用户名: 密码: 验证码:
微生物在硫化物矿物表面的选择性吸附
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着矿产资源的不断开发利用,以贫、细、杂为突出特点的难处理矿石所占的比例不断上升,致使矿物加工领域面临的挑战日趋严峻,而且较多药剂的使用还会污染环境。在此背景下应运而生的资源微生物技术为解决矿产资源领域中所存在的问题提供了新途径。资源微生物技术经历了近40年的发展,无论在基础研究还是实际应用方面都取得了令人瞩目的成就。
     已进行的关于微生物在矿物表面吸附的研究,大多数是为了探讨生物湿法冶金过程中的作用机制而进行的,研究的主要内容是影响细菌吸附量的因素、细菌吸附量与浸出效果的关系以及发生吸附后的宏观效果;已进行的一些关于选择性吸附的研究工作,进行的深度非常有限,主要是通过控制吸附条件,有目的地强化选择性吸附现象,对发生选择性吸附的机理只进行了初步分析。本文研究了微生物细胞在硫化物矿物表面的选择性吸附现象,并借助先进的检测方法探讨了微生物发生选择性吸附的原因,主要研究工作总结为以下几个方面:
     1、进行了微生物的形态与性质研究,对氧化亚铁硫杆菌、沟戈登氏菌、草分枝杆菌、胶质芽孢杆菌的培养性状、染色特征和扫描电子显微镜形貌进行了观察,并对4种微生物的物理化学特性进行了分析,测定了它们的表面主要元素含量、表面化学组成、分子量、生长曲线、接触角、荷电特性等。
     2、研究了不同影响因素下4种微生物在黄铁矿、黄铜矿、方铅矿和闪锌矿表面的吸附规律,结果表明氧化亚铁硫杆菌在硫化物矿物表面的吸附无明显选择性;沟戈登氏菌、草分枝杆菌、胶质芽孢杆菌在4种硫化物矿物表面的吸附均具有明显的选择性,而且在黄铁矿表面的吸附率远远大于其他3种硫化物矿物,吸附体系的pH值是影响细菌在矿物表面发生选择性吸附的关键因素。
     3、选择氧化亚铁硫杆菌和草分枝杆菌作为研究对象,通过红外光谱和X射线光电子能谱深入的研究了在硫化物矿物表面有无明显选择性吸附的微生物细胞表面的功能基团,初步确定了细胞表面诱发选择性吸附的可能基团。
     4、应用矿物晶体化学原理分析了4种硫化物矿物破碎后的表面结构和性质,并用X射线光电子能谱分析了矿物表面各元素的状态,初步推断矿物表面诱发微生物发生选择性的主要元素及其价态。
     5、通过扫描电镜、红外光谱和X射线光电子能谱研究了与氧化亚铁硫杆菌和草分枝杆菌作用后硫化物矿物的表面特征及其表面元素状态的变化。结果验证了这两种细菌在矿物表面的吸附现象,并得出两种细胞表面的O-H或N-H、C-O等有机基团通过矿物表面的Fe、Cu、Pb、Zn、S元素与矿物表面发生了化学吸附,且与矿物表面金属元素的作用程度大于硫元素。
     6、通过分析微生物在硫化物矿物表面的选择性吸附现象,发现细胞表面的特征基团对黄铁矿表面金属离子的亲和力大于其他3种硫化物矿物,Fe3+起到了比较重要的作用,另外,两类细菌的表面特征及其生理特点也对细胞的选择性吸附程度大小有一定的影响。
     7、研究了氧化亚铁硫杆菌和草分枝杆菌预处理后4种硫化物矿物的可浮性。结果表明,经两种细菌预处理后4种矿物的可浮性均有所下降,但是经草分枝杆菌预处理后黄铁矿几乎完全被抑制。
Along with the continuous exploitation and utilization of mineral resource, the proportion of unwieldiness ores with deficient, poor and complicated character is rising day and day. As a result, the mineral processing fields face serious challenge, and using more medicaments will pollute environment. Under these circumstances, microbial technology to resources emerges as the times require, which provides a new way to solve the problem of mineral resources utilization. After developing for nearly forty years, microbial technology to resources has gained great achievement in basal research and practical application.
     Much work having been carried out focus on discussing interaction mechanism in the process of microbiohydrometallurgy, and the main content are factors influencing the adsorbing biomass, the relationship of the adsorbing biomass and bioleaching effect, the macroscopic effect after interacted with microbe. The research about selective adsorption is not deep, which is mainly to intensify selective adsorption phenomena by controlling adsorption conditions and the selective adsorption mechanism is analyzed primarily. In this thesis, the selective adsorption of bacteria on sulfide mineral surface is studied and the key factor resulting selective adsorption is founded by some advanced detection methods. The work in the present paper can be summarized as follows:
     1. The morphlogy and characteristic of bacteria were investigated. Four strains of bacteria were used:Thiobacillus ferrooxidans, Gordona amarae, Mycobacterium phlei and Bacillus mucilayinosus. Their microscopys were displaied, the physical chemistry charaterisritic of four strains of bacteria were inspected. Measure and test in the cell surface characterization including surface elements' content, UVS spectroscopy, molecular weight, growth curve, contact angle and Zeta-potential.
     2. Adsorption of four strains of bacteria on the surface of pyrite, chalcopyrite, galena and sphalerite were studied under different influence factors. The results showed that the selective adsorption of Thiobacillus ferrooxidans on sulfide minerals is not obvious, and that of other three strains of bacteria is obvious, more cells absorbed on pyrite and less cells absorbed on chalcopyrite, galena and sphalerite, pH is the key factor influencing selective adsorption of bacteria on mineral surface.
     3. Choose Thiobacillus ferrooxidans and Mycobacterium phlei as study objects, the functional groups on the surface of bacteria which having a selective adsorption or not were investigated by FTIR and XPS, and the groups inducing selective adsorption are ensured primarily.
     4. The surface structure and character of four sulfide minerals after cleavage is analyzed by the principle of mineral crystal chemistry, and the state of every element on mineral surface is analyzed by XPS, it is concluded primarily that the main element and its valency on mineral surface which inducing bacteria to have a selective adsorption.
     5. The mineral surface characteristic of sulfide minerals after interaction with Thiobacillus ferrooxidans and Mycobacterium phlei were achieved by SEM, and the state change of each element on mineral surface were studied by FTIR and XPS. The results are in agreement with adsorption phenomena of these two strains of bacteria on sulfide minerals. It is drawn that the O—H or N—H and C=O groups on two strains' cells have a chemisorption to element Fe, Cu, Pb, Zn, S on mineral surface, and the action of these groups to metal ions on mineral surface is stronger than that of elment S.
     6. The selective adsorption phenomena of bacteria on sulfide minerals are analyzed. It is discovered that the affinity of functional groups on cell surface to metal ion on pyrite surface is large than that of other three sulfide minerals, and Fe3+ is more important in it. In addition, the surface character and physical characteristic of two kinds of bacteria also have an influence on cells'selective adsorption
     7. The flotation of four sulfide minerals after pretreated by Thiobacillus ferrooxidans and Mycobacterium phlei were studied. The results indicate the flotation of four sulfide minerals all descend after pretreatment, and pyrite is almost depressed completely after pretreated by Mycobacterium phlei.
引文
[1].马静.矿产资源的开发利用与环境保护[J],资源与环境,2003,19(3):151-153.
    [2].宋守志,钟勇,邢军.矿产资源综合利用现状与发展的研究[J],金属矿山,2006,11:1-4.
    [3].李伟.对合理开发利用矿产资源的认识[J],石家庄经济学院学报,2006,29(4):426-429.
    [4].赵洁心,冯波,谭俊,等.我国矿产资源开发利用现状与可持续发展探讨[J],黄金,2006,27(5):1-4.
    [5].曾培炎.国务院关于矿产资源合理利用、保护和管理工作得报告[J],全国人民代表大会常务委员会公报,2007,1.
    [6].谢克强,杨显万,舒毓璋.铜铅锌多金属复杂硫化矿综合回收工艺研究[J],中国有色冶金,重金属,2006,2:19-22.
    [7].李成秀,文书明.多金属硫化矿浮选研究的新进展[J],国外金属矿选矿,2004,1:8-13.
    [8]. Daniels, S.L. The Adsorption of Microorganisms onto Solid Surfaces:A Review[J]. Dev. In-dust. Microbiology.1972,13:211-253.
    [9]. Daniels, S.L., Britton, G and Marshall, K.C.. Mechanisms Involved in Sorption of Solid Surfaces, Adsorption of Microorgan-isms to Surfaces, eds[J]. John Wiley and Sons,1980,7-58.
    [10].周德庆.微生物学教程[M],北京:高等教育出版社,1996:44.
    [11].沈萍.微生物学[M],北京:高等教育出版社,2005:38-68.
    [12].杨履渭.微生物学及检验技术[M],广州:广东科学技术出版社,1992:4.
    [13]. R.W. Smith. Mineral Bioprocessing:An Overview[J], Mineral Bioprocessing,1991,3-17.
    [14].魏德洲.资源微生物技术[M],北京:冶金工业出版社,1996:20-35.
    [15].王恩德.环境资源中的微生物技术[M],北京:冶金工业出版社,1997:4-41.
    [16].汪青梅,邱木清.微生物浸矿技术在处理低品位铜矿中的应用现状[J],湿法冶金,2005,24(1):5-8.
    [17].王玉棉,李军强.微生物浸矿的技术现状及展望[J],甘肃冶金,2004,26(1):36-39.
    [18].周吉奎,钮因健.硫化矿生物冶金研究进展[J],金属矿山,2005,4:24-30.
    [19].郝丽芳,安莲英,殷辉安,等.用生物浸矿技术从杂卤石矿中提取钾的可行性分析[J],湿法冶金,2003,22(1):19-20.
    [20]. Yang S R, Xie J Y, Qiu G Z, et al. Research and application of bioleaching and biooxidation technologies in China[J], Minerals Engineering,2002,15(5):361-363.
    [21].方兆珩,柯家俊,李洪枚,等.生物浸出低品位镍铜硫化矿[J],有色金属(冶炼部分),2002,4:2-8.
    [22].温建康,阮仁满,孙雪南.金川低品位镍矿资源微生物浸出研究[J],矿冶,2002,11(1):55-58.
    [23].徐慧,余斌.难采低品位硫化铜矿原地破碎微生物浸出研究[J],国外金属矿选矿,2007,1:42-45.
    [24].祝丽丽,汪模辉,陈雪.微生物强化浸出及微波技术在黄铜矿冶金中的应用[J],冶金丛刊,2007,3:33-37.
    [25].雷绍民,龚文琪,袁楚雄.微生物浸出煤系高岭土中黄铁矿的初步研究[J],武汉工业大学学报,2000,22(2):8-11.
    [26].马爱霞,朱一民,刘文刚,等.氧化亚铁硫杆菌柱浸脱硫试验[J],有色矿冶,2006,22(4):47-49.
    [27].宋翔宇.微生物浸出工艺特点及其历史现状和前景[J],河南地质,1999,17(1):75-77.
    [28].姜成林,徐丽华.微生物资源开发利用[J],中国轻工业出版社,2001:152-168.
    [29].张广积,方兆珩.生物氧化浸矿的发展和现状[J],黄金科学技术,2000,8(6):28-35.
    [30].周吉奎,钮因健.硫化矿生物冶金研究进展[J],金属矿山,2005,4:24-30.
    [31]. Rodriguez Y, Ballester A, Blazquez M L, et al. New information on the pyrite bioleaching mechanism at low and high temperature[J], Hydrometallurgy,2003,71(1-2):3746.
    [32]. Blight K, Ralph D E, Thurgate S. Pyrite surfaces after bio-leaching:a mechanism for bio-oxidation[J], Hydrometallurgy,2000,58(3):227-237.
    [33].黎维中,蓝卓越.微生物冶金进展及其在西部矿业开发中的应用前景[J],中国工程科学,2005,7(增刊):173-176.
    [34].傅建华,邱冠周,胡岳华,等.浸矿细菌的超微结构及其特性[J],中南大学学报(自然科学版),2004,35(4):562-567.
    [35]. Dubel J, Smith R W, Misra M, et al. Microorganisms as chemical reagents:the hematite system[J], Minerals Engineering,1992,5(3-5):547-556.
    [36].杨慧芬,张强.微生物药剂及其在微细粒选矿中的应用研究[D],北京科技大学,2005.
    [37].杨慧芬,张强.草分枝杆菌与常规捕收剂对微细粒赤铁矿捕收能力的比较[J],矿冶工程,2003,23(4):32-34.
    [38]. Mesquita L M S de, Lins F F, Torem M L. Interaction of a hydrophobic bacterium strain in a hematite-quartz flotation system[J], International Journal of Mineral Processing,2003,71(1-4): 31-36.
    [39]. G.A.Bala et al, Surfctant Based Microbial En-hanced Oil Recovery[J], Mineral Bioprocessing,1991, 121-131.
    [40]. Solozhenkin et al, Microorganisms and flotation[M], Tsvetnyemetally,1998,20-23.
    [41]. A.S.Atkin et al, A study of the suppression of pyrite sulphur in coal froth flotation by T.fer-rooxidans [J], Coal Preparation,1987,5:1-13.
    [42]. Townsley, C.C, et al. Suppression of pyrite sulpHur during flotation test using the bacterium. Thiobacillus ferrooxidans[J], Biotechnol Bioeng,1987,30:1-8.
    [43]. Ohmura N, Saiki H. Desulfurization of coal by microbial column flotation[J], Biontechnol and Bioeng, 1994,44:125-131.
    [44]. C.E.Capes et al, Hydrometallurgy[M],1986,15:325-334.
    [45]. Y.A.Attia et al, Coal slurries desulphurization by froth flotation using T.f bacteria for pyrite depression[J], Coal Preparation,1987,5:15-37.
    [46]. S.K.Kawatra et al, Depression of pyrite flota-tion by Microorganismas a function of pH, Proc of Processing and Utilization High-sul-fur Coals[J], Elsevier Scientific Publishers,1993:139-147.
    [47].王军,钟康年.细菌对硫化矿可浮性影响的[J],国外金属矿选矿,1996,5:4-10.
    [48].张明旭.利用微生物调整表面强化煤炭中细粒黄铁矿的脱硫技术[J],国外金属矿选矿,1997,8:46-52.
    [49].张明旭,李庆,王勇,等.球红假单胞菌对黄铁矿浮选脱除的影响[J],安徽理工大学学报(自然科学版),2003,23(3):45-49.
    [50].魏鹏.微生物药剂在非金属矿选矿中的应用研究[D],武汉理工大学,2002.
    [51]. Chandraprabha M N, Natarajan K A, Somasundaran P. Selective separation of pyrite from chalcopyrite and arsenopyrite by biomodulation using Acidithiobacillus ferrooxidans[J], Mineral Processing,2005,75(1-2):113-122.
    [52]. Hosseini T R, Kolahdoozan M, Tabatabaei Y S M, et al. Bioflotation of Sarcheshmeh copper ore using Thiobacillus ferrooxidans bacteria[J], Minerals Engineering,2005,18(3):371-374.
    [53]. Somasundaran P, Ren Y Z, Rao M Y, et al. Applications of biological processes in mineral processing[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,1998,133(1-2): 13-23.
    [54]. Santhiya D, Subramanian S, Natarajan K A, et al. Bio-modulation of galena and sphalerite surfaces using Thiobacillus thiooxidans[J], Int. J. Miner. Process,2001,62(1-4):121-141.
    [55]. K.A.Natarajan. Microbially induced flotation and flocculation of sulphide[J], Int. J. Miner. Process, 2004,36(9):15-20.
    [56]. Zheng Xiapeng, Arpa Peggy J, Smith Ross W. Adhesion of two bacteria onto dolomite and apatite: their effect on dolomite depression in anionic flotation[J], Int.J.Miner.Process,2001,62(7):159-172.
    [57]. R.W.Smith et al, Microorganisms in Mineral Processing[M], 《Proceedings of the XIXIMPC》 Chapter16,1995,87-90.
    [58]. M.Misra et al, Biofloculation of finely divided minerals Bioprocessing[J],1991,90-103.
    [59]. M.Misra et al, Kerogen Aggrefation using a Hy-drop Hobic Bacterium[J], Minerals Bioprocessing, 1991,133-140.
    [60].P.索马桑达兰,等.生物聚合物在细菌固着和矿物选别中的作用[J].国外金属矿选矿,2005,7:25-32.
    [61].杨慧芬,张强.草分枝杆菌对赤铁矿、石英絮凝能力的比较[J],北京科技大学学报,2004,26(1):7-10.
    [62]. Patra Partha, Natarajan K A. Microbially-induced separation of chalcopyrite and galena[J], Minerals Engineering,2008, XXX(1):1-8.
    [63].魏以和,钟康年,王军.生物技术在矿物工程中的应用[J],国外金属矿选矿,1996,1:1-11.
    [64].昝逢宇,赵秀兰.生物吸附剂及其吸附性能研究进展[J],青海环境,2004,3:15-19.
    [65].严素定.废水重金属的生物吸附研究进展[J],上海化工,2007,32(6):1-5.
    [66]. Zhang X Z, Luo S G, Yang Q, et al. Accumulation of uranium at low concentration by the green alga Scenedesmus obliquus34[J], Journal of Applied phycology,1997,9:65-71.
    [67]. Antonio C A da Costa, Francisca P de Franca. The behavior of the microalgae Tetraselis chuii in cadmium-contaminated solutions[J],Aquaculture International,1998,6:57-66.
    [68]. Schiewer S. Modelling complexation and electrostatic attraction in heavy metal biosorption by Sargassum biomass[J], Journal of Applied Phycology,1999,11:79-87.
    [69]. Esteves A J P, Valdman E, Leite S G F. Repeated removal of cadmium and zine from and industrial effluent by waste biomass Sargassumsp[J], Biotechnology Letters,2000,22:499-502.
    [70]. Tsezos M, Volesky B. The mechanism of uranium biosorption by Rhizopus arrhizus[J], Biotechnol Bioeng,1982,24:385-401.
    [71].汤岳琴,牛慧,林军,等.产黄青霉菌对铅的吸附机理研究——参与铅生物吸附的化学特质及功能团的确定[J],四川大学学报,2001,33(3):50-54.
    [72].黄民生,施华丽,郑乐平.曲霉对水中重金属的吸附去除[J],上海环境科学,2002,21(2)89-92.
    [73].韩润平,蒋海涛.酵母菌对Cr(Ⅵ)的生物吸附作用[J],环境保护科学,2001,27(104):28-33.
    [74]. Riordan C, Bustaed M, Putt R. Removal of uranium from solution using residual brewery yeast: combined biosorption and precipitation[J]. Biotechnology Letters,1997,19(4):385-387.
    [75]. Aloysius R, Karim M I A, et al. The mechanism of cadmium removal from aqueous solution by nonmetabolizing free and immobilized live biomass of Rhizopus oligosporus[J], World Journal of Microbiology & Biotechnology,1999,15:571-578.
    [76]. Maristella A D, Heizir F C, Newton C M, et al. Removal of heavy metals from stainless steel effluents by waste biomass from Brazilian alcoholic beverage production[J], World Journal of Microbiology & Biotechnology,2000,16:107-108.
    [77]. Vianna L N, Andrade M C, Jacques R N. Screening of waste biomass fro Saccharomyces cerevisiae, Aspergillus oryzae and Bacillus lentus fermentations for removal of Cu, Zn and Cd by biosorption[J]. World Journal of Microbiology & Biotechnology,2000,16:437-440.
    [78]. Kedari C S, Das S K S. Ghosh. Biosorption of long lived radionuclides using immobilized cells of Saccharomyces cerevisiae[J], World Journal of Microbiology & Biotechnology,2001,17:789-73.
    [79]. Liu N, Luo S Z. Biosorption of americium-241 by Saccharomyces cerevisiae[J], Journal of Radio analytical and Nuclear Chemistry,2002,252(1):187-191.
    [80].韩润平,石杰,鲍改玲.酵母菌对铅离子的生物吸附研究[J],河南科学,2000,18(1):52-55.
    [8l].徐容,汤岳琴,王建华,等.固定化产黄青霉废菌体吸附铅与脱附平衡[J],环境科学,1998,19(4):72-75.
    [82].胡泟,张利,童明容,等.龟裂链霉菌对废水中Pb2+的吸附作用[J],南开大学学报(自然科学),2000,33(2):29-31.
    [83].吴娟,李清彪.黄孢原毛平革菌吸附铅离子机理的研究[J],环境科学学报,2001,21(3):291-295.
    [84]. Ligy P, Leela I, Venkobachar C. Site of interaction of copper on Bacillus polymyxa[J], Water, Air and Soil Pollution,2000,119:11-21.
    [85]. Asuncion L, Naria L, Susana M, et al. Nickel biosorption by free and immobilized cells of Pseudomonas fluorescens 4F39:A comparative study[J], Water, Air and Soil Pollution,2002,135: 157-172.
    [86]. Akira N, Masahide Y, Hidekatsu Y, et al. Copper biosorption by chemically treated Micrococcus Luteus cells[J], World Jourual of Microbiology & Biotechnology,2001,7:343-347.
    [87].刘月英,傅锦坤,李仁忠,等.细菌吸附Pd2+的研究[J],微生物学报,2000,20(5):535-539.
    [88].王磊,范立梅,周琪,等.不同生长期的细胞对工业废水中Cu2+的吸附[J],环境科学学报,2001,21(2):208-212.
    [89].黄淑惠.细菌固定金属的作用机制[J],微生物学通报,1992,19(3):71-173.
    [90]. Suzuki T, Hatsushika T, Hayakaw A Y. Synathetic hydroxgapatite employed as inorganic cation exchange[J], Journal of Chemical Society Faradary Transaction,1981,77:1059-1062.
    [91]. El-Helos E R, Sabry S, Amer R M. Cadmium biosorption by a cadium resistant strain of Bacillus thuringiensisi regulation and optimization of cell surface affinity for metaleation[J], Bio, Metals, 2000,13:273-280.
    [92].张慧.微生物对重金属铬离子吸附的实验研究[D],长沙:湘潭大学,2005.
    [93].刘瑞霞,汤鸿霄,劳伟雄.重金属的生物吸附机理及吸附平衡模式研究[J],化学进展,2002,14(2):87-92.
    [94].韩润平,石杰,李建军,等.生物材料对重金属离子的吸附富集作用[J],化学通报,2000,7:25-28.
    [95].柳建设,王兆慧,耿梅梅,等.微生物浸出中微生物—矿物多相界面作用的研究进展[J],矿冶工程,2006,26(1):40-44.
    [96]. Nathan Yee, Jeremy B Fein, Christopher J Danghney. Experimental study of the pH, ionic strength, and reversibility behavior of bacteria mineral adsorption[J], Geochimica et Cosmochinica Acta,2000, 64(4):609-617.
    [97].陈建华,陈晔,吴伯增,等.方解石、石英和锡石生物吸附试验研究[J],有色矿冶,2005,21(7)(增刊):26-28.
    [98].魏德洲,沈岩柏,李晓安,等.诺卡氏菌在黄铁矿和闪锌矿表面的选择性吸附[J],中国有色金 属学报,2006,16(6):1082-1088.
    [99].沈岩柏,李晓安,魏德洲,等.Nocardia在黄铁矿和方铅矿表面的选择性吸附[J],中国有色金属学报,2006,15(12):20162022.
    [100].沈岩柏,魏德洲,朱一民,等.草分枝杆菌在硫化矿物表面的选择性吸附规律[J],金属矿山,2005,4:31-35.
    [101].EK.沙尔姆等,氧化亚铁硫杆菌与硫化矿物的反应和从黄铁矿中优先浮选黄铜矿[J].国外金属矿选矿,2002:16-23.
    [102]. Devasia Preston, Natarajan K A, Sathyanarayana D N, et al. Surface chemistry of Thiobacillus ferrooxidans relevant to adhesion on mineral surfaces[J], Applied and Environmental Microbiology, 1993,59(12):4051-4055.
    [103]. Naoya Ohmura, Keiko Kitamura, Hiroshi Saiki. Selective adhesion of Thiobacillus ferrooxidans to pyrite[J], Applied and Environmental Microbiology,1993,59(12):4044-4050.
    [104]. Blake H R C, Shute E A, Howard G T. Solubilization of minerals by bacteria:electrophoretic mobility of Thiobacillus ferrooxidans in the presence of iron, pyrite and sulfur[J], Applied and environmental microbiology,1994,60(9):3349-3357.
    [105]. Marshall K C. Interfaces in microbial ecology[M], Cambridge:Harvard University Press,1976.
    [106]. Fowler P R, Crundwell T A. Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans[J], Appl. Environ, Microbiol,1999,65(7):2987-2993.
    [107]. Santhiya D, Subramanlan S, Natarajan K A. Surface chemical studies on galena and sphalerite in the presence of Thiobacillus thiooxidans with reference to mineral beneficiation[J], Minerals engineering,2000,13(7):747-763.
    [108].傅建华.硫化铜矿浸矿细菌超微结构与吸附机理及SFORase的纯化[D],长沙:中南大学,2003.
    [109]. Deo Namita, Natarajan K A, Somasundaran P. Mechanisms of adhesion of Paenibacillus polymyxa onto hematite, corundum and quartz[J], Mineral processing,2001,62(1-4):27-39.
    [110]. Sampson M I. Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulfides[J], Minerals engineering,2000,13(4):373-389.
    [111]. Ohmura N, Tsugita K, Koizumi J, et al. Sulfur-binding protein of flagella of Thiobacillus ferrooxidans[J], Journal of bacteriology,1996,178(19):5776-5780.
    [112]. Natarajan K A, Deo Namita. Role of bacterial interaction and bioreagents in iron ore flotation[J]. Int.J.Miner.Process,2001,62(7):143-157.
    [113]. Liu Qi, Zhang Yahui, Laskowski J S. The adsorption of polysaccharides onto mineral surfaces:an acid/base interaction[J], Mineral Processing,2000,60(3-4):229-245.
    [114].郭平,康春莉,李军,等.细菌胞壁多糖对水体中低浓度Pb2+和Cd2+的吸附研究[J],微生物学通报,2004,31(6):62-67.
    [115]. Harneit K, Goksel A, Kock D, et al. Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans[J], Hydrometallurgy, 2006,83(5):245-254.
    [116]. Sanhueza A, Ferrer I J, Vargas T, et al. Attachment of Thiobacillus ferrooxidans on synthetic pyrite of varying structural and electronic properties[J], Hydrometallurgy,1999,51(10):115-129.
    [117].袁欣,袁楚雄,钟康年,等.非金属矿物的微生物加工技术研究(Ⅰ)——氧化亚铁硫杆菌及其生长规律研究[J],中国非金属矿工业导刊,2000,3:12-15.
    [118].张建丽,刘志恒.诺卡氏型放线菌的分类[J],微生物学报,2001,41(4):513-517.
    [119].胥秀英,郑一敏,温寿祯,等.土壤放线菌分离方法的初步研究[J],生物学杂志,2000,17(2):16-17.
    [120].杨宇容,徐丽华,李启任,等.放线菌分离方法的研究[J],微生物学通报,1995,22(2):85-91.
    [121].吴襟,何秉旺.诺卡氏菌形放线菌p-甘露聚糖酶的纯化和性质[J],微生物学报,2000,40(1):69-74.
    [122]. Aimin H, Simpson D R, Daniels L, et al. Cloning, expression, purification, and characterization of Nocardia sp. GTP cyclohydrolase I[J], Protein Expression & Purification,2004,35(2):171-180.
    [123]. Kim W D, Daniel K C, Wang J, Hang C P. Heavy metal removal by activated sludge:influence of Nocardia amarae[J], Chemosphere,2002,46(1):137-142.
    [124].杨慧芬,张强.草分枝杆菌在矿物絮凝剂浮选的应用探讨[J],金属矿山,2001,1:24-30.
    [125]. Beena P R. Molecular modeling and rational design of flotation reagents[J], Mineral Processing, 2003,72(1-4):95-110.
    [126]. Sekher K C, Kamala C T, Chary N S, et al. Removal of heavy metals using a plant biomass with reference to environmental control[J], Mineral Processing,2003,68(1-4):37-45.
    [127]. Morris G E, Fornasiero D, Ralston J. Polymer depressants at the tale-water interface:adsorption isotherm, microflotation and electrokinetic studies[J], Mineral Processing,2002,67:221-227.
    [128].刘五星,徐旭士,杨启银,等.胶质芽孢杆菌发酵条件研究[J],南昌大学学报,2002,26(3):299-302.
    [129].廖延雄,傅筱冲,蔡汝林,等.一株硅酸盐细菌的表型特征[J],江西科学,2000,18(3):149-153.
    [130].王平宇,张树华.硅酸盐细菌的分离及生理生化特征的鉴定[J],南昌航空工业学院学报,2001,15(2):78-82.
    [131]. Vijayalakshmi S P, Raichur A M. Bioflocculation of high-ash India coals using Paenibacillus polymyxa[J], Mineral Processing,2002,67:199-210.
    [132]. Sharma P K, Hanumantha Rao K, Forssberg K S E, et al. Surface chemical characterisation of Paenibacillus polymyxa before and after adaptation to sulfide minerals[J], Mineral Processing,2001, 62(14):3-25.
    [133]. Santhiya D, Subramanian S, Natarajan K A. Surface chemical studies on sphalerite and galena using extracellular polysaccharides isolated from Bacillus polymyxa[J], Journal of Colloid and Interface Science,2002,256(2):237-248.
    [134]. Deo Namita, Natarajan K A. Studies on interaction of Paenibacillus polymyxa with iron ore minerals in relation to beneficiation[J], Mineral Processing,1998,55(1):41-60.
    [135].王希成.生物化学[M],北京:清华大学出版社,2001.
    [136].赵大键,扬建华.黄原胶的分子量[J],应用化学,1989,6(5):86-88.
    [137].张俐娜,陈敬华.灵芝子实体水溶性多糖的分离和分子量的测定[J],高分子学报,1997,1:68-72.
    [138].郑昌仁.高聚物分子及其分布[M],北京:化学工业出版社,1981.
    [139].王德润,于宪潮,赵大健,等.黄原胶分子量的研究[J],高等学校化学学报,1990,11(7):789-791.
    [140].胡筱敏,邓述波,牛力东,等.一株芽孢杆菌所产絮凝剂的研究[J],环境科学研究,2001,14(1):3640.
    [141]. Van Loodrecht M C M et al. The role of bacterial cell wall hydrophobicity in adhesion[J], Appl. Env. Microbiol,1987,53:1893-1897.
    [142]. Stenstrom T A. Bacterial hydrophobicity, an overall parameter for the measurement of adhesion potential to soil particles [J], Appl. Env. Microbiol,1989,55:14-42.
    [143]. Reid G P, et al. Comparison of contact angles and adhesion to hexadecane of urogenital, dairy, and poultry lactobacillus:effect of serial culture passages[J], Appl. Env. Microbiol,1992,58:1549-1553.
    [144]. Mozes N, Rouxhet P G. Methods for measuring hydrophobicity of microorganism[J], Microbial. Methods,1987,6(2):99-112.
    [145]. R.T. Neufeld et al. Cell surface measurements in hydrocarbon and carbonhydrate fermentations[J], Appl. Env. Microbiol,1980,39:511-517.
    [146].K.A.纳塔拉杨.微生物反应和生物药剂在磁铁矿浮选中的作用[J],国外金属矿选矿,2001(11):45-49.
    [147]. Lide D R. CRC Handbook of Chemistry and Physics[M], New York:CRC Press,1999-2000.
    [148].张兴,肖雷,王永志.3种细菌对煤中黄铁矿抑制作用的研究[J],中国矿业大学学报,2001,30(6):604-607.
    [149]. Ohmura N, Kitamura K, Saiki H. Mechanism of microbial flotation using thiobacillus ferrooxidans for pyrite suppression[J], Biotechnology and Bioengineering,1993,41(6):671-676.
    [150].项拥军.氧化亚铁硫杆菌对黄铜矿的氧化作用[J],金属矿山,2000,10:24-26.
    [151]. Busscher H J, Weerkamp A H. Specific and non-specific interactions in bacterial adhesion to solid substrate[J], FEMS microbiology reviews,1987,46:165-173.
    [152].李润卿,范国梁,渠荣遴.有机结构波谱分析[M],天津:天津大学出版社,2002:48-147.
    [153].常建华,董绮功.波谱原理及解析[M],北京:科学出版社,2005:59-113.
    [154].诸葛健.现代发酵微生物实验技术[M].北京:化学工业出版社,2005:39-41.
    [155].刘世宏,王当憨,潘承璜.X射线光电子能谱分析[M],北京:科学出版社,1988:67-112.
    [156]. Moulder J F, Chastain J. Handbook of X-ray Photoelectron Spectroscopy[M]. Beijing:Chemical Industry Press,1992.
    [157].沈萍,陈向东.微生物学[M],北京:高等教育出版社,2006,9:39-47.
    [158].胡岳华,康自珍.氧化亚铁硫杆菌的细菌学描述[J],湿法冶金,1996,12:36-40.
    [159]. Li Juan, Lu Jianjun, Gao Jianfeng. Surface erosion of pyrite by Thiobacillus ferrooxidans[J], Goldschmidt Conference Abstracr,2006,6:718.
    [160]. Sampson M I, Phillips C V, Ball A S. Investigation of the attachment of Thiobacillus ferrooxidans to mineral sulfides using scanning electron microscopy analysis[J], Minerals Engineering,2000, 13(6):643-656.
    [161].陈平.结晶矿物学[M],北京:化学工业出版社,2006:128-131.
    [162].周乐光.矿石学基础[M],北京:冶金工业出版社,2007:119-133.
    [163].陈启元.有色金属基础理论研究——新方法与新进展[M],北京:科学出版社,2005:195-237.
    [164].肖奇,邱冠周,胡岳华,等.FeS2(100)表面原子几何与电子结构的理论研究[J],物理学报,2002,51(9):2133-2138.
    [165]. Mattila S, Leiro J A, Heinonen M. XPS study of the oxidized pyrite surface[J], Surface Science, 2004,566-568(7):1097-1101.
    [166]. Qiu Guanzhou, Xiao Qi, Hu Yuehua. First-principles calculation of the electronic structure of the stoichiometric pyrite FeS2(100) surface (No.03-11)[J], Computational Materials Science,2004, 29(5):89-94.
    [167]. Hung Andrew, Muscat Joseph, Yarovsky Irene, et al. Density-functional theory studies of pyrite FeS2(111) and (210) surfaces[J], Surface Science,2002,520(9):111-129.
    [168]. Vaughan D J, Becker U, Wright K. Sulphide mineral surfaces:theory and experiment[J], Int. J. Miner. Process,1997,51(4):1-14.
    [169].孙传尧,印万忠.硅酸盐矿物浮选原理[M],北京:科学出版社,2001:365-392.
    [170].王淀佐,邱冠周,胡岳华.资源加工学[M],北京:科学出版社,2005:43-59.
    [171].天津大学无机化学教研室.无机化学[M],北京:高等教育出版社,1992:514-626.
    [172].刘邦瑞.螯合浮选剂[M],冶金工业出版社,1982:13-160.
    [173]. J.W. Steed, J.L. Atwood著,赵耀鹏,孙震译。超分子化学[M],化学工业出版社,2006:1-24.
    [174].迪安J.A.著,尚久芳,操时杰译.兰氏化学手册[M],北京:科学出版社,1991:5-78-5-92。
    [175].朱建光.浮选药剂[M],冶金工业出版社,1993:23-26.
    [176].赵军伟,唐志中,姚卫红.硫化矿有机抑制剂结构与活性研究现状[J],矿产综合利用,2002,5:41-44.
    [177].陈建华,冯其明,卢毅屏.浮选药剂亲固基团的设计[J],有色金属,1999,51(2):19-23.
    [178].王淀佐.浮选剂作用原理及应用[M],冶金工业出版社,1982:162-164.
    [179].R.K拉斯.天然多糖与某些硫化矿物作用的表面化学研究[J],国外金属矿选矿,2001.
    [180].魏德洲.固体物料分选学[M],北京:冶金工业出版社,2000:308-330.
    [181].杨刚,龙翔云.巯基类浮选药剂电子结构及其与金属离子作用的量子化学[J],高等学校化学学报,2001,22(1):86-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700