,1972,38,315-320.
    Conner AJ, Glare TR, Nap JP. The release of genetically modified crops into the environment. Part II. Overview of ecological risk assessment. Plant Journal,2003,33,19-46.
    Cortet J, Griffiths BS, Bohanec M, Demsar D, Andersen MN, Caul S, Birch ANE, Pernin C, Tabone E, Vaufleury A. Evaluation of effects of transgenic Bt maize on microarthropods in a European multi-site experiment. Pedobiologia,2007,51,207-218.
    Cowgill SE, Atkinson HJ. A sequential approach to risk assessment of transgenic plants expressing protease inhibitors:effects on nontarget herbivorous insects. Transgenic Research,2003,12,439-449.
    Crecchio, C., Stotzky, G.. Insecticidal activity and biodegradation of the toxin from Bacillus thuringiensis subsp. kurstaki bound to humic acids from soil. Soil Biology and Biochemistry,1998,30,463-470.
    Crecchio C, Stotzky G. Biodegradation and insecticidal activity of the toxin from Bacillus thuringiensis subsp. kurstaki bound on complexes of montmorillonite-humic acids-Al hydroxypolymers. Soil Biology and Biochemistry,2001,33,573-581.
    Dale PJ, Clarke B, Fontes EMG. Potential for the environmental impact of transgenic crops. Nature Biotechnology,2002,20,567-574.
    Daud MK, SunYQ, Dawood M, Hayat Y, Variath MT, Wu YX, Mishkat U, Salahuddin Najeeb U, Zhu. Cadmium-induced functional and ultrastructural alterations in roots of two transgenic cotton cultivars. Journal of Hazardous Materials,2009,161,463-473.
    Devare M, Londono RLM, Thies JE. Neither transgenic Bt maize (MON863) nor tefluthrin insecticide adversely affect soil microbial activity or biomass:A 3-year field analysis. Soil Biology & Biochemistry, 2007,39,2038-2047.
    Donegan KK, Palm CJ, Fieland VJ, Porteous LA, Ganio LM, Schaller DL, Bucao LQ, Seidler RJ. Changes in levels, species, and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var. kurstaki endotoxin. Applied Soil Ecology,1995,2,111-124.
    Dubelman S, Ayden BR, Bader BM, Brown CR, Jiang C, Vlachos D. Cryl Ab protein does not persist in soil after 3 years of sustained Bt corn use. Environmental Entomology,2005,34,915-921.
    Donegan KK, Shaller DL, Stone JK, Ganio LM, Reed G, Hamm PB, Seidler RJ. Microbial populations, fungal species diversity and plant pathogen levels in field plots of potato plants expressing the Bacillus thuringiensis var. tenebrionis endotoxin. Transgenic Research,1996,5,25-35.
    Dutton A, Romeis J, Bigler F. Assessing the risks of insect resistant transgenic plants on entomophagous arthropods:Bt-maize expressing CrylAb as a case study. Biocontrol,2003,48,611-636.
    European Parliament. Directive 2001/18/EC of the European Parliament and of the Council of 12March 2001 on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC. Official Journal of the European Communities L,2001,106,1-38.
    Fiorito TM, Icoz I, Stotzky G. Adsorption and binding of the transgenic plant proteins, human serum albumin, β-glucuronidase, and Cry3Bbl, on montmorillonite and kaolinite:microbial utilization and enzymatic activity of free and clay-bound proteins. Applied Clay Science,2008,39,142-150.
    Frampton GF, Jansch S, Scott-Fordsmans JJ, Rombke J, Van den Brink PJ. Effects of pesticides on soil invertebrates in laboratory studies:A review and analysis using species sensitivity distributions. Environmental Toxicology and Chemistry,2006,25,2480-2489.
    Graef F, Ghart WZ, Hommel B, Heinrich U, Stachow U, Werner A. Methodological scheme for designing the monitoring of genetically modified crops at the regional scale. Environmental Monitoring and Assessment,2005,111,1-26.
    Griffiths BS, Caul S, Thompson J, Birch ANE, Scrimgeour C, Andersen MN, Cortet J, Messean A, Sausse C, Lacroix B, Krogh PH. A comparison of soil microbial community structure, protozoa, and nematodes in field plots of conventional and genetically modified maize expressing the Bacillus thuringiensis CrylAb toxin. Plant and Soil 2005,275,135-146.
    Griffiths, B.S., Caul, S., Thompson, J., Birch, A.N.E., Scrimgeour, C., Cortet, J., Foggo, A., Hackett, C.A., Krogh, P.H.. Soil microbial and faunal community responses to Bt maize and insecticide in two soils. Journal of Environmental Quality,2006,35,734-741.
    Gupta WSR, Watson S. Ecological impacts of GM cotton on soil biodiversity:Below-ground production of Bt by GM cotton and Bt cotton impacts on soil biological processes. Australian Government Department of the Environment and Heritage, CSIRO Land and Water, pp,2004,1-72.
    Head, G., Surber, J.B., Watson, J.A., Martin, J.W., Duan, J.J.,2002. No detection of CrylAc protein in soil after multiple years of transgenic Bt cotton (Bollgard) use. Environmental Entomology 31,30-36.
    Helassa N, Quiquampoix H, Noinville S, SzponarskiW, Staunton S. Adsorption and desorption of monomeric Bt (Bacillus thuringiensis) CrylAa toxin on montmorillonite and kaolinite. Soil Biology & Biochemistry, 2009,41,498-504.
    Honemann L, Zurbrugg C, Nentwig W. Effects of Bt-corn decomposition on the composition of the soil meso-and macroinvertebrate. Applied Soil Ecology,2008,40,203-209.
    Hopkins DW, Gregorich EG. Detection and decay of the Bt endotoxin in soil from a field trial with genetically modified maize. European Journal of Soil Science2003,54,793-800.
    Icoz I, Saxena D, Andow D, Zwahlen C, Stotzky G. Microbial populations and enzyme activities in soil in situ under transgenic corn expressing Cry proteins from Bacillus thuringiensis. Journal of Environmental Quality,2008,37,647-662.
    Icoz I, Stotzky G. Fate and effects of insect-resistant Bt crops in soil ecosystems. Soil Biology& Biochemistry,2008a,40,559-586.
    Icoz I, Stotzky G. Cry3Bbl protein from Bacillus thuringiensis in root exudates and biomass of transgenic corn does not persist in soil. Transgenic Research,2008b,17,609-620.
    James C. Global Status of Commercialized Biotech/GM Crops. ISAAA Brief,2008,39-2008, Ithaca, NY. .
    Jesus-Hitzschky KRE, Silveira JMFJ. A proposed impact assessment method for genetically modified plants (AS-GMP Method), Environmental Impact Assessment Review,2009,29,348-358.
    Kamilova F, Kravchenko LV, Shaposhnikov AI, Makarova N, Lugtenberg B. Effects of the tomato pathogen Fusarium oxysporum f.sp. radicis-lycopersici and the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudates. Molecular Plant Microbe Interactions,2006,19,1121-1126.
    Kapur M, Bhatia R, Pandey G, Pandey J, Paul D, Rakesh K. A case study for assessment of microbial community dynamics in genetically modified Bt cotton fields. Curr. Microbiol,2010,61,118-124.
    Klaus A. Effects of biotechnology on biodiversity:herbicide-tolerant and insect-resistant GM crops. Trends in Biotechnology,2005,23(8),387-394.
    Knox OGG, Gupta WSR, Nehl DB, Stiller WN. Constitutive expression of Cry proteins in roots and border cells of transgenic cotton. Euphytica,2007,154,83-90.
    Koskella J, Stotzky G. Microbial utilization of free and clay-bound insecticidal toxins from Bacillus thuringiensis and their retention of insecticidal activity after incubation with microbes. Applied and Environmental Microbiology,1997,63,3561-3568.
    Kravchenko LV, Azarova TS, Leonova-Erko El, Shaposhnikov AI, Makarova NM, Tikhonovich LA. Root exudates of tomato plants and their effect on the growth and antifungal activity of Pseudomonas strains. Microbiology,2003,72,37-41.
    Lang A, Arndt M, Beck R, Bauchhenss J, Pommer G. Monitoring of the environmental effects of the Bt gene. Bavarian State Research Center for Agriculture, No.2006/10.2006, Vottinger Strasse 38,85354 Freising-Weihenstephan..
    Lee L, Saxena D, Stotzky G. Activity of free and clay-bound insecticidal proteins from Bacillus thuringiensis subsp. Israelensis against the mosquito Culex pipiens. Applied and Environmental Microbiology,2003, 69,4111-4115.
    Li CL, Zhang X, Wu JB, Liu HF. Effect of Transgenic cotton on microbial community diversity in rhizosphere soil. Journal of Agro-environment Science,2008,27(5),1857-1859.
    Li XG, Liu B, Heia S, Liu DD, Han ZM, Zhou KX, Zheng YP. The effect of root exudates from two transgenic insect-resistant cotton lines on the growth of Fusarium oxysporum. Transgenic Research, 2009,18,757-767.
    Li ZW, Wang ZZ, Xin XJ, Zhang YM, Long KY. Experiments on monitoring pesticide pollution by soil animal community. Research of Environmental Sciences,1999,1,52-56.
    Lilley AK, Bailey MJ, Cartwright C, Turner SL, Hirsch PR. Life in earth:the impact of GM plants on soil ecology? Trends in Biotechnology,2006,24,9-14.
    Lioussanne L, Jolicoeur M, St-Arnaud, M. Effects of the alteration of tomato root exudation by Glomus intraradices colonization on Phytophthora parasitica var. nicotianae zoospores. In:Proceedings of the Fourth International Conference on Mycorrhizae, Aug.10-15, Montreal/Canada, p,2003,291.
    Liu B, Zeng Q, Yan F, Xu H, Xu C. Effects of transgenic plants on soil microorganisms. Plant and Soil,2005, 271,1-13.
    Liu B, Cui JJ, Meng J, Hu WJ, Luo JY, Zheng YP. Effects of transgenic Bt+CpTI cotton on the growth and reproduction of earthworm Eisenia foetida. Frontiers in Bioscience,2009a,14,4008-4014.
    Liu B, Wang L, Zeng Q, Meng J, Hu WJ, Li XG, Zhou KX, Xue K, Liu DD, Zheng YP. Assessing effects of transgenic Cry1Ac cotton on the earthworm Eisenia fetida. Soil Biology & Biochemistry,2009b,41, 1841-1846.
    Llewellyn D, Cousings Y, Mathews A, Hartwecka L, Lyon1 B. Expression of Bacillus thuringiensis insecticidal protein genes in transgenic crop plants. Agriculture, Ecosystems & Environment,1994,49, 85-93.
    Lugtenberg BJJ, Kravchenko LV, Simons M. Tomato seed and root exudate sugars:Composition, utilization by Pseudomonas biocontrol strains and role in the rhizosphere colonization. Environmental Microbiology,1999,1,439-446.
    Lundgren JG, Shaw JT, Zaborski ER. The influence of organic transition systems on beneficial grounddwelling arthropods and predation of insects and weed seeds. Renew Agriculture Food System, 2006,21,227-237.
    Magurran AE. Measuring biological diversity. Oxford, Blackwell Science,2004.
    Manachini B, Lozzia GC. First investigations into the effects of Bt corn crop on Nematofauna. Bollettino di Zoologia Agraria e di Bachicoltura Serie Ⅱ,2002,34,85-96.
    Manachini B, Lozzia GC. Biodiversity and structure on Nematofauna in Bt corn (Prasentation). In: Biodiversity Implications of Genetically Modified Plants. September 7-13, Ascona, Switzerland, p, 2003,32.
    Manachini B, Fiore MC, Landi S, Arpaia S. Nematode species assemblage in Bt-expressing transgenic eggplants and their isogenic control. In:Biodiversity Implications of Genetically Modified Plants. September 7-13, Ascona, Switzerland, p,2003,31.
    Manachini B, Landi S, Fiore MC, Festa M, Arpaia S. First investigations on the effects of Bt-transgenic Brassica napus L. on the trophic structure of the nematofauna. IOBC/WPRS Bulletin,2004,27, 103-108.
    Martikainena E, Haimib J, Ahtiainen J. Effects of dimethoate and benomyl on soil organisms and soil processes-a microcosm study. Applied Soil Ecology,1998,9,381-387.
    Mohamed MS, Sellam MA, Abd-Elrazikl A. Rushdi M.H.. Effect of root exudates of different plants on the incidence of tomato damping-off and Fusarium basal rot of onion. Journal of Pest Science,1983,56, 10-14.
    Moore JC, Walter DE, Hunt HW. Arthropod regulation of micro-and mesobiota in below-ground detrital food webs. Annual Review of Entomology,1988,33,419-439.
    Muarray AH. Effect of simple phenolic compounds of heather(Callunavulgaris) on rumen microbial activity in Vitro. J Chem Ecol,1996,22,1493-1505.
    Naqvi SMA, Chauhan SK. Effect of root exudates on the spore germiantion of rhizosphere and rhizoplane mycoflora of chilli (Capsicum annuum L.) cultivars. Plant and Soil,1980,55,397-402.
    Nobrega FM, Santos IS, Cunha MD, Carvalho AO, Gomes VM. Antimicrobial proteins from cowpea root exudates:inhibitory activity against Fusarium oxysporum and purification of a chitinase-like protein. Plant and Soil,2005,272,223-232
    Oliveira AP, Pampulha ME, Bennetta JP. A two-year field study with transgenic Bacillus thuringiensis maize: Effects on soil microorganisms. Science of the Total Environment,2008,405,351-357.
    Olivain C, Humbert C, Nahalkova J, Fatehi J, L'Haridon F, Alabouvette C. Colonization of tomato root by pathogenic and nonpathogenic Fusarium oxysporum strains inoculated together and separately into the soil. Applied and Environmental Microbiology,2006,72,1523-1531.
    Palm CJ, Schaller DL, Donegan KK, Seidler RJ. Persistencein soil of transgenic plant-produced Bacillus thuringiensis var. kurstaki d-endotoxin. Canadian Journal of Microbiology,1996,42,1258-1262.
    Priestley AL, Brownbridge M. Field trials to evaluate effects of Bt-transgenic silage corn expressing the Cryl Ab insecticidal toxin on non-target soil arthropods in northern New England, USA. Transgenic Research,2009,18,425-443.
    Ream JE, Sims SR, Leach JN. Aerobic soil degradation of Bacillus thuringiensis var. kurstaki HD-73 protein bioactivity. Monsanto Company Laboratory Project MSL 13267 (11), Monsanto, St. Louis, MO,1994.
    Rose RI. Tier-based testing for effects of proteinaceous insecticidal plant-incorporated protectants of non-target arthropods in the context of regulatory risk assessments. IOBC/wprs bulletin,2006,29, 143-149.
    Rui YK, Yi GX, Zhao J, Wang BM, Li ZH, Zhai ZX, He ZP, Li Q. Changes of Bt toxin in the rhizosphere of transgenic Bt cotton and its influence on soil functional bacteria. World Journal of Microbiology and Biotechnology,2005,21,1279,1284.
    Sanvido O, Widmer F, Winzeler M, Bigler F. A conceptual framework for the design of environmental post-market monitoring of genetically modified plants. Environment Biosafety Research,2005,4,13-27
    Sanvido O, Stark M, Romeis J, Bigler F. Ecological impacts of genetically modified crops:experiences from ten years of experimental field research and commercial cultivation. Swiss Expert Committee for Biosafety. ART-Schriftenreihe,2006,1,1-84, Zurich..
    Saxena D, Stotzky G. Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil. Soil Biology & Biochemisty,2001a,33,1225-1230.
    Saxena D, Stotzky G. Bt corn has a higher lignin content than non-Bt corn. American Journal of Botany, 2001b,88,1704-1706.
    Schmitzi G, Bartsch D, Pretscer P. Selection of relevant non-target herbivores for monitoring the environmental effects of Bt maize pollen. Environment Biosafety Research,2003,2,117-132.
    Scheffknecht S,Mammerler R, Steinkellner S, Vierheilig H. Root exudates of mycorrhizal tomato plants exhibit a different effect on microconidia germination of Fusarium oxysporum f.sp. lycopersici than root exudates from non-mycorrhizal tomato plants. Mycorrhiza,2006,16,365-370.
    Scheffknecht S, St-Arnaud M, Khaosaad T, Steinkellner S, Vierheilig H. An altered root exudation pattern through mycorrhization affecting microconidia germination of the highly specialized tomato pathogen Fusarium oxysporum f.sp. lycopersici (Fol) is not tomato specific but also occurs in Fol non-host plants. Canadian Journal of Botany,2007,85,347-351.
    Sims SR, Holden LR. Insect bioassay for determining soil degradation of Bacillus thuringiensis subsp. kurstaki CryIA(b) protein in corn tissues. Environmental Entomology,1996,25,659-664.
    Siegrid S, Roswitha M, Horst V. Germination of Fusarium oxysporum in root exudates from tomato plants challenged with different Fusarium oxysporum. European Journal of Plant Pathology,2008, DOI 10.1007/s10658-008-9306-1.
    Siegrid S, Roswitha M, Horst V. Microconidia germination of the tomato pathogen Fusarium oxysporum in the presence of root exudates. Journal of Plant Interactions,2005,1(1),23-30.
    Sims SR, Martin JW. Effect of Bacillus thuringiensis insecticidal proteins Cry1A(b), Cry1A(c), CryⅡA, and CryⅢA on Folsomia candida and Xenylla grisea (Insecta:Collembola). Pedobiologia,1997,41, 412-416.
    Sims SR, Ream JE. Soil inactivation of the Bacillus thuringiensis subsp. kurstaki Cry ⅡA insecticidal protein within transgenic cotton tissue:laboratory microcosm and field studies. Journal of Agricultural and Food Chemistry,1997,45,1502-1505.
    Smith WH, Peterson JL. The influence of the carbohydrate fraction of the root exudate of red clover, Trifolium pratense L.,on Fusarium spp. Isolated from the clover root and rhizosphere. Plant and Soil, 1966,25,413-424.
    Snow AA, Andow DA, Gepts P, Hallerman EM, Power A, Tiedje JM, Wolfenbarger LL. Genetically engineered organisms and the environment:Current status and recommendations. Ecological Applications,2005,15,377-404.
    Steinberg C, Whipps JM, Wood D, Fenlon J, Alabouvette C. Mycelial development of Fusarium oxysporum in the vicinity of tomato roots. Mycological Research,1999,103,769-778.
    Steinkellner S, Mammerler R, Vierheilig H. Microconidia germination of the tomato pathogen Fusarium oxysporum in the presence of root exudates. Journal of Plant Interactions,2005,1,23-30.
    Stone R. China plans $3.5 billion GM crops initiative. Science,2008,321,1279.
    Stotzky G. Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acids. Journal of Environmental Quality,2000,29, 691-705.
    Stotzky G. Release, persistence, and biological activity in soil of insecticidal proteins from Bacillus thuringiensis. In:Letourneau, D.K., Burrows, B.E. (Eds.), Genetically Engineered Organisms: Assessing Environmental and Human Health Effects. CRC Press, Boca Raton, FL, pp,2002,187-222.
    Stotzky G. Persistence and biological activity in soil of the insecticidal proteins from Bacillus thuringiensis, especially from transgenic plants. Plant and Soil,2004,266,77-89.
    Sutherland WJ. Ecological census techniques:A handbook. Cambridge University Press, Cambridge,1996.
    Swift MJ, Heal OW, Anderson JM. Decomposition in terrestrial ecosystems. Blackwell, Oxford,1979.
    Tapp H, Calamai L, Stotzky G. Adsorption and binding of the insecticidal proteins from Bacillus thuringiensis subsp. kurstaki and subsp. tenebrionis on clay minerals. Soil Biology & Biochemistry, 1994,26,663-679.
    Tapp H, Stotzky G. Dot blot enzyme-linked immunosorbent assay for monitoring the fate of insecticidal toxins from. Bacillus thuringiensis in soil. Applied and Environmental Microbiology,1995a,61, 602-609.
    Tapp H, Stotzky G. Insecticidal activity of the toxin from Bacillus thuringiensis subspecies kurstaki and tenebrionis adsorbed and bound on pure and soil clays. Applied and Environmental Microbiology, 1995b,61,1786-1790.
    Tapp H, Stotzky G. Persistence of the insecticidal toxin from Bacillus thuringiensis subsp. kurstaki in soil. Soil Biology & Biochemistry,1998,30,471-476.
    The States Council of China. Regulations on safety of agricultural genetically modified organisms,2001.
    US Environmental Protection Agency (EPA). SAP Report No 2000-07, Sets of scientific issues being considered by the Environmental Protection Agency regarding:Bt plant pesticides risk and benefits assessments.,2001.
    de-Vaufleury A, Kramarz PE, Binet P, Cortet J, Caul S, Andersen MN, Plumey E, Coeurdassier M, Krogh PH. Exposure and effects assessments of Bt-maize on non-target organisms (gastropods, microarthropods, mycorrhizal fungi) in microcosms. Pedobiologia,2007,51,185-194.
    Venkateswerlu G, Stotzky G. Binding of the protoxin and toxin protein of Bacillus thuringiensis subsp. kurstaki on clay minerals. Current Microbiology,1992,25,1-9.
    Vercesi ML, Krogh PH, Holmstrup M. Can Bacillus thuringiensis (Bt) com residues and Bt-corn plants affect life-history traits in the earthworm Aporrectodea caliginosa? Applied Soil Ecology,2006,32,180-187.
    Wang ZZ, Zhang YM, Xia WS, Zheng YY, Hu JL, Xing XJ. Effects of organophosphorus pedticide on community structure of soil animals. Actaecologicca Sinica,1996,16,357-365.
    Wang H, Ye Q, Wang W, Wu L, Wu W. Cry1Ab protein from Bt transgenic rice does not residue in rhizosphere soil. Environmental Pollution,2006,143,449-455.
    Whalley WM, Taylor GS. Influence of pea-root exudates on germination of conidia and chlamydospores of physiologic races of Fusarium oxysporum f. pisi, Annals of Applied Biology,1973,73 (3),269-276.
    Wilson A, Latham J, Steinbrecher R. Genome scrambling-myth or reality? Transformation-induced mutations in transgenic crop plants. EcoNexus,2004, UK.< http://www.econexus.info/>.
    Wolfenbarger LL, Naranjo SE, Lundgren JG, Bitzer RJ, Watrud LS. Bt crop effects on functional guilds of non-target arthropods:A meta-analysis.2008. Plos One 3(5):e2118. doi:10.1371/journalpone.0002118.
    Wu KM, Lu YH, Feng HQ, Jiang YY, Zhao JZ. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science,2008,321,1676-1678.
    Ye SF, Yu JQ, Peng YH, et al. Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates. Plant and Soil,2004,263,143-150.
    Yu L, Berry RE, Croft BA.. Effects of Bacillus thuringiensis toxins in transgenic cotton and potato on Folsomia candida (Collembola:Isotomidae) and Oppia nitens (Acari:Orbatidae). Journal of Economic Entomology,1997,90,113-118.
    Zughart W, Benzler A, Berhorn F, Sukopp U, Graef F. Determining indicators, methods and sites for monitoring potential adverse effects of genetically modified plants to the environment:the legal and conceptional framework for implementation. Euphytica,2008,164,845-852.
    Zwahlen C, Hilbeck A, Howald R, Nentwig W. Effects of transgenic Bt corn litter on the earthworm Lumbricus terrestris. Molecular Ecology,2003,12,1077-1086.
    Zwahlen C, Hilbeck A, Nentwig W. Field decomposition of transgenic Bt maize residue and the impact on non-target soil invertebrates. Plant and Soil,2007,300,245-257.
    白毓谦,方善康,高东,施安辉主编.微生物实验技术.山东大学出版社,1987,4143.
    白耀宇,蒋明星,程家安,等.转Bt基因作物Bt毒蛋白在土壤中的安全性研究.应用生态学报,2003,14(11):2062-2066.
    曹桂艳.外源基因棉抗虫性研究与应用进展.辽宁农业科学,2001,1:33-35.
    陈后庆,刘燕,张祥,等.Bt转基因棉氮代谢生理变化的研究.扬州大学学报,2004,25(4):20-24.
    陈鹏,富德义.长白山土壤动物在物资循环中的作用初步探讨.生态学报,1984,2(4):172-179.
    陈素彬,王朝生,柴友荣,等.转Bt基因棉花抗红铃虫性的鉴定.中国棉花,1997,15(12):5-17.
    陈振华,陈利军,武志杰.转基因作物对土壤生物学特性的影响.土壤通报,2008,39(4):971-976.
    柴强,冯福学.玉米根系分泌物的分离鉴定及典型分泌物的化感效应.甘肃农业大学学报,2007,42(5):43-48.
    崔金杰,雒珺瑜,李树红,等.转基因抗虫棉对土壤微生物影响的初步研究.河北农业大学学报,2005,28(6):73-75.
    崔金杰,夏敬源.转Bt基因棉田昆虫群落多样性及其影响因素研究.生态学报,2000,20(5): 824-829.
    崔金杰,雒珺瑜,李树红,王春义.转基因抗虫棉对土壤微生物影响的初步研究.河北农业大学学报,2005,28(6):73-75.
    邓欣,赵廷昌,高必达,王振,孙福在.转基因抗虫棉叶围细菌种群动态变化及其分子鉴定,中国农业科学.2008,41(8):2310-2317.
    丁志勇,许崇任,王戎疆.转Bt基因抗虫棉与常规棉中几种同工酶的比较——转基因植物安全性评价生理指标初探.生态学报,2001,21(2):332-336.
    冯洁,陈其瑛,石磊岩.棉花幼苗根系分泌物与枯萎病关系的研究.棉花学报,1991,3(1):89-96.
    房慧勇,张桂寅,马峙英.转基因抗虫棉抗黄萎病鉴定及黄萎病发生规律.棉花学报,2003,15(4):210-214.
    郭文文,诸葛玉平,李建勇,宗晓庆,娄燕宏.转基因番茄栽培对土壤生物学特性的影响,山东农业科学.2010,(3):46-50.
    国务院.农业转基因生物安全管理条例.北京.
    韩雪,潘凯,吴凤芝等.不同抗性黄瓜品种根系分泌物对枯萎病病原菌的影响.中国蔬菜,2006(5):13-15.
    韩雪,吴凤芝,潘凯.根系分泌物与土传病害关系之研究综.植物保护科学,2006,22(2):316-318.
    韩丽梅,王树起,鞠会艳,阎飞,李国权,刘金萍,阎吉昌.大豆根分泌物的鉴定及其化感作用的初步研究.大豆科学,2000,19(2):119-125.
    侯英杰,苏晓华,焦如珍,黄秦军,褚延广.转基因银腺杂种杨对土壤微生物的影响.林业科学,2009,45(5):148-152.
    郝黎仁,樊元,郝哲欧.SPSS实用统计分析.北京:中国水利水电出版社,2003,304-315.
    赖欣,张永生,赵帅,李刚,杨殿林.转基因大豆对根际固氮细菌群落多样性的影响,生态学杂志.2010,29(9):1736-1742.
    李长林,张欣,吴建波,刘惠芬.转基因棉花对根际土壤微生物多样性的影响.农业环境科学学报,2008,27(5):1857-1859.
    李东坡,武志杰,梁成华,等.施用缓/控释氮肥对玉米苗期土壤生物学活性的影响.生态与农村环境学报,2006,22(2):21-25.
    李银花,蔡印水,万文明.红叶茎枯病在江西星子县棉田大发生的原因及防治.中国棉花,2005,6:40.
    李长林,张欣,吴建波,刘惠芬.转基因棉花对根际土壤微生物多样性的影响.农业环境科学学报,2008,27(5):1857-1859.
    刘立雄.转基因棉花种植对根际土壤氮转化相关酶的影响.作物杂志,2010,(3):69-71.
    刘苏兰,刘芳,易润华.转Bt基因棉花秸秆对土壤多酚氧化酶、纤维素酶活性和毒素的影响.广西农业科学,2008,39(1):33-36.
    刘佳,刘志华,徐广惠, 王宏燕.抗草甘膦转基因大豆(RRS)对根际微生物和土壤氮素转化的影响.农业环境科学学报,2010,29(7):1341-1345.
    刘文科,杜连凤.转Bt基因作物对丛枝茵根真菌的影响研究进展.中国土壤与肥料,2007,(6):10-13.
    刘娜,周宝利,李轶修,郝晶,付亚文.茄子/番茄嫁接植株根系分泌物对茄子黄萎病菌的化感作用.园艺学报,2008,35(9):1297-1304.
    刘巷禄,张战备,段国琪,王晓民,张慧杰.棉花品种和土壤营养对红叶茎枯病的影响[J].植物保护,2005,31(4):69-71.
    刘素萍,王汝贤,张荣等.根系分泌物中糖和氨基酸对棉花枯萎菌的影响[J].西北农业大学学报,1998,26(6):30-35.
    陆英,贺春萍,吴伟怀,范志伟.转基因香蕉植株对根际土壤微生物的影响.热带作物学报,2008,29(1):38-41.
    吕晓波,王宏燕,刘琦,赵光,李希臣,徐广惠,张俐俐,刘佳,刘昭军,李宁,李铁,雷勃钧.抗草甘膦转基因大豆(RRS)在黑土生态系统种植的安全性研究.大豆科学,2009,28,(2):260-265.
    聂建荣,王建武,骆世明.转基因植物对农业生物多样性的影响.应用生态学报,2003,14(8):1369-1373.
    阮妙鸿,许燕,郑瑶,杨川毓,张积森,阙友雄,陈如凯,张木清.转ScMV-CP基因甘蔗对土壤微生物的影响.热带作物学报,2008,29(2):187-191.
    申建波,张福锁.根分泌物的生态效应.中国农业科技导报,1999,4(1):21-270.
    沈法富,韩秀兰,范术丽.转Bt基因抗虫棉根际微生物区系和细菌生理群多样性的变化.生态学报,2004,24(3):432-437.
    沈平,张永军, 陈洋, 吴孔明, 彭于发,郭予元.Bt棉不同种植年限土壤中Bt基因及其蛋白的残留测定.棉花学报,2008,20(1):79-封三.
    沈敏,芮玉奎.抗虫棉SGK321与亲本石远321种子中棉酚含量的比较[J].中国农业大学学报,2004,9(4):97-98.
    沈法富,韩秀兰,范术丽.转Bt基因抗虫棉根际微生物区系和细菌生理群多样性的变化.生态学报,2004,24(3):432437.
    史刚荣.植物根系分泌物的生态研究.生态学杂志,2004,23(1):97-101.
    唐黎,张永军,吴晓磊.转Bt基因棉花根际细菌与古菌群落结构分析.土壤学报,2007,44(4):718-726.
    孙磊,陈兵林,周治国.麦棉套作Bt棉花根系分泌物对土壤速效养分及微生物的影响.棉花学报,2007,19(1):18-22.
    孙彩霞,陈利军,武志杰,张玉兰,张丽莉.种植转Bt基因水稻对土壤酶活性的影响.应用生态学报,2003,14(12):2261-2264.
    孙彩霞,张玉兰,缪璐,等.转Bt基因作物种植对土壤养分含量的影响.应用生态学报.2006,17(5):943-946.
    孙彩霞,陈利军,武志杰.Bt杀虫晶体蛋白的土壤残留及其对土壤磷酸酶活性的影响.土壤学报,2004,41(5):761-766.
    孙彩霞,陈利军,武志杰,等.种植转Bt基因水稻对土壤酶活性的影响.应用生态学报,2003,14(12):2261-2264.
    孙彩霞,陈利军,武志杰.转Bt基因作物Bt毒素土壤存活特性及与土壤性质的关系研究进展.应用生态学报,2002,13(11):1478-1482.
    王洪兴,陈欣,唐建军,等.释放后的转抗病虫基因作物对土壤生物群落的影响,2002,10(2):232-237.
    王洪兴,陈欣,唐建军,等.转Bt基因水稻秸秆降解对土壤微生物可培养类群的影响[J].生态学报,2004,24(1):89-94.
    王建武,冯远娇,骆世明.转基因作物对土壤生态系统的影响.应用生态学报,2002,13(4):491-494.
    王建武,冯远娇,骆世明.Bt玉米秸秆分解对土壤酶活性和土壤肥力的影响.应用生态学报,2005,16(3):524-528.
    王忠华.转Bt基因水稻对土壤微生态系统的潜在影响. 应用生态学报,2005,16(12):2469-2472.
    王敬国.微生物与根际中物质的循环.北京农业大学学报,1993,19(4):98-105.
    王英,凯撒苏来曼,李进,朱国强,宋铁珊,刘力.不同苗龄伊贝母根系分泌物GC-MS分析.西北植物学报,2009,29(2):0384-0389.
    王敏,孙红炜,武海斌,杨崇良,李宝笃,路兴波.转Bt基因玉米根际微生物和细菌生理群多样性.生态学杂志,2010,29(3):511-516.
    吴辉,郑师章.根分泌物及其生态效应.生态学杂志,1992,12(6):42-47.
    吴传万,杜小凤,徐建明,王伟中.植物源抑菌活性成分研究新进展.西北农业学报,2004,13(3):81-88.
    吴征彬.湖北省抗虫棉和杂交棉区域试验参试品系(组合)的抗性分析. 湖北农业科学,2000,5:36-38.
    吴蔼民,顾本康,夏正俊等. 棉花品种抗枯萎病鉴定的病指校正及抗虫棉抗病性鉴定[J].中国棉花,1998,25(2):16-17.
    吴玉香,沈晓佳,房卫平.陆地棉根系分泌物对黄萎病菌生长发育的影响. 棉花学报,2007,19(4):286-290.
    许光辉,郑洪元.土壤微生物分析方法手册.北京:农业出版社,1986,91-118.
    邢珍娟,王振营,何康来,白树雄.转Bt基因抗虫玉米植株叶腋处花粉中Cry1Ab杀虫蛋白的田间降解动态.应用与环境生物学报,2008,14(2):163-166.
    邢珍娟,王振营,何康来,白树雄.转Bt基因玉米幼苗残体中Cry1Ab杀虫蛋白田间降解动态.中国农业科学,2008,41(2):412-41.
    杨益众,陆宴辉,薛文杰,等.转基因棉花中糖类和游离氨基酸含量的变化对棉蚜泌蜜量及蜜露主要成分的影响.昆虫学报,2005,48(4):491-497.
    尹文英,等著.中国土壤动物.北京:科学出版社,2000.
    尹文英,等著.中国土壤动物检索图鉴.北京:科学出版社,1998.
    阎凤鸣,许崇任,Marie Bengtsson, Peter Witzgall, Peter Anderson转Bt基因棉挥发性气味的化学成分及其对棉铃虫的电生理活性[J].昆虫学报,2002,45(4):425-429.
    叶飞,牛高华,刘惠芬,李长林.转基因棉花种植对根际土壤酶活性的影响.华北农学报,2008,23(4):201-203.
    叶飞,宋存江,陶剑,李长林.转基因棉花种植对根际土壤微生物群落功能多样性的影响.应用生态学报,2010,21(2):386-390.
    于莉,曹际娟,刘志恒,熊国华.转基因油菜籽粕对侧耳生长的影响.沈阳农业大学学报,2007-08,38(4):621-623.
    袁虹霞,李洪连,王烨等.棉花不同抗性品种根系分泌物分析及其对黄萎病菌的影响.植物病理学报,2002,2(2):127-131.
    袁虹霞,李洪连,王烨等.棉花不同抗性品种根系分泌物分析及其对黄萎病菌的影响.植物病理学报,2002,2(2):127-131.
    袁一杨,戈峰.转Bt基因作物对非靶标土壤动物的影响应用生态学报.2010,21(5):1339-1345.
    杨保军,唐健,江云珠,彭于发.转crylAb基因克螟稻对根际可培养细菌类群的影响,生态学报,2009,29(6):3036-3043.
    章炳旺,李恺求,罗定荣,朱世华,王俊,曹中良.安庆市30年来棉花病虫发生演变概况及原因浅析[J].安徽农学通报,2006,12(5):178-179.
    周长发,归鸿.昆虫分类.南京师范大学出版社,1999.
    周晓罡,张绍松,李成云,李进斌,陈艳,黄兴奇.转基因植物种植地土壤微生物区系生态变化及其外源基因的分子检测.西南农业学报,2005,18(6): 734-738.
    周琳,束长龙,黄文坤,朱延明,宋福平,张杰.转双价抗真菌病害基因大豆对根际土壤微生物群落结构的影响.应用与环境生物学报,2010,16(4):509-514.
    祖若夫,胡宝龙,周德庆主编.微生物学实验教程.复旦大学出版,1993.
    朱荷琴,冯自力. 中国抗虫棉品种(系)的抗病性评述. 中国棉花,2005,32(4):23-23.
    张桂寅,马峙英,刘占国等. 我国低酚棉品种资源的黄萎病抗性鉴定. 河北农业大学学报,1999,22(3):20-24.
    张进霞,袁洪水,王士英等.几种氨基酸铜对大丽轮枝菌微菌核形成的抑制作用.棉花学报,2006,18(1):58-59.
    张逸飞,钟文辉,李忠佩,等.长期不同施肥处理对红壤水稻土酶活性及微生物群落功能多样性的影响.生态与农村环境学报,2006,22(4):39-44.
    张美俊,杨武德.转Bt基因棉叶对土壤微生物多样性的影响.中国生态农业学报,2010,18(2):307-311.
    张美俊,杨武德.转Bt基因棉种植对根际土壤生物学特性和养分含量的影响.植物营养与肥料学报,2008,14(1):162-166.
    张运红,黄威,胡红青,刘玉荣,陈迪勤.转Bt基因玉米残体CrylAb蛋白在土壤中的残留动态.华中农业大学学报,2007,486-490.
    张美俊,杨武德,李燕娥.不同生育期转Bt基因棉种植对根际土壤微生物的影响.植物生态学报,2008,32(1):197-203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700