用户名: 密码: 验证码:
Schiff碱Cu(Ⅱ)配合物改性UHMWPE新型耐磨材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高分子量聚乙烯(UHMWPE)卫生无毒和具有极好的耐磨性,是目前理想的医用高分子材料。但在使用过程中也逐渐发现UHMWPE的许多不足之处,如强度和表面硬度低、热变形温度低等缺陷。应用Schiff碱金属离子配合物作为添加剂对UHMWPE耐磨性进行物理改性是最新的一个研究方向。
     本文围绕“Schiff碱Cu(Ⅱ)配合物改性UHMWPE新型耐磨材料的研究”课题中的科学问题,采用销盘试验机(面-面接触),在转速为60 rpm、法向为载荷40 kg±3、实验环境温度为20℃、相对湿度为60%和试验时间为1.5h的干摩擦条件下,对UHMWPE及Schiff碱Cu(Ⅱ)配合物改性UHMWPE盘试样和对偶试样45#钢销展开了试验研究和理论探索。
     首先,对200万、300万、500万、900万分子量UHMWPE进行摩擦磨损试验,并为探讨其磨损机理,用SEM观测其磨损形貌。结果发现,300万分子量UHMWPE的摩擦系数最小;随着分子量的增大,UHMWPE的磨损量呈先减小后增大的趋势,其中300万分子量UHMWPE磨损量最小;磨损形貌也显示存在磨粒磨损和黏着磨损两种磨损机理,其中300万UHMWPE磨损明显最轻;可选择摩擦磨损性能优于其他3种分子量纯UHMWPE的300万分子量UHMWPE作为Schiff碱改性UHMWPE研究的基体原料。
     其次,合成了五种改性UHMWPE研究的添加剂:双水杨醛缩乙二胺Schiff碱Cu(Ⅱ)配合物、双水杨醛1,3-丙二胺Schiff碱Cu(Ⅱ)配合物、双水杨醛1,6-己二胺Schiff碱Cu(Ⅱ)配合物、双水杨醛缩1,2-环己二胺Schiff碱Cu(Ⅱ)配合物和双水杨醛缩邻苯二胺Schiff碱Cu(Ⅱ)配合物;分别测试了五种双水杨醛缩二胺型Schiff碱Cu(Ⅱ)配合物改性300万分子量UHMWPE,且含四种不同质量分数(2.5%、5%、10%、15%)摩擦磨损行为,并为探讨其磨损机理,采用SEM观察磨损表面形貌,采用EDS测定磨损表面的主要元素组成,分析了结构单元对摩擦学改性活性的影响规律,结果发现:添加双水杨醛缩乙二胺、1,3-丙二胺、1,6-己二胺Schiff碱Cu(Ⅱ)配合物能有效改善UHMWPE摩擦磨损性能,在10%质量分数范围内,随Schiff碱Cu(Ⅱ)配合物加入量的增加,改性UHMWPE与钢销配副的摩擦系数和磨损量呈降低的趋势,即含10 wt%添加剂的改性UHMWPE减磨效果最佳,其中摩擦系数和磨损量最小的是含10 wt%的1,6-己二胺Schiff碱Cu(Ⅱ)配合物改性的UHMWPE;而添加双水杨醛缩1,2-环己二胺和邻苯二胺Schiff碱Cu(Ⅱ)配合物改性UHMWPE共混材料的摩擦磨损性能并未改善;双水杨醛缩1,6-己二胺Schiff碱Cu(Ⅱ)配合物改性UHMWPE盘试样和钢销试样主要表现为磨粒磨损机制,并发现其添加剂中的Cu元素发生了选择性转移效应,减小了与其配副的钢销表面的摩擦磨损。研究表明与UHMWPE的亚甲基结构存在相似性的含C原子数更多的双水杨醛缩开链二胺Schiff碱Cu(Ⅱ)配合物的摩擦学改性活性可能最高,双水杨醛缩开链二胺优于缩环二胺和缩芳二胺。
Due to its innocuity and excellent wearability, Ultra-high molecular weight polyethylene(UHMWPE) is ideal for medical polymer materials. But gradually it is found in the course of using UHMWPE that it has many defects, such as low strength, surface hardness, and low heat distortion temperature. Therefore application of Schiff base metal ionic complexes as additives to the physical modification of UHMWPE’s wearability attracts research interest.
     Experimental investigations and theoretical exploration about disc of UHMWPE and modified UHMWPE with Schiff Base Cu(Ⅱ) complexes against pin of 45# steel were developed involved in the scientific problems of project "Study on a new wear resistant material of UHMWPE modified with Schiff base Cu(Ⅱ) complexes" in this paper. It was tested by a pin-disk tester (surface-surface contact) under the condition of dry friction, with the rotational speed of 60 rpm, normal load of 40 kg±3 and testing time of 1.5h, at 20℃and 60% RH (relative humidity).
     Firstly, friction and wear behaviors of UHMWPE with molecular weight of 2 million, 3 million, 5 million, 9 million were tested, and in order to investigate wear mechanism, topographies of worn surface were observed by SEM. It was found that friction coefficient of UHMWPE with molecular weight of 3 million was minimal; with the increase of molecular weight, the weight loss of wear of UHMWPE was first reduced and then increased, and the weight loss of wear of UHMWPE with molecular weight of 3 million was minimum; in addition, abrasive wear and adhesive wear were showed in wear mechanism of UHMWPE, thereinto, the wear of UHMWPE with molecular weight of 3 million was the least. So the UHMWPE with molecular weight of 3 million whose friction and wear properties were better than other three pure UHMWPE can be choosed as basic material in study of Schiff base Cu(Ⅱ) complex modifying UHMWPE.
     Secondly, five additives modifying UHMWPE were successfully synthesized, they are bis-salicylaldehyde-ethylenediamine Schiff base Cu(Ⅱ) complex, bis-salicylaldehyde-1,3-propanediamine Schiff base Cu(Ⅱ) complex, bis-salicylaldehyde-1,6-hexanediamine Schiff base Cu(Ⅱ) complex, bis-salicylaldehyde-1,2-cyclohexanediamine Schiff base Cu(Ⅱ) complex and bis-salicylaldehyde-1,2-benzenediamine Schiff base Cu(Ⅱ) complex; friction and wear behaviors of UHMWPE with molecular weight of 3 million modified by five bis-salicylaldehyde diamine-type Schiff base Cu(Ⅱ) complexes with different content (2.5%, 5.0%, 10%, 15%) were tested respectively, in order to investigate wear mechanism, topographies of worn surface were observed by SEM and the main element composition of the worn surface was determined by EDS, and the law of tribological modifying activity influenced by structural units was analysed. It was found that the friction and wear properties of modified UHMWPE can be effectively improved by adding the bis-salicylaldehyde-ethylenediamine, bis-salicylaldehyde-1,3-propanediamine Schiff base Cu(Ⅱ) complex and bis-salicylaldehyde-1,6-hexanediamine Schiff base Cu(Ⅱ) complex, and the friction coefficient and weight loss of wear of modified UHMWPE againet steel pin decreased with the content increasing of Schiff base Cu(Ⅱ) complex in UHMWPE within the range of 10 wt%,namely, the effect of reducing wear of modified UHMWPE with 10 wt% additive was the best, thereinto, the friction coefficient and weight loss of wear of UHMWPE modified with 10 wt% 1,6-diamine Schiff base Cu(Ⅱ) complex was minimum; but the friction and wear properties of UHMWPE modified by bis-salicylaldehyde-1,2-cyclohexanediamine Schiff base Cu(Ⅱ) complex modified and bis-salicylaldehyde-1,2-benzenediamine Schiff base Cu(Ⅱ) complex were not improved; abrasive wear was showed in wear mechanism of modified UHMWPE disc specimen with bis-salicylaldehyde-1,6-hexanediamine Schiff base Cu(Ⅱ) complex and steel pin specimen, and selective transfer effect, of Cu element from its additives was found, which can reduce friction and wear of the surface of steel pin against it. It seems that diamine Schiff base Cu(Ⅱ) complex which contains open chain structure with relatively more carbon atoms has more activity of tribological modification, due to its similar methylene unit in the structure of UHMWPE, and the activity of open chain is better than that of alkyl and aromatic ring.
引文
1陈玉红,丁克强,王庆飞等.席夫碱应用研究新进展[J]河北师范大学学报(自然科学版),2003, 27(1): 71-73.
    2田君濂,毕思玮,高恩庆.甲酰基甲酸氨基硫脲席夫碱二价金属离子配合物的研究[J]应用化学,1994, 11(5): 45-47.
    3张建民,李瑞芳,刘树祥.过渡金属配合物的稳定性及其杀菌活性[J]无机化学学报,1999, 15(4): 493-496.
    4叶勇,胡继明,曾云鹗. N-β-萘酚醛-D-氨基葡萄糖席夫碱金属配合物与DNA作用的谱学研究[J]无机化学学报,2000, 16(6): 951-958.
    5 Baseer M A, Jadhav V D, Phule R M. Synthesis and antibacterial activity of some new Schiff bases[J] Oriental Journal of Chemistry, 2000,16(3): 553-556.
    6 Nyarku S K, Mavuso E. Preparation ,characterisation and biological evaluation of a chromium(Ⅲ) Schiff bases complex derived from o-nitrobenzaldehyde and p-aminophenol[J] South African Journal of Chemistry, 1998, 51(4): 168-172.
    7毕思玮,刘树祥.氨基酸水杨醛席夫碱与Cu(Ⅱ)配合物的合成及其抗菌活性和稳定性、结构间的关系[J]无机化学学报,1996, 12(4): 423-425.
    8 Cimerman Z, Galic N, Bosner B. The Schiff bases of salicylaldehyde and aminopyridines as highly sensitive analytical reagents[J] Analytica Chimica Acta, 1997, 343(122): 145-153.
    9 Khandar A A, Hosseini S A, Zarei S A, Synthesis, characterization and X-ray crystal structures of copper(Ⅱ) and nickel(Ⅱ) complex with potentially hexadentate Schiff base ligands[J] Inorganica Chimica Acta, 2005, 358(11): 3211-3217.
    10 Girousi S T, Golia E E, Voulgaropoulos A N, Fluorometric determination of formaldehyde[J] Springer-Verlag, 1997, 358: 667-668.
    11李锦州,安郁美,于文锦.新席夫碱萃取剂(HPMaFP)-2EN的合成及其在反相色谱中应用的研究[J]化学试剂,1996, 18(6): 327-329.
    12孔淑青.肉桂醛-邻氨基苯甲酸席夫碱的合成及铜的测定[J]江西师范大学学报,1999, 23(4): 373-374.
    13仇敏,刘国生,姚小泉.手性Cu(Ⅱ)-席夫碱配合物催化苯乙烯不对称环丙烷化反应[J]催化学报,2001, 22(1): 77-80.
    14 Cail S, Mahmoud H, Han Y. Binuclear Versus mononuclear copper complex as catalysts for asymmetric cyclopropanation of styrene[J] Tetrahedron: Asymmetry, 1999, 10(3): 411-427.
    15李琛,张维萍,姚小泉等.一种新型手性席夫碱的合成及其在不对称环丙烷化反应中的催化性能[J]催化学报,2000, 21(3): 289-291.
    16赵建章,赵冰,徐蔚青等. Schiff碱水杨醛N,N'-1,6-己二胺光致变色光谱研究[J]高等化学学报,2001,22(6): 971-975.
    17 Li S L, Chen S H, Lei S B, et a1.Investigation on some Schiff bases as HCl corrosion inhibitors for copper[J] Corrosion Science, 1999, 41: 1273-1287.
    18 Quan Z, Wu X, Chen S, et a1. Self-assembled minelayers of Schiff bases on copper surfaces[J] Corrosion, 2001, 57(3): 195-201.
    19 Kuzentsov Y I, Vagapov R K. On the inhibition of hydrogen sulfide corrosion of steel with Schiff bases[J] Protection of Metals, 2001, 37(3): 210-215.
    20 Desai M N, Chauh A P, Shan N. Schiff bases derived form chloroanilines as corrosion inhibitors of zinc in Sulfuric acid solutions[J] European Symposium on Corrision Inhibitors, 1995, 27: 891-902.
    21 Banstwal A, Anthony P, Mathur S P. Inhabitive effect of some Schiff bases on corrosion of aluminum in hydrochloric acid solution[J] Corros,2000, 35(4): 301-303.
    22 Gao X, Hua M, Li J, et al., Study of the tribological properties of ultra-high molecular weightpolyethylene modified with a Schiff base complex[J] Materials and Design, 2010, 31: 254-259.
    23 Gao X, Hua M, Gao W, et al., Design to modify UHMWPE with Schiff base copper complex for use as tribological material[J] Journal of Dispersion Science and Technology, 2009, 30(1): 7-19.
    24 Gao X, Hua M, Li J, et al., Elementary study of modifying UHMWPE with Schiff base copper complex for the use as an artificial hip joint material[J] Journal of Dispersion Science and Technology, 2009, 30(7): 1059-1066.
    25高新蕾,李健,高万振.Schiff碱铜(Ⅱ)络合物和甘油-聚乙烯微胶囊改性超高分子量聚乙烯的磨损机理研究[J]摩擦学学报, 2006, 26(06): 599-601.
    26吴莉,高新蕾,高万振.小牛血清边界润滑条件下西佛碱铜络合物改性超高分子量聚乙烯往复摩擦磨损行为[J]摩擦学学报,2009, 29(6): 618-626.
    27 Wu L, Gao X, Hua M, et al., Elementary investigation in modifying UHMWPE with Schiff base copper complex for the use as an artificial hip joint material[A] Proceedings of World Tribology Congress 2009 (Kyoto, Japan), P.508.
    28 Gao X, Li J, Gao W. Study on preparation of modifying lubricant with using nano-Schiff base and Schiff base copper complex by W/O micro-emulsion reactor[J] Colloid Journal, 2009, 71(3): 320-307.
    29 Gao X, Li J, Liu Y, et al., Study of tribological properties of lubricant-oils based upon microbial oils modified with Schiff base complex[A] Proceedings of World Tribology Congress 2009 (Kyoto, Japan), P.834.
    30高新蕾,李健,高万振.润滑液中SCHIFF碱在GCR15钢上的自组装膜[J]润滑与密封,2006, 31(03): 116-127.
    31 Gao X-L, Li J, Gao W-Z. Investigations in self-assembled monolayers on steel surfaces and extreme pressure properties of Schiff base additives in oils[C] Proceeding of theⅤInternational Symposium on Tribo-fatigue. 2005, 2: 167-173.
    32高新蕾,高万振,刘建芳.微纳米级Schiff碱及Schiff碱铜络合物在润滑油介质中的现象[J]材料保护,2004, 37 (7): 150-153.
    33刘广建.超高分子量聚乙烯[M]北京:化学工业出版社,2001,1-7.
    34付林,朱淑槐.超高分子量聚乙烯现状与展望[J]化工技术经济,1999, 17(1):14-16.
    35刘广建,刘晓辉,张文忠.改性超高分子量聚乙烯的性能及应用[J]煤矿机械,1999, 7: 32-34.
    36刘萍,王德禧.超高分子量聚乙烯的改性及其应用[J]工程塑料应用,2001, 29(5):7-9.
    37向东.超高分子量聚乙烯的应用及改性研究进展[J]化工科技市场,2006, 29(5):41-45.
    38明艳,贾润礼.超高分子量聚乙烯的改性[J]塑料科技,2002,9(2): 33-35.
    39黄安平,朱博超,贾军纪等.超高分子量聚乙烯改性研究[J]甘肃石油和化工,2007, 2: 20-23.
    40胡平等.化学交联对超高分子量聚乙烯的结构和性能的影响[J]塑料,1989, 18(5): 17-20.
    41胡平等.超高分子量聚乙烯填料改性的研究[J]塑料,1994, 19(4): 11-16.
    42任露泉,刘朝宗,蒋蔓等.颗粒增强超高分子量聚乙烯基复合材料磨粒磨损的特性与机理[J]摩擦学学报,1997, 17(4): 334-338.
    43张道权,林薇薇,陈浮等.超高分子量聚乙烯填料改性研究[J]材料科学与工程,1997, 15 (4): 61-63.
    44熊党生,何春霞.炭纤维增强人工关节软骨材料-超高分子量聚乙烯的摩擦学特性[J]摩擦学学报,2002, 22(6):454-457.
    45石安富,龚云表.超高分子量聚乙烯(UHMWPE)的性能、成型加工及其应用[J]塑料科技, 1987, 1: 12-19.
    46李振环,方立华,许学勤.超高分子量聚乙烯的性能及在包装食品机械中的应用[J]包装与食品机械, 1999, 17 (2): 27-30.
    47吴光洁,王海宝,陈敏等.分子量对超高分子量聚乙烯性能的影响研究[J]润滑与密封,2010, (3): 47-48.
    48贤景春,林华宽.新型Schiff碱配合物的合成及其对超氧离子的抑制作用[J]合成化学,2000,8(1): 12-15.
    49 Hodnett M E, Mooney P D, Antitumor activities of some Schiff base[J] Journal of Medicinal Chemistry, 1970,13(4): 786-792.
    50高新蕾. Schiff碱铜络合物改性超高分子量聚乙烯及润滑油的摩擦学研究[D]北京:机械科学研究院博士学位论文, 2005.
    51张英菊,王辉,张红兵等.双水杨醛类缩乙二胺Schiff碱的合成及光谱性能[J].染料与染色,2005, 42(5): 38-40.
    52 Orhan A, Hasan N, Cengiz A, et al., Some new Ni-Zn heterodinuclear complex: square-pyramidal nickel(Ⅱ) coordination [J]. Inorganica Chimica Acta, 342 (2003): 295-300.
    53赵国良,陈林深,吕光烈.双水杨醛1,6-己二胺希夫碱轻稀土配合物的合成和表征[J]稀有金属,2001, 25(3): 203-206.
    54李晓燕,刘志昌,宋九华.双水杨醛邻苯二胺与Fe(Ⅲ)的显色反应研究及应用[J]乐山师范学院学报,2004, 19(5): 46-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700