用户名: 密码: 验证码:
大豆异黄酮转化菌株原生质体制备与融合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆异黄酮是大豆在其生长过程中形成的次级代谢产物,主要由黄豆苷原、染料木素和黄豆黄素组成。它被机体吸收以后能与雌激素受体结合发挥类雌激素效应,具有防治癌症、降低血脂、抗氧化、预防骨质疏松和改善妇女更年期综合症等多种生理功能。大豆异黄酮在胃肠道微生物菌群作用下可被转化为各种不同代谢产物,如二氢黄豆苷原(DHD)、雌马酚(Equol)和去氧甲基安哥拉紫檀素(O-Dma)等。最新研究表明大豆异黄酮代谢产物具有比大豆异黄酮更高更广的生物学活性。
     原生质体融合技术是用物理或化学方法诱导遗传特性不同的两亲本原生质体融合为一个新细胞,使两亲株的整套基因相互重新组合,最后获得稳定融合子的技术。由于去除了细胞壁,原生质体膜易于融合,更容易发生基因组的融合重组。
     本实验室分离的AUH-HM195(Enterococcus hirae)菌株是一株兼性厌氧细菌,在有氧和厌氧条件下均可生长,但只有在严格厌氧条件下可以将黄豆苷原转化为去氧甲基安哥拉紫檀素。为了使转化菌株在有氧条件下也具有转化功能,本试验尝试将大豆异黄酮转化菌株与好氧菌进行原生质体的融合。供试好氧菌包括酿酒酵母(Saccharomyces.cerevisiae)和本实验室分离的专性好养细菌Pseudomonas aeruginosa R5。AUH-HM195菌株原生质体制备与再生的最优组合为:菌龄6h、溶菌酶浓度5mg/mL、酶解时间1h、渗透压稳定剂在制备时使用0.7mol/L KCl、再生时为17%蔗糖,在此条件下制备率可达93.2%,再生率14.5%。酿酒酵母在菌龄16h,以2.0%蜗牛酶进行酶解,酶解温度30℃,酶解时间30min,0.8mol/L山梨醇做渗透压稳定剂,以0.05mol/L EDTA-Na2溶液和0.2 %β-巯基乙醇为预处理剂处理20min时为最佳,在此优化条件下,原生质体形成率为85.1%,再生率为3.9%;R5在菌龄8h,酶浓度为0.5mg/mL,酶解时间30min,制备时使用0.7mol/L KCl,再生时以17%蔗糖为渗透压稳定剂时R5菌株可以达到最高的制备率和再生率。在显微镜下观察到了酿酒酵母和R5菌株均可与AUH-HM195菌株原生质体融合,但最终未能筛选到能在有氧条件下生长并具转化功能的融合子。
Soy isoflavones (SI) mainly composed by daidzein, genistein and glycitein are the secondary metabolites formed in the process of growth of soybean. It can play muti-physiological roles including prevention of cancer, reduction of blood fat, prevention of osteoporosis, improvement women's menopausal syndrome etc through binding with estrogen receptors after being absorbed. Soy isoflavones can be transformed into a series of different metabolites under the effect of microbial flora of gastrointestinal tract, such as dihydrodaidzein (DHD), equol and O-desmethylangolensin(O-Dma). Recent study has shown that the metabolites of soy isoflavones have higher and wider biological activity than soy isoflavones themselves.
     Protoplast fusion technique is a kind of method that can make two different parental cells which has different genetic characteristics to be fused as a new one by physical or chemical methods. Due to the removal of the cell wall, protoplast membrane are prone to fusing,which makes the genome of the two parental cells to be recombinized more easily.
     Bacteria strain AUH-HM195(Enterococcus hirae) isolated by our lab is a facultative anaerobe. Eventhrough it can grow in aerobic and anaerobic conditions, it can convert daidzein into O-Dma only grow in anaerobic conditions. In order to make bacteria strain AUH-HM195 to be of daidzein biotransforming activity in anaerobic conditions, protoplast fusion between strain AUH-HM195 and aerobic microorganisms were studied in this paper. Both Saccharomyces cerevisiae and Pseudomonas aeruginosa R5 isolated by our lab were chosen as aerobic microorganisms for fusion. The optimal conditions for preparation and regeneration of protoplast of bacteria strain AUH-HM195 were as follows: bacterial age 6h, lysozyme concentration 5mg/mL, enzymolysis time 1h, osmotic pressure stabilizer 0.7mol/L KCl for protoplast preparation and 17% sucrose for regeneration. The protoplast preparation rate of bacteria strains AUH-HM195 was 93.2% and regeneration rate was 14.5% under the optimal conditions. The optimal conditions of S.cerevisiae were as follows: bacterial age 16h, snailase concentration 2%, hydrolysis temperature 30℃, hydrolysis time 30min, osmotic pressure stabilizer 0.8 mol/L sorbitol, pretreated with 0.05 mol/L EDTA-Na2 and 0.2%β-ME for 20min. The protoplast preparation rate of S.cerevisiae was 85.1% and regeneration rate was 3.9% under the optimal conditions. The optimal conditions of bacteria strains R5 were as follows: bacterial age 8h, lysozyme concentration 0.5mg/mL, enzymolysis time 30min, osmotic pressure stabilizer 0.7mol/L KCl for protoplast preparation and 17% sucrose for regeneration. Both S.cerevisiae and R5 were observed to fuse with strain AUH-HM195 under microscope. However, such fused cells capable of growing and biotransforming daidzein in to O-Dma under aerobic conditions were not found.
引文
[1] Wang H J, Murphy P A. Isoflavone content in commercial soybean foods[J]. J Agric Food Chem, 1994, 42(8): 1666-1673.
    [2]崔洪斌,刘颖.大豆中生理活性物质的研究与开发[J].大豆通报, 1999, 6(1): 2.
    [3]王春蛾,刘叔义.大豆异黄酮的成分、含量及特性[J].食品科学, 2000,19(4): 23-30.
    [4] Zeming J, Macdonald R S. Soy isoflavones increase latency of spontaneous mammary tumors in mice[J]. Nurture, 2002, 132: 3186-3190.
    [5]刘颖,张牧,王小雪,等.染料木黄酮对人胃癌细胞生长抑制作用研究[J]. Acta Nutr Sin, 2001, 23(1): 62-65.
    [6] Taylor, Richard B, Henley E C. Composition for and method of preventing or treating breast cancer [J]. US.6, 300, 367, October9, 2001.
    [7] Maximov, O V. Biological active substances from maxim and prospects for using the species in medicine[J]. Rastibelnge Resursy, 1992, 28(3): 157.
    [8] Zhou JR, Mukherjee P, Gugger E T, et al. Inhibtion of murine bladder tumorigenesis by soy isoflav- ones via alterations in the cell cycle, apoptosis, and angiogenesis[J]. Cancer Ras, 1998, 58(22): 5231-5238.
    [9] Wei H, Cai Q Y, Rahn R O. Inhibition of UV light and fenton reaction-induced oxidative DNA dam- age by the soybean isoflavone genistein[J]. Carcinogenesis, 1996, 17(1): 73-77.
    [10] Mousavi Y, Adlercreutz H. Genistein is an effective stimulator of sex hormone binding globulin pr- oduction in hepatocarcinoma human liver cancer cells and suppresses proliferation of these cells in culture[J]. Steroids, 1993, 58(7): 301-304.
    [11]马吉祥,王勤忠,苏军英,等.大豆异黄酮诱导人食管癌裸鼠移植瘤细胞凋亡[J].中国肿瘤, 2004, 13(1): 34-37.
    [12]徐德平,高霞,江汉湖.丹贝异黄酮对肿瘤的抑制效应[J].南京农业大学学报, 2002, 25(1): 97-101.
    [13]张晓丹,陈少军,周广红.环境雌激素的生殖毒性作用机制[J].江西医药, 2005, 40(1): 31-33.
    [14] Mizunuma H, Kanazawa K, Ogura S, et al. Anticarcinogenic effects of isofavones may be mediated by genistein in mouse mammary tumor virus-induced breast cancer[J]. Oncology, 2002, 62(1): 78-84.
    [15] Jing Y, Nakaya K, Han R. Differentiation of promyelocytic leukemia cells HL-60 induced by daidzein in vitro and in vivo[J]. Anticancer Res, 1993, 13(4): 1049.
    [16] Anderson J W, Johnstone B M, Cook-Newell M E. Meta-analysis of the effects of soy protein intake on serum lipids [J]. N Engl J Med, 1995, 333(5): 276-282.
    [17] Potter S M, Baum J M, Teng H, et al. Soy protein and isoflavone: their effects on blood lipids and density in postmenoposal women [J]. Am J Clin Nutr, 1998, 68: 1375-1379.
    [18] Kudou S, Shimoyamada M, Imura T, et al. A new isoflavone glycoside in soybean seeds (Glycine max Merrill), Glycitein 7-O-B-D(6-O-Acety) Glucopyranoside[J]. Agrcultural and Biological Chemistry, 1991, 55(3): 859-860.
    [19] Kudou S, Fleury Y, Welti D, et al. Maonyl isoflavone glycoside in soybeen seeds (Glycine max Merrill)[J]. Agricultural and Bio-logicalChemistry, 1991, 55(9): 2227-2233.
    [20] Nagata C, Takatsuka N, Kawakami N. Soy product intake and hot flashes in Japanese women:results from a community bases prospective study[J]. Am J Epidemiol, 2001, 153: 790-793.
    [21] Pan Y, Anthony M S, Binns, M A. Comparison of oralmicronized estradiol with soy phytoestrogen effects on tail skin temperatures of ovariecto-mized rats[J]. Menopause, 2001, 8: 171-174.
    [22] Mukies A L, Lombard C, Strauss B J, et al. Dietary flour supplementation decreases post-meno- pausal hot flushes: effects of soy and wheat[J]. Maturitas, 1995, 21:189-195.
    [23]孙克杰,汤坚.异黄酮类化合物在不同氧化体系中的作用研究[J].食品科学, 2000, 22(3): 22-26.
    [24]张蓓.大豆异黄酮的生物活性及保健功效[J].职业与健康, 2006, 22(3): 176-178.
    [25] Lee D H, Lee S H. Genistein, a soy isoflavone is a potent-glucosidase inhibitor[J]. FEBS Letters, 2001, 501(1): 84-86.
    [26] File S E, Jarrett N, Fluck E, et al. Eating soya improves human memory[J]. Psychopharmacology, 2001, 157: 430-436.
    [27] Guo T L, Mccay J A, Ling X, et al. Genistein modulates immune responses and increases host resistance to B16F10 tumor in adult female B6C3F1 mice[J]. Nurture, 2001, 131: 3251-3258.
    [28]张逊,姚文,朱伟云.肠道大豆异黄酮降解菌研究进展[J].世界华人消化杂志, 2006, 14(10): 973-978.
    [29] Setchell K D R, Borriello S P, Hulme P, et al. Nonsteroidal estrogens of dietary origin: possible roles in hormone-dependent disease[J]. Am J Clin Nutr, 1984 (40): 569-578.
    [30] Chang Y C, Nair M G. Metabolism of daidzein and genistein by intestinal bacteria[J]. J Nutr Proc, 1995(58): 37-43.
    [31] Sathyamoorthy N, Wang T T Y. Differential effects of dietary phytooestrogens daidzein and equol on human breast cancer MCF-7 cells[J]. Eur J Cancer, 1997(33): 2384-2389.
    [32] Muthyala R S, Ju Y H, Sheng S, et al. Equol a natural estro-genic metabolite from soy isoflavones: convenient preparation and resolution of R- and S-equols and their differing binding and biological activity through estrogen receptors alpha and Beta[J]. Bioorg Med Chem, 2004, 12: 1559-1567.
    [33] Fujioka M, Uehara M, Wu J, et al. Equol a metabolite of daidzein, inhibits bone loss in ovariectomized mice[J]. J Nutr, 2004, 134: 2623-2627.
    [34] Kreijkamp K S, Kok L, Bots M L, et al. Randomized controlled trial of the effects of soy protein co- ntaining isoflavones on vascual function in postmenopausal women[J]. Am J Clin Nutr, 2005, 81(1): 189-195.
    [35] Widyarini S, Husband A J, Reeve V E. Protective effect of the isoflavonoid equol against hairlessmouse skin carcino-genesis induced by UV radiation alone or with a chemical cocarcinogen[J]. Photochem Photobio, 2005, 81: 32-37.
    [36] Beck V, Rohr U, Jungbauer A. Phytoestrogens derived from red clover:an alternative to estrogen replacement therapy[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2005, 94(5): 499-518.
    [37] Chin-Dusting J P, Fisher L J, Lewis T V, et al. The vascular activity of some isoflavone metabolites: implications for a cardioprotective role[J]. British Journal of Pharmacology, 2001, 133(4): 595-605.
    [38] Jiang F, Jones G T, Husband A J, et al. Cardiovascular protective effects of synthetic isoflavones derivatives in apolipoprotein edeficient mice[J]. Journal of Vascular Research, 2003, 40(3): 276-284.
    [39] Evans B A, Griffiths K, Morton M S. Inhibition of 5 alpha-reductase in genital skin fibroblasts and prostate tissue by dietary lignans and isoflavonoids[J]. J Endocrinol 1995, 147: 295-302.
    [40] Pelissero C, Lenczowski M J, Chinzi D. Effects of flavonoids on aromatase activity, an in vitro stu- dy[J]. J Steroid Biochem Mol Biol 1996, 57: 215-223.
    [41] Adlercreutz H, Bannwart C, W?h?l? K. Inhibition of human aromatase by mammalian lignans and isoflavonoid phytoestrogens[J]. J Steroid Biochem Mol Biol 1993, 44: 147-153.
    [42] Kinjo J, Tsuchihashi R, Morito K, et al. Interactions of phytoestrogens with estrogen receptors al- pha and beta (III). Estrogenic activities of soy isoflavone aglycones and their metabolites isolated from human urine[J]. Biological & Pharmaceutical Bulletin, 2004, 27: 185-188.
    [43] Morito K, Hirose T, Kinjo J, et al. Interaction of phytoestrogens with estrogen receptors alpha and beta[J]. Biological & Pharmaceutical Bulletin, 2001, 24: 351-356.
    [44] Schmitt E, Dekant W, Stopper H. Assaying the estrogenicity of phytoestrogens in cells of differe- nt estrogen sensitive tissues[J]. Toxicology In Vitro, 2001, 15: 433-439.
    [45] Schmitt E, Metzler M, Jonas R, et al. Genotoxic activity of four metabolities of the soy isoflavone daidzein[J]. Mutat Res, 2003, 542: 43-48.
    [46] Hur H G, Lay JO Jr, Rafii F, et al. Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin[J]. Arch Microbiol, 2000, 174: 422-428.
    [47] Wang X L, Shin K H, Hur H G, et al. Enhanced biosynthesis of dihydrodaizein and dihydrogenistein by a newly isolated bovine rumen anaerobic bacterium[J]. Journal of Biotechnology, 2005, 115: 261-269.
    [48] Schoefer L, Mohan R, Blaut M. Anaerobic C-ring cleavage of genistein and daidzein by Eubacte- rium ramulus[J]. FEMS Microbiology Letters, 2002, 208: 197-202.
    [49] Wang X L, Hur H G, Kim Su I L. C-ring cleavage of isoflavones daidzein and genistein by a newly- isolated human intestinal bacterium Eubacterium ramulus julong601[J]. Journal of Microbiology and Biotechnology, 2004, 14(4): 766-771.
    [50] Wang X L, Hur H G, Kim Su I L, et al. Enantioselective synthesis of S-equol from dihydrodaidze- in by a newly isolated anaerobic human intestinal bacterium[J]. Applied and EnvironmentalMicrobiology, 2005, 71: 214-219.
    [51] Minamida K, Tanaka M, Abe A. Production of equol from daidzein by gram-positive rod-shaped bacterium isolated from rat intestine[J]. Journal of Bioscience and Bioengineering, 2006, 102(3): 247-250.
    [52]于飞,王世英,李佳,张琪,李朝东,王秀伶.兼性肠球菌Enterococcus hirae AUH-HM195对黄豆苷原的开环转化[J].微生物学报, 2009, 49(4): 479-484.
    [53]周佳春,徐玉佩.双歧杆菌的耐氧驯化[J].中国食品学报, 1998, 2(1): 22-28.
    [54]王大红,赵瑞香,牛生洋.嗜酸乳杆菌有氧驯化和糖发酵特性的研究[J].河南师范大学学报, 2005, 33(4): 122-125.
    [55]刘吉成,王惠艳,曹军,等.双歧豆奶菌种的驯化研究[J].中国微生态学杂志, 2000, 12(5): 279-281.
    [56]彭帮柱,岳田利,袁亚宏,等.酵母菌原生质体融合技术[J].西北农业学报, 2004, 13(1): 101-103.
    [57]王娟娟,贾彦军.微生物原生质体融合方法的综述[J].畜牧兽医科技信息, 2005, 10: 17-19.
    [58]曾洪梅,张震霖.原生质体融合提高农抗武夷菌素的效价[J].微生物学报, 1995, 35(5): 375-380.
    [59]庞小燕,王吉瑛.构建直接发酵淀粉产生酒精的酵母融合菌株的研究[J].生物工程学报, 2001, 17 (2): 165-169.
    [60]高年发,王淑豪.酿酒酵母与粟酒裂殖酵母属间原生质体融合选育降解苹果酸强的菌株[J].生物工程学报, 2000, 16 (6): 718-722.
    [61]黎永学.双歧杆菌和酿酒酵母原生质体融合的研究[D].重庆:重庆医科大学, 2002.
    [62]张莉滟.双歧杆菌与乳杆菌原生质体融合的初步研究[D].重庆:重庆医科大学, 2002.
    [63]王明兹,施巧琴,周晓兰,等.提高酵母菌原生质体制备与再生的方法研究[J].微生物学杂志, 2005, 25(3): 10-11.
    [64] Manisha V C, Mukund V D. Isolation and regeneration of protoplasts from the yeast and mycelial form of the dimorphic zygomycete[J]. Microbiological Research, 2002, 157: 29-37.
    [65] Balasubramanian N, Juliet G A, Srikalaivani P, et al. Release and regeneration of protoplasts from the fungus Trichothecium roseum[J]. Canadian Journal of Microbiology, 2003, 49(4): 263-268.
    [66]徐继初.生物统计及试验设计[M].北京:中国农业出版社, 1990: 182-185.
    [67]张广志,杨合同,李纪顺等.褐球固氮菌和荧光假单胞菌原生质体制备条件的研究[J].山东科学, 2006, 19(6): 15-18.
    [68] Gabriele S, Annette H, Anna K, et al. Effects of nutrients cell density and culture techniques on protoplast regeneration and early protonema development in a moss Physcomitrella patens[J]. Journal of Plant Physiology, 2003, 160(2): 209-213.
    [69]熊宗贵.发酵工艺原理[M].北京:中国医药科技出版社, 1995: 57-59.
    [70]熊本涛,王卫卫,孙继民.小克银汉霉原生质体的制备与再生[J].西北大学学报(自然科学版), 2004, 34(4): 439-442.
    [71]李华,刘晓晴,游玲.酒酒球菌SD-2a原生质体制备条件研究[J].西北农林科技大学学报(自然科学版), 2007, 35(2): 183-186.
    [72]李祥锴,安志东,朱非.林肯链霉菌双亲灭活原生质体融合的研究[J].氨基酸和生物资源, 2001, 23 (4): 24-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700