用户名: 密码: 验证码:
离子液体中分子筛催化环已烷氧化反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环己烷的氧化在化工生产中具有十分重要的价值。目前,国内外环己烷氧化制备环己醇(酮)的生产工艺中,环己烷的转化率为3.5~4.2%,环己酮和环己醇的总选择性为76~81%。该技术资源利用率低,残渣排放量大。因此,发展一种更为高效和环境友好的催化体系已显得十分重要。近年来开发出的新型催化剂如ZSM-5、钛硅分子筛等在环己烷氧化反应中表现出优异的催化性能,但此类催化剂用于环己烷氧化反应时多采用乙腈、丙酮、乙二酸等挥发性有毒有害溶剂作为反应介质,没有从根本上解决清洁条件下的环己烷氧化反应。以新型绿色溶剂离子液体作为反应介质替代传统溶剂,有望实现温和条件下高转化率及产物高选择性的环己烷氧化反应,最终达到清洁生产的目的。
     本文以应用面较宽的咪唑类离子液体作为研究对象。在对离子液体的合成及其物化性质认识的基础上,首次尝试将ZSM-5及TS-1分子筛、叔丁基过氧化氢(TBHP)、离子液体结合组成新的“环境友好”催化氧化体系,即“分子筛—离子液体—TBHP”催化氧化体系。并将此体系用于催化环己烷氧化反应研究,实现了清洁、温和条件下环己烷的高效、高选择性催化氧化反应。
     以氮甲基咪唑为原料采用两步法合成了系列1-烷基-3-甲基咪唑四氟硼酸盐([C_(2~7)mim]BF_4)及六氟磷酸盐([C_(4~7)mim]PF_6)室温离子液体,并通过核磁氢谱、红外光谱、质谱等手段对其结构进行了分析及确认。对[C_(2~7)mim]BF_4及[C_(4~7)mim]PF_6系列离子液体的饱和吸水性及表面张力进行了测定,结果表明:[C_(2~7)mim]BF_4系列离子液体的吸水性随着1位氮上取代基碳链的增长而减小,其饱和含水量以[C_2mim]BF_4最多,室温下高达8.114%。[C_(4~7)mim]PF_6系列离子液体的吸水性较差,其饱和含水量均低于0.9%以下;[C_(2~7)mim]BF_4及[C_(4~7)mim]PF_6系列离子液体表面张力γ均随温度的升高而线性下降,同种离子液体的表面张力呈现出较宽的变化范围,如298K下,表面张力值从[C_2mim]BF_4的50.4 mJ/m~2到[C_7mim]BF_4的36.1 mJ/m~2。在相同温度下,两类离子液体的表面张力均随着阳离子咪唑环1位氮上的取代基碳链n的增长而减小。
     以系列离子液体为反应介质,TBHP为氧化剂,不同硅铝比ZSM-5分子筛为催化剂进行环己烷氧化,得到了较传统分子溶剂丙酮高的环己烷的氧化活性。同一种离子溶剂中,随着分子筛HZSM-5硅铝比的增加环己烷催化氧化活性逐渐降低。硅铝比为25的ZSM-5分子筛在离子液体介质中显示了最高环己烷催化氧化活性。环己烷转化率最高达15.8%,产物总选择性为97.0%。而在传统分子溶剂丙酮中环己烷转化率为2~4%,产物选择性大幅下降,仅在70.2~74.7%范围之内。与非水溶性离子液体相比,水溶性离子液体中分子筛的氧化活性要高。四氟硼酸盐离子液体中,对同一催化剂来说,随着咪唑环1位氮上取代基链长的增加,其催化活性逐渐降低,其活性顺序为:[C_2mim]~+>[C_3mim]~+>[C_4mim]~+>[C_5mim]~+>[C_6mim]~+>[C_7mim]~+。环己烷转化率由[C_2mim]BF_4的15.8%降低为[C_7mim]BF_4的3.10%。
     采用等体积浸渍和离子交换两种方法制备的系列不同金属改性的ZSM-5分子筛,并对其进行了XRD、EDX、N_2吸附表征。并以离子液体[C_2mim]BF_4为反应介质,考察了改性ZSM-5分子筛对环己烷氧化反应的影响。结果表明,对于负载量相同的不同金属来说,用等体积浸渍法制备的分子筛的环己烷氧化反应活性相差较大,产物的总收率在9.5~20.5%范围之内,而用离子交换法制备的分子筛的环己烷氧化反应活性相差较小,产物的总收率在15.0~16.5%之间。对于负载量相同的同一种金属来说,不同制备方法得到的金属改性ZSM-5分子筛的环己烷氧化反应活性不同,等体积浸渍法制备的载Ni、Cu、Co金属的ZSM-5的活性要低于相对应的离子交换法制备的分子筛的活性。
     以系列离子液体为反应介质,TS-1分子筛为催化剂进行环己烷氧化,得到了较高的环己烷的转化率以及产物的选择性。四氟硼酸盐离子液体溶剂中TS-1催化剂的催化活性均高于分子溶剂丙酮或没有溶剂时的活性。在[C_4mim]PF_6离子液体溶剂中,TS-1的催化活性高于无溶剂时的活性而却低于丙酮溶剂中的催化活性。[C_2mim]BF_4离子液体中,TS-1的催化活性最好,环己烷氧化产物的总收率高达14.9%。
     机理研究表明,离子液体中ZSM-5及TS-1分子筛催化环己烷氧化均为自由基链锁反应历程。离子液体/TS-1体系中,离子液体溶剂中高的活性与其能够活化分子筛的活性位有关,即咪唑阳离子2位上酸性的氢与钛氧键相互作用导致Ti-O键的极化,提高催化剂上活性位的Lewis酸性,使过骨架钛与环己基过氧化氢生成的过氧化物物种对环己烷上C-H键的活化作用增强进而提高了环己烷氧化反应活性。
     以TS-1、ZSM-5及金属改性ZSM-5分子筛为催化剂,离子液体为溶剂的环己烷氧化反应具有分离过程简单、反应条件温和、离子液体/分子筛的重复使用性好、产物选择性及收率较高、无环境污染等突出特点。因此,“TS-1分子筛—离子液体—TBHP”体系催化氧化环己烷反应比传统分子溶剂体系更具有优势。
Oxidation of cyclohexane is significant and economical to the chemical industry. In the present industrial oxidation process, cyclohexane conversion is about 3.5~4.2% and the selectivity to cyclohexanol and cyclohexanone is 76~81%. The obvious drawback of this process is the high energetic demand and the large volume of effluents. Therefore, it is very important to develop an effective and environmentally benign catalytic system. Recently, molecular sieves such as ZSM-5, titanium silicalite 1 (TS-1) has attracted great interest in the selective oxidation of cyclohexane due to their redox ability, shape-selectivity and recyclable properties. However, most of these reported procedures used volatile organic compounds such as acetonitrile, acetone and acetic acid as molecular solvents. The development of clean catalytic method to performed cyclohexane oxidation selectively has received increasing. Ionic liquids are new generation solvents, which have received great attention as promising substitutes for traditional organic solvents. An effectively and environmentally friendly oxidative conversion of cyclohexane might be realized in ionic liquids compared with in molecular solvents.
     In this paper, the most widely used alkylimdazolium-based ionic liquids were synthesized. On the basis of study on their physiochemical properties, ionic liquids were firstly used as solvents in the catalytic oxidation system of "molecular sieves- tert-butyl-hydroperoxide". The new combinations of "molecular sieves-ionic liquid-TBHP" system were firstly applied to the cyclohexane oxidation reaction and the highly effective, environment-friendly oxidation reaction of cyclohexane, which has a high yield and selectivity, was obtained.
     A series of room temperature ionic liquids based on 1-alkyl-3-methylimidazolium tetrafluoroborate ([C_(2~7)mim]BF_4) and 1-alkyl-3-methylimidazolium hexafluorophosphate ([C_(4~7)mim]PF_6) were synthesized, and the structures were characterized and confirmed by ~1H NMR, IR and MS. Water adsorption properties and surface tension of the series of ionic liquids were measured. The results show that the amount of saturated water adsorbed in series [C_(2~7)mim]BF_4 ionic liquids drops with increasing alkyl chain length n. Among them, the [C_2mim]BF_4 possessed the highest water adsorption properties and the highest amount of adsorptive water was 8.114% at room temperature. While there is a little amount of saturated water in the series of [C(4~7)mim]PF_6 ionic liquids and they are all lower than 0.9%. There is a linear decrease of surface tension with increasing temperature. The values of surface tension span an unusually wide range for compounds of similar structure, from 50.4 mJ/m~2 ([C_2mim]BF_4) to 36.1 mJ/m~2 ([C_7mim]BF_4) at 298 K. In the sametemperature, the surface tension decreases as the alkyl chain in the 1-position of the cation is lengthened for the two series of ionic liquids.
     ZSM-5 molecular sieves with different Si/Al ratio were first applied to catalyze the oxidation of cyclohexane with tert-butyl-hydroperoxide in ionic liquids and acetone. Higher oxidation activities were obtained in ionic liquids than in molecular solvent. In the same ionic solvent, the activity of cyclohexane oxidation decreases with the increase of Si/Al ratio of ZSM-5. the molecular sieves with a Si/Al ratio of 25 shows the highest catalytic activity in [C_2mim]BF_4 and a conversion of 15.8% and a selectivity of 97.0 % of desired products were obtained. While in acetone, the selectivity was sharply decreased and only in the range of 70.2~74.7%. In contrast to the reaction in water-immicible ionic liquids, the cyclohexane oxidation in water-miscible ionic liquids shows higher activity. In the case of tetrafluoroborate ionic liquids, a reduction of activity occurs with increasing cation size for a specific molecular sieve. The order of activity is as follows: [C_2mim]~+ > [C_3mim]~+ > [C_4mim]~+ > [C_5mim]~+ > [C_6mim]~+ > [C_7mim]~+. The conversion of cyclohexane decreases from 15.8% to 3.10%.
     Two series of modified ZSM-5 with different metals were prepared by using ion-exchange and incipient wetness impregnation method. The synthesized metal-containing molecular sieves were characterized by XRD, EDX and N_2 adsorption. In ionic liquid [C_2mim]BF_4 media, cyclohexane oxidation reactions were studied using the obtained two series metal-containing ZSM-5 as catalysts. Results indicate that the activities span a relatively wide range for the catalysts prepared by using incipient wetness impregnation method and the total yield was in the range of 9.5~20.5%. While for the catalysts synthesized by ion-exchange, a different results were obtained, and the total yields were in a narrow range of 15.0~16.5%. For the specific metal with the same amount of loading, different preparation method have different influence on their catalytic activity. The activities of ZSM-5 loading Ni、Cu and Co prepared by incipient wetness impregnation method were lower than those of ZSM-5 loading Ni、Cu and Co prepared by ion-exchange method.
     The oxidations of cyclohexane with tert-butyl-hydroperoxide catalyzed by TS-1 in series of ionic liquids were performed. A higher cyclohexane conversion and higher selectivity of products were found in the ionic liquid compared with in acetone. The catalytic activities of TS-1 in tetrafluoroborate ionic liquids are higher than those in either molecular solvent acetone or no solvent. In the case of [C_4mim]PF_6, the catalytic activity of TS-1 is higher than that no solvent and lower than that in acetone. There has the highest catalytic activity of TS-1 in ionic liquid [C_2mim]BF_4 and the total yield of oxidation products reaches 14.9%. Cyclohexane oxidation reaction with ZSM-5 and TS-1 molecular sieves in ionic liquids proceeds by free-radical mechanism. For TS-1 catalyst, the higher activity of the ionic liquid compared with the organic solvent may suggest that it can activate the active site on the catalyst and the activation can be understood from consideration of the acidity of 2-H of the imidazolium cation. This interaction induces a polarization of the Ti-0 bond, increasing the overall Lewis acidity of the catalytic site, and, as a consequence, the activity of the peroxo species toward the cyclohexane increases.
     The process of cyclohexane oxidation catalyzed by ZSM-5, metal-containing ZSM-5 and TS-1 in ionic liquids has a series of advantages. The mild reaction conditions and the simple product isolation combined with increased reaction rates, ease of recovery and reuse of ZSM-5/ionic liquid system make this procedure useful and attractive for cyclohexane oxidation.
引文
[1]何鸣元,戴立益.离子液体与绿色化学[J].化学教学,2002,(2):1-3
    [2]Chowdhury S,Mohanb R S,Scott J L.Reactivity of ionic liquids[J].Tetrahedron,2007,63:2363-2389
    [3]Dupont J,Fonseca G S.,Umpierre A P.,Fichtner P F P,Teixeira S R.Transition-metal nanoparticles in imidazolium ionic liquids:recyclable catalysts for biphasic hydrogenation reactions[y].J.Am.Chem.Soc.,2002,124:4228-4229
    [4]Dyson P J,Ellis D J,Henderson W,Laurenczy G.Acomparison of Ruthenium-catalysed arene hydrogenation reactions in water and 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids[J].Adv.Synth.Catal.,2003,345(1-2):216-221
    [5]Biedron T,Kubisa P.Atom-transfer radical polymerization of acrylates in an ionic liquid[J].Macromol.Rapid.Comm.,2001,22(15):1237-1242
    [6]Ma H,Wan X,Chen X,Zhou Q.Reverse atom transfer radical polymerization of methyl methacrylate in imidazolium ionic liquids[J].Polymer,2003,44(18):5311-5316
    [7]Sun H J,Harms K,Sundermeyer J.Aerobic oxidation of 2,3,6-trimethylphenol to trimethyl-1,4-benzoquinone with copper(Ⅱ)chloride as catalyst in ionic liquid and structure of the active species[J].J.Am.Chem.Soc.,2004,126:9550-9551
    [8]Yang Z,Pan W B,Ionic liquids:Green solvents for nonaqueous biocatalysis[J].Enzym.Microb.Tech.,2005,37:19-28
    [9]Jiang N,Raganskas A J.TEMPO-catalyzed oxidation of benzylic alcohols to aldehydes with the H_2O_2/HBr/ionic liquid[bmim]PF_6 system[J].Tetrahedron Lett.,2005,46:3323-3326
    [10]Sokmen I,Sevin F.Oxidation of cyclohexane catalyzed by metal-ion-exchanged zeolites[J].J.Coll.Inter.Sci.,2003,264:208-211
    [11]Cuo C C,Huang G,Zhang X B,Guo D C.Catalysis of chitosan-supported iron tetraphenylporphyrin for aerobic oxidation of cyclohexane in absence of reductants and solvents[J].Appl.Catal.A:Gen.,2003,247:261-267
    [12]Nakedia M.F.Carvalho,Adolfo Horn Jr,O.A.C.Antunes.Cyclohexane oxidation catalyzed by mononuclear iron(Ⅲ)complexes[J].Appl.Catal.A:Gen.,2006,305:140-145
    [13]Tian P,Liu Z M,Wu Z B.Characterization of metal-containing molecular sieves and their catalytic properties in the selective oxidation of cyclohexane[J].Catal.Today,2004,93-95:735-742
    [14]Pires E L,Arnold U,Schuchardt U.Amorphous silicates containing cerium:selective catalysts for the oxidation of cyclohexane[J].J.Mol.Catal.A:Chem.,2001,169:157-161
    [15]Perkas N,Koltypin Y,Palehik O,Gedanken A,Chandrasekaran S.Oxidation of cyclohexane with nanostructured amorphous catalysts under mild conditions[J].Appl.Catal.A:Gen.,2001,209:125-130
    [16]Pillai U R.Sahle-Demessie E.A highly efficient oxidation of cyclohexane over VPO catalysts using hydrogen peroxide[Y].Chem.Commun.,2002,2142-2143
    [17]Sooknoi T,Limtrakul J.Activity enhancement by acetic acid in cyclohexane oxidation using Ti-containing zeolite catalyst[J].Appl.Catal.A:Gen.,2002,233:227-237
    [18]Velusamy S,Punniyamurthy T.Copper(Ⅱ)-catalyzed C-H oxidation of alkylbenzenes and cyclohexane with hydrogen peroxide[J].Tetrahedron Lett.,2003,44:8955-8957
    [19]SpinaceE V,Pastore H O,Schuchardt U.Cyclohexane oxidation catalyzed bytitanium silicalite(TS-1):overoxidation and comparison with other oxidation systems[J].J.Caltal.,1995,157:631-635
    [20]Langhendries G,Baron G V,Neys P E,Jacobs P A.Liquid-phase hydrocarbon oxidation using supported transition metal catalysts:Influence of the solid support[J].Chem.Eng.Sci.,1999,54:3563-3568
    [21]Schuchardt U1,Pereira R,Rufo M.Iron(Ⅲ)and copper(Ⅱ)catalysed cyclohexane oxidation by molecular oxygen in the presence of tert-butyl hydroperoxide[J].J.Mol.Catal.A:Chem.,1998,135:257-262
    [22]Yao C S,Weng H S.Liquid-Phase cooxidation of cyclohexane and cyclohexanone over supported cerium oxide catalysts[J].Ind.Eng.Chem.Res.1998,37:2647-2653
    [23]Bellifa A,Lahcene D,Tchenar Y N,Choukchou-Braham A,Bachir R,Bedrane S,Kappenstein C.Preparation and characterization of 20 wt.%V_2O_5-TiO_2 catalyst oxidation of cyclohexane[J].Appl.Catal.A:Gen.,2006,305:1-6
    [24]张杰,孟宪涛,郭星翠,樊丽荣,连丕勇.Cr-MCM-41分子筛的合成及对环己烷选择性氧化的研究[J].化工科技,2004,12(4):1-4
    [25]纪红兵,钱宇,罗思睿,何笃贵.温和条件下环己烷液相选择性氧化改性VPO催化剂[J].化工学报,2004,55(12):2027-2031
    [26]李春蕾,周永昌.卤代二烃基咪唑离子液体合成研究进展[J].安徽工业大学学报,2005,22(1):25-29
    [27]Masihul H,Ivan V K,Rafiq H S.Gold compounds as ionic liquid,synthesis,structures,and thermal properties of N,N-dialkylimidazolium tetrachloroaurate salts[J].Inorg.Chem.,1999,38(25):5637-5641
    [28]Wilkes J S,Zaworotko M J.Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids[J].Journal of Chemical Society,Chem.Commun.,1992,965-967
    [29]邓友全.离子液体—性质、制备与应用[M].北京:中国石化出版社,2006.5
    [30]Huddleston J G,Willauer H W,Swatloski R P,et al.Room temperature ionic liquids as novel media for 'clean' liquid-liquid extraction[J].Chem.Commun,1998,18:1765-1766
    [31]刁香,李德刚.离子液体的合成研究[J].精细石油化工进展,2006,7(5):29-33
    [32]Seddon K R,Carmichael A J and Earle M J.Process for preparing ambient temperature ionic liquids.US20030080312
    [33]Varma R S,Namboodiri V V.An expeditious solvent-free route to ionic liquids by ultrasound[J].Chem.Commun,2001,15(3):643-644
    [34]Law M C,Xong K Y,Chan T H.Solvent-free route to ionic liquid precursors using a water-moderated microwave process[J].Green.Chem.,2002,(4):328-330
    [35]Khadilkar B M,Rebeiro G L.Microwave-assisted synthesis of room-temperature ionic liquid precursor in closed vessel[J].Org.Process Res.Dev.,2002,6(6):826-828
    [36]Namboodiri V V,Varma R S.Solvent-Free sonochemical preparation of ionic liquids [J].Org.Lett,2002,4(18):3161-3164
    [37]Leveque J M,Luche J L,Petrier C,Rouxa R,Bonrath W.An improved preparation of ionic liquids by ultrasound[J].Green Chem.,2002,(4):357-360
    [38]张彦红,刘植昌,黄崇品,高金森,徐春明.离子液体的离子存在形式和物性研究[J].化学世界,2003,(12):665-669
    [39]郭文希,高鹏,张姝妍,毛微.室温离子液体的理化性能[J].辽宁化工,2003,32(6):256-259
    [40]Cinzia Chiappe,Daniela Pieraccini,Review Commentary Ionic liquids:solvent properties and organic reactivity[J]J.Phys.Org.Chem.2005;18:275-297
    [41]孙宁,张锁江,张香平,李增喜.离子液体物理化学性质数据库及QSPR分析[J].过程工程学报,2005,5(6):698-702
    [42]George L,Philip R W.Surface tension measurements of N-Alkylimidazolium ionic liquids[J].Langmuir.2001,17,6138-6141
    [43]Huddleston J G,Visser A E,Matthew Reichert W,Willauer H D,Broker G A,Rogers R D.Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation[J].Green Chem.2001,3,156-164
    [44]Yang J Z,Lu X M,Gui J S,Xu W G.A new theory for ionic liquids—the Interstice Model Part 1.The density and surface tension of ionic liquid EMISE[J].Green Chem.,2004,6,541-543
    [45]Anderson J L,Ding R F,Ellern A,Armstrong D W.Structure and properties of high stability geminal dicationic ionic liquids[J].J.Am.Chem.Soc.2005,127,593-604
    [46]Welton T.Ionic liquids in catalysis[J].Coordin.Chem.Rev.,2004,248:2459-2477
    [47]方岩雄,顾浩,张赛丹,纪红兵.离子液体中氧化反应研究进展[J].精细化工,2005,22(6):451-454
    [48]Yao Q,OsO_4 in ionic liquid[bmim]PF_6:A Recyclable and reusable catalyst system for olefin dihydroxylation.Remarkable effect of DMAP[J],Org,Lett,2002,4(13):2197-2199
    [49]Yanada R,Takemoto Y.OsO_4-catalyzed dihydroxylation of olefins in ionic liquid [emim]BF_4:a recoverable and reusable osmium[J].Tetrahedron Lett.,6851-6853
    [50]Song C E,Jung D,Rob E J.Osmium tetroxide-(QN)-PHAL in an ionic liquid:a highly efficient and recyclable catalyst for asymmetric dihydroxylation of olefins[J].Chem.Commun,2002,24:3038-3039
    [51]Owens G S,Abu-Omar M M.Methyltrioxorhenium-catalyzed epoxidations in ionic liquids[J].Chem.Commun.2000,1165-1166
    [52]Song C E,Roh E J.Practical method to recycle a chiral(salen)Mn epoxidation catalyst by using an ionic liquid[J].Chem.Commun.2000,837-838
    [53]Li Z,Xia C G.Oxidation of hydrocarbons with iodobenzene diacetate catalyzed by manganese(Ⅲ)porphyrins in a room temperature ionic liquid[J].J.Mol.Catal.A:Chem.,2004,214:95-101
    [54]Wang B,Kang Y R,Yang L M.Epoxidatin of unsatruated carbonyl compounds in ionic liquid/water biphasic system undermild conditions[J].J.Mol.Catal.A:Chem.,2003,203:29-36
    [55]Imtiaz A.A,Rene G.TEMPO-catalyzed aerobic oxidation of alcohols to aldehydes and ketones in ionic liquid[bmim][PF_6][J].Org.Lett.,2002,4(9):1507-1509
    [56]Yadav J S,Reddy B V S,BasakA K,Venkat N.Recyclable 2~(nd)generation ionic liquid as green solvents for the oxidation of alcohols with hypervalent iodine reagents[J].Tetrahedron,2004,60:2131-2135
    [57]Zhi Liu,Zhen-Chu Chen,and Qin-Guo Zheng,Mild oxidation of alcohols with O-Iodoxybenzoic acid(IBX)in ionic liquid 1-Butyl-3-methyl-imidazolium chloride and water[J].Org.Lett.,2003,5(18):3321-23
    [58]Xie H B,Zhang S B,Duan H F.An ionic liquid based on a cyclic guanidinium cation is an efficient medium for the selective oxidation of benzyl alcohols[J].Tetrahedron Lett.,2004,45:2013-2015
    [59]Jiang N,Ragauskas A J.Copper(Ⅱ)-catalyzed aerobic oxidation of primary alcohols to aldehydes in ionic liquid[bmpy]PF_6[J].Org.Lett.,2005,7(17):3689-3692
    [60]Wolfson A,Wuyts S,Dirk E D V.Aerobic oxidation of alcohols with ruthenium catalysts in ionic liquids[J].Tetradron Lett.,2002,43:8107-8110
    [61]Farmer V,WeltonT.The oxidation of alcohols in substituted imidazolium ionic liquids using ruthenium catalysts[J].Green Chem.2002,4:97-102
    [62]Seddon K R,Stark A.Selective catalytic oxidation of benzyl alcohol and alkylbenzenes in ionic liquids[J],Green Chem.2002,4:119-125
    [63]Farmer V,Welton T.The oxidation of alcohols in substituted imidazolium ionic liquids using ruthenium catalysts[J].Green Chem.,2002,4(2):97-102
    [64]Bhupender S.C,Ramesh C,VibhaT.Oxidation of alcohols with hydrogen peroxide catalyzed by a new imidazolium ion based phosphotungstate complex in ionic liquid[J].J.Catal.,2005,230:436-439
    [65]Li Z,Xia C G,Xu C Z.Oxidation of alkanes catalyzed by manganese(Ⅲ)porphyrin in an ionic liquid at room temperature[J].Tetrahedron Lett.,2003,44:9229-9232
    [66]乔焜,邓友全.超强酸性室温离子液体反应介质中烷烃羰化研究[J].化学学报,2002,60(8):1520-1523
    [67]唐文明,李朝军.三氯化钌催化下环已烷和环己醇在离子液体中的氧化反应研究[J].化学学报,2004,62(7):742-744
    [68]Vasudevan V.N,Rajender S V,Endalkachew S D,Unnikrishnan R Pi.Selective oxidation of styrene to acetophenone in the p resence of ionic liquids[J].Green Chem.,2002,4(2):170-173
    [69]Ansari I A,Joyasawal S,Gupta M K,Yadav J S,Gree R,Wacker oxidation of terminal olefins in a mixture of[bmim][BF_4]and water[J].Tetrahedron Lett.,2005,46:7507-7510
    [70]Peng J J,Shi F,Gu Y L.Highly selective and green aqueous ionic liquid biphasic hydroxylation of benzene to phenolwith hydrogen peroxide[J].Green Chem,2003,5(2),224-226
    [71]Sun H J,Li X Y,Sundermeyer J.Aerobic oxidation of phenol to quinone with copper chloride as catalyst in ionic liquid[J].J.Mol.Catal.A:Chem.,2005,240:119-122
    [72]Joshua Howarth.Oxidation of aromatic aldehydes in the ionic liquid[bmim]PF_6[J],Tetrahedron Lett.,2000,41:6627-6629
    [73]石峰,周瀚成,马宇春.离子液体中钯配合物催化苯胺氧化羰化制苯氨基甲酸甲酯[J].化学学报,2002,60(5):1517-1519
    [74]Roberta B,Antonietta C,Gianfranco P,Giancarlo F,Daniela T.Oxidation of aromatic aldehydes and ketones by H_2O_2/CH_3ReO_3 in ionic liquids:a catalytic efficient reaction to achieve dihydric phenols[J].Tetrahedron,2005,61:1821-1825
    [75]Lo W H,Yang H Y,Wei G T,One-pot desulfurization of light oils by chemical oxidation and solvent extraction with room temperature ionic liquids[J].Green Chem.,2003,5,639-642
    [76]Lu L,Cheng S F,Gao J B,Gao G H,He M Y.Deep oxidative desulfurization of fuels catalyzed by ionic liquid in the presence of H_2O_2[J].Energ.Fuel.,2007,21,383-384
    [71]Wenshuai Zhu,Huaming Li,Xue Jiang,Yongsheng Yan,Jidong Lu,and Jiexiang Xia,Oxidative Desulfurization of Fuels Catalyzed by Peroxotungsten and Peroxomolybdenum Complexes in Ionic Liquids[J].Energ.Fuel.,2007,21,2514-2516
    [78]SM S Chauhan,Anil Kumar,K A Srinivas.Oxidation of thiols with molecularoxygen catalyzed by cobalt(Ⅱ)phthalocyanines in ionic liquid[J].Chem.Commun.,2003,25:2348-2349
    [79]Bemini,R,Coratti,A,Fabrizi,G,Goffiamani,A,CH_3ReO_3/H_2O_2 in room temperature ionic liquid:an homogeneous recyclable catalytic system for the Baeyer-Villiger reaction,Tetraheddron Lett.,2003,44(50):8991-8994
    [80]李静,靳海波,佟泽民.环己烷氧化反应新工艺的研究进展[J].化学工业与工程,2006,23(4):345-350
    [81]吴鑫干,刘含茂.环己烷氧化制环己酮工艺及研究进展[J].化工科技,2002,10(2):48-53
    [82]张丽芳,陈赤阳,项志军.环己烷氧化制备环己酮和环己醇工艺研究进展[J].北京石油化工学院学报,2004,12(2):39-43
    [83]Guo C C,Li H P,Xu J B.Study of synthesis of′μ-oxo-bis manganese(Ⅲ)porphyrin compounds and their catalysis of cyclohexane oxidation by PhlO[J].J.Catal,1999,185:345-351
    [84]Guo C C,Liu X Q,Liu Y.Studies of simple-μ-oxo-bisiron(Ⅲ)porphyrin as catalyst of cyclohexane oxidation with air in absence of cocatalysts or coreductants[J].J.Mol.Catal.A:Chem.,2003,192:289-294
    [85]Hussain A,Shukla R S,Thorat R B,Padhiyar H J,Bhatt K N.Ru(Ⅲ)analogue of model methane monooxygenase in the effective catalytic oxidation of cyclohexane by molecular oxygen[J],J.Mol.Catal.A:Chem.,2003,193:1-12
    [86]胡珍珠,杨水金.铁(Ⅲ)卟啉配合物催化环己烷氧化反应的研究[J].精细石油化工进展,2003,4(8):11-13
    [87]Menage S,Vincent J M,Lambeaus C.Oxidation catalyzed by μ-oxo-bridged diferric complexes:A structure/reactivity correlation study[J].Inog.Chem.,1993,32:4766-4793
    [88]Simoes M M Q,Conceicao C M M,Gamelas J A F,Domingues P M D N,Cawaleiro A M V,Cavaleiro J A S,Ferrer-Correia A J V,Johnstone R A W.Keggin-type polyoxotungstatesas catalysts in the oxidation of cyclohexane by dilute aqueous hydrogen peroxide[J].J.Mol.Catal.A:Chem.,1999,144:461-468
    [89]Noritaka M,Chika N,To-oru H,Masaki T,Masakazu I.Liquid-phase oxygenation of hydrocarbons with molecular oxygen catalyzed by Fe,Ni-substituted Keggin-type heteropolyanion[J].J.Mol.Catal.A:Chem.,1997,117:159-168
    [90]周小平,蔡炳新,张海洲.环己烷选择性氧化催化剂的研究进展[J].应用化工,2002,31(2):7-9
    [91]袁霞,罗和安,李芳.固载型Cosalen/NaY催化剂在环己烷氧化中的催化性能[J]. 石油化工,2006,35(5):458-463
    [92]Yuan H X,Xia Q H,Zhan H J,Lu X H,Su K X.Catalytic oxidation of cyclohexane to cyclohexanone and cyclohexanol by oxygen in a solvent-free system over metal-containing ZSM-5 catalysts[J].Appl.Catal.A:Gen.,2006,304:178-184
    [93]赵睿,吕高孟,季东,钱广,闫亮,王晓来,索继栓.Au/ZSM-5催化选择氧化环己烷制环己酮和环己醇的研究[J].分子催化,2005,19(2):115-120
    [94]Qian G,Ji D,Lu G M,Zhao R,Qi Y X,Suo J S.Bismuth-containing MCM-41:synthesis,characterization,and catalytic behavior in liquid-phase oxidation of cyclohexane[J].J.Catal.,2005,232:378-385
    [95]Parasuraman S,Susanta K.M.Synthesis,characterization and catalytic properties of mesoporous TiHMA molecular sieves:selective oxidation of cycloalkanes[J].Micropor.Mesopor.Mat.,2004,73:137-149
    [96]Robert R,Gopinathan S,John M T.Powerful redox molecular sieve catalysts for theselective oxidation of cyclohexane in air[J].J.Am.Chem.Soc.1999,121:11926-11927
    [97]Marsh K N,Boxall J A,Lichtenthaler R.Room temperature ionic liquids and their mixtures—a review[J].Fluid Phase Equilibria,2004,219:93-98
    [98]Sheldon R.Catalytic reactions in ionic liquids[J].Chem.Commun.,2001,2399-2407.
    [99]Zhao D B,Wu M,Kou Y,Min E.Ionic Liquids:Applications in Catalysis[J].Catal.Today,2002,74:157-189
    [100]Pierre B,Ana-Paula D,Nicholas P,Kuppuswamy K,and Michael G.Hydrophobic,highly conductive ambient-temperature molten salts[J].Inorg Chem,1996,35:1168-1178
    [101]Wilkes J S.Properties of ionic liquid solvents for xatalysis[J].J.Mol.Catal.A:Chem.,2004,214:11-17
    [102]Dzyuba S V.and Bartsch RA.Efficient synthesis of 1-alkyl(aralkyl)-3-methyl(ethyl)imidazolium halids:precursors for room-temperature ionic liquids[J].J Heterocyclic.Chem,2001,38:265-268
    [103]卢泽湘.咪哇类离子液体的合成、表征及应用的研究[MI.湘潭:湘潭大学,2004
    [104]Sergei.V.Dzyuba,M.S.Synthesis,properties,and applications of ionic liquids[D].Texas:Texas Tech University,2002
    [105]Chun S,Dzyuba S V.,Bartsch RA.Influence of structural variation in room-temperature ionicliquids on the selectivity and efficiency of competitive alkai metal salt extraction by a crown ether[J].Anal.Chem,2001,73:3737-3741
    [106]蔡月琴,彭延庆,宋恭华,黄菲菲,陆凤.室温离子液体1-丁基-3-甲基咪唑六氟磷酸盐的合成研究[J].化学试剂,2005,27(1):1-2
    [107]John D H,Kenneth R S.The phase behavior of 1-alkyl-3-methylimidazolium tetrafluoroborates:ionic liquids and ionic liquid crystals[J].J.Chem.Soc.Dalton Trans.,1999,2133-2139
    [108]Sharon I.Lall-Ramnarine.Synthesis and characterization of new types of ionic liquids-LIPs and PILs[D].New York:City University of New York,2003
    [109]Tokuda H,Hayamizu K,Ishii K,Hasan Susan M A B,Watanabe M.Physicochemical properties and structures of room temperature ionic liquids.Ⅰ.variation of anionic species[J].J.Phys.Chem.B.2004,108,16593-16600.
    [110]熊会军,李炜,张誉赢.滴体积法测定表面张力的误差检验[J].武汉工业学院学报,2009,26(3):42-44
    [111]Law,G,Watson,P.R.Surface orientation in ionic liquids[J].Chem.Phys.Lett.2001,345:1-4
    [112]Law G,Watson P R.Surface tension measuments of N-alkylimidazolium ionic liquids [J].Langmuir.2001,17:6138-6142
    [113]杨家镇,桂劲松,吕兴梅,张庆国,李华为.离子液体BMIBF_4性质的研究化[J].化学学报,2005,63(7):577-581
    [114 Kahl H,Wadewitz T,Winkelmann J.Surface tension of pure liquids and binary liquid mixtures[J].J.Chem.Eng.Data,2003,48:580-586
    [115]Azizian S,Bashavard N.Surface properties of pure liquids and binary liquid mixtures of ethylene glycol+ methylcyclohexanols[J].J.Chem.Eng.Data,2004,49:1059-1063
    [116]Yadollah Maham,A.Chevillard,Alan E.Mather.Surface thermodynamics of aqueous solutions of morpholine and methylmorpholine[J].J.Chem.Eng.Data,2004,49:411-415
    [117]谢端绶,璩定一,苏元复.常用物料物性数据[M].化学工业出版社,北京,1979,pp.390-392.
    [118]Marcus B K,Cormier W E,Going green with zeolites[J].Chem.Eng.Progress,1999,95(6):47-53
    [119]高雄厚,张永明,唐荣荣.ZSM-5沸石合成技术的进展[J].催化裂化,1997,16(21):43-47
    [120]胡津仙,李永旺,相宏伟等.CN 00109593,2001
    [121]Wang P,Shen B J,Gao J S.Synthesis of ZSM-5 zeolite from expanded perlite and its catalytic performance in FCC gasoline aromatization[J].Catal.Today,2007,125(3-4):155-162
    [122]汤琴,盛品正,姜峰.环己酮气相色谱分析过程中环己基过氧化氢干扰的消除[J].化工进展,2004,23(2):219-221
    [123]Cimpeanu V,Parulescu A N,Parulescu V I,On D T,Kaliaguine S,Thompson J M,Hardacre C.Liquid-phase oxidation of a pyrimidine thioether on Ti-SBA-15 and UL-TS-1 catalysts in ionic liquids[J].J.Caltal.,2005,232:60-67
    [124]Wang J Y,Zhao F Y.Liu R J,Hu Y Q.Oxidation of cyclohexane catalyzed by metal-containing ZSM-5 in ionic liquid[J].J.Mol.Catal.A:Chem.,2008,279(2):153-158
    [125]Swatloski R P,Holbrey J D,Rogers R D.Ionic liquids are not always green:hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate[J].Green.Chem.,2003,(5):361-363
    [126]Cimpeanu V,Parvulescu V,Parvulescu V I,Thompson J M,Hardacre C.Thioethers oxidation on dispersed Ta-silica mesoporous catalysts in ionic liquids[J].Catal.Today,2006,147:126-132
    [127]Hardacre C,Katdare S P,Milroy D,Nancarrow P,Rooney D W,Thompson J M.A catalytic and mechanistic study of the Friedel-Crafts benzoylation of anisole using zeolites in ionic liquids[J].J.Caltal.2004,227:44-52
    [128]Spinace E V,Pastore H O,Schuchardt U.Cyclohexane oxidation catalyzed by Titanium Silicalite(TS-1):overoxidation and comparison with other oxidation systems[J].J. Caltal.1995,157:631-637
    [129]Eschenroder F,Vogel H.The influence of solvents on the partial oxidation of cyclohexane[J].Chem.Eng.Technol.,1998,21(8):671-678
    [130]Pires E L,Wallau M,Schuchardt U.Cyclohexane oxidation over rare earth exchanged zeolite Y[J].J.Mol.Catal.A:Chem.,1998,136:69-74
    [131]Shen H Y,Zaher M A,Judeh,Ching C B,Xia Q H.Comparative studies on alkylation of phenol with tert-butyl alcohol in the presence of liquid or solie acid catalysts in ionic liquids[J].J.Mol.Catal.A:Chem.2004,212:301-308
    [132]Yadav J S,Reddy B V S,Sridhar Reddy M,Niranjan N.Eco-friendly heterogeneous solid acids as novel and recyclable catalysts in ionic medium for tetrahydropyranols[J].J.Mol.Catal.A:Chem.,2004,210:99-103
    [133]Pires E L,Arnold U,Schuchardt U.Amorphous silicates containing cerium:selective catalysts for the oxidation of cyclohexane[J].J.Mol.Catal.A:Chem.,2001,169:157-161
    [134]Pires E L,Magalhaes J C,Schuchardt U.Effects of oxidant and solvent on the liquid-phase cyclohexane oxidation catalyzed by Ce-exchanged zeolite Y[J].Appl.Catal.A:Gen.,2000,203:231-237
    [135]Breck D W,Eversole W G,Milton R M,et al.Crystalline zeolites 1.The properties of a new synthetic zeolite[J].J.Amer.Chern.Soc.,1956,78:5963-5971
    [136]Iwamoto M,Yamaguchi K,Akutagawa Y,et al.Partially Zinc Ion-Exchanged K-A Zeolites as Molecular Sieves Distinguishing Oxygen from Nitrogen[J].J.Phys.Chem.,1984,88:4195-4201
    [137]Kaeding W W,Chu C,Yong L B,et al.Shape-selective reactions with zeolite catalysts Ⅱ:Selective disproportionation of toluene to produce benzene and p-xylene[J].J.Catal,1981,69:392-398
    [138]向德辉.固体催化剂.北京:化学工业出版社[M].1983
    [139]黄开辉,万惠霖.催化原理.北京:科学出版社[M].1983
    [140]Dimitrova R,Gunduz G,Dimitrov L.Acidic sites in beta zeolites in dependence of the preparation methods[J].J.Mol.Catal.A:Chem.,2004,214:265-268
    [141]Boskovic G,Micic R,Pavlovic P.n-Hexane isomerization over Pt-Na(H)Y catalysts obtained by different preparation methods[J].Catal.Today,2001,65:123-128
    [142]Bendezu S,Cid R.,Fierro J LG.Thiophene hydrodesulfurization on sulfided Ni,W and NiW/USY zeolite catalysts:effect of the preparation method[J].Appl.Catal.A:Gen.,2000,197:47-60
    [143]Adolfo A,Xose L S,Javier M G Surface characterization and dehydrocyclization activity of Pt/KL catalysts prepared by different methods[J].Appl.Sur.Sci.,2003,205:206-211
    [144]Notari B.Titanium silicalite:a new selective oxidation catalyst[J].Stud.Surf.Sci.Catal.,1990,343-352
    [145]Notari B.Titanium silicalites[J].Catal.Today.1993,18(2):163-172
    [146]Boccuti M R,Ran K M,Zecchina A,et al.Spectroscopic characterization of silicalite and titanium-silicalite[J].Stud.Surf.Sci.Catal.,1989,48:133-139
    [147]Zecchina A,Bordiga S,Lamberti C,et al.Structural characterization of Ti centres in Ti-silicalite and reaction mechanism in cyclohexanone ammoximation[J].Catal.Today, 1996,32:97-106
    [148]Gleeson D,Sankar G,Catlow C R A,et al.The architecture of catalytically active centers in titanosilicate(TS-1)and related selective-oxidation catalysts[J].Phys.Chem.Chem.Phys.,2000,2(20):4812-4817
    [149]王丽琴.钛硅分子筛合成过程及其催化氧化性能研究[D].大连:大连理工大学,2003,2
    [150]柯于勇,卢冠忠,沈丹凤,王筱松.TS分子筛的催化氧化性能研究1.戊烷的氧化[J].石油化工,1997,26(2):82-87
    [151]Clerici MG.Oxidation of Saturated Hydrocarbons with Hydrogen Peroxide,Catalyzed by Titanium Silicates.Appl.Catal.,1991,68:249-261
    [152]Huybrechts D R C,Buskens P L,Jacobs P A.Alkane Oxygenations by H2O2onTitanium Silicalite.Stud.Surf.Sci.Catal.,1992,72:21-28
    [153]Liu H,Lu G,Guo Y.Effect of pretreatment on properties of TS-1/diatomite catalyst for hydroxylation of phenol by H_2O_2 in fixed-bed reactor[J].Catal.Today,2004,93:353-357
    [154]Kim J,Harrison R G,Kim C,Que J L.Fe(TPA)-Catalyzed alkane hydroxylation.metal-based oxidation vs radical chain autoxidation[J].J.Am.Chem.Soc.1996,118:4373-4377
    [155]Tetard D,Verlhac J.B.Alkane hydroxylation reactions catalysed by binuclear manganese and iron complexes[J].J.Mol.Catal.A:Chem.,1996,113:223-230
    [156]张向京.钛硅分子筛TS-1催化环己酮氨肟化过程分析[D].天津:天津大学,2006,8
    [157]Knouw C B,Dartt C B,Labinger J A,Davis M.E.Studies on the catalytic oxidation of alkanes and alkenes by titanium silicates[J].J.Catal.,1994,149:195-205

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700