用户名: 密码: 验证码:
三萜人参皂苷对人参、西洋参等植物生长发育的效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人参Panax ginseng C.A.Mey.和西洋参Panax quinquefolium L是我国名贵的中药材,二者均为五加科多年生宿根性草本植物。人参、西洋参忌地性都极强,重茬栽参会发生烧须、须根脱落、植株多病及存苗率低等现象,严重影响了经济效益。人参和西洋参连作障碍的形成主要是由于土壤退化、病原菌增多及化感自毒作用。三萜皂苷是人参、西洋参主要药效成分之一,积累于参根的韧皮部和周皮中以及须根中,现已分离鉴定出的单体皂苷超过40种。三萜皂苷是人参、西洋参根系分泌物中的特有物质,是个多组分的代谢产物,具有重要的生理生态功能。人参皂苷作为一种化学防御物质,对人参和西洋参的种子萌发、愈伤组织的形成以及某些土传病原菌繁殖都具有调控作用。但关于其对人参等植物生长发育的影响以及单体皂苷的化感活性尚未见报道。本实验采用HPLC检测了不同地点、不同采样时间2-5年生参地土壤中人参皂苷的含量;采用人参幼苗为受体,探讨低中高(25,50和100mg·L-1)三种浓度人参总皂苷及其分离出的3种单体Re、Rg1和Rb1对人参早期生长的化感调控作用;以水为溶剂从4年生的西洋参中提取人参皂苷,测定了其不同浓度处理后西洋参幼苗的生理变化;考察了人参皂苷对白菜、黄瓜、小麦及绿豆4种常见作物主根及不定根发育的影响;研究了在自然土壤状态下,不同浓度(0.125,0.25和0.5g·kg-1)的人参皂苷对人参幼苗生长发育的化感效应。主要研究结论如下:
     1.不同采集时间、采集地点和生长年限不同,参地土壤中总皂苷含量明显不同。随着生长年限的延长,土壤中人参皂苷含量不断增加,林地和农田栽培的多年生人参土壤中,6月采集的样品中皂苷含量远大于8月份;而西洋参根际土壤中8月采集的样品中皂苷含量远大于6月份。参地土壤中检测到的皂苷单体有Rb1、Rb2、Rb3、Re、Rd和Rg1含量呈不规律变化。不同生长年限的林地人参干土样中总皂苷的含量介于0.031-0.332mg·g-1(平均为0.0795mg·g-1),林地西洋参干土样中总皂苷的含量约在0.025-0.154mg·g-1(平均为0.0732mg·g-1),而平地人参干土样中总皂苷的含量介于0.002-0.076mg·g-1(平均为0.0213mg·g-1)。
     2.高浓度的TGS和单体Rb1处理对人参的幼苗和幼根的生长发育表现出明显的抑制作用,而单体Rg1和Re却对人参幼苗的各项生长指标总体表现为微弱的促进作用。人参皂苷抑制了人参幼苗的根系活力,抑制效应依次为:Rb1>TGS>Rg1>Re,其中TGS和Rb1处理组人参根系活力的变化趋势相近,均表现为低浓度根系活力升高而高浓度下降;低浓度Rg1处理组根系活力较低,但随着浓度的增加根系活力急剧上升而后开始下降;而Re处理组的根系活力则随着浓度的升高而缓慢增高。低浓度皂苷处理后,4种化合物对叶绿素的合成均有促进作用;尽管幼苗叶绿素合成的趋势随着处理浓度的升高而降低,但各处理的叶绿素含量仍然都高于对照。透射电镜观察到人参幼根细胞在人参皂苷的诱导培养下,发生了质壁分离和细胞器降解,高浓度TGS处理的根尖细胞质壁分离严重,液泡膜分解,其它细胞器的结构也变得模糊。100mg·L-1Rb1处理后,部分液泡分解,细胞核扭曲变形,核膜模糊不清。人参根尖在高浓度的人参皂苷处理后因细胞功能受损而不能完成正常的生理活动。
     3.以水为溶剂从西洋参根中提取人参皂苷对西洋参幼根伸长表现为典型的“低促高抑”浓度效应;对幼根的鲜质量及干质量均无明显影响;中高浓度均对根系活力有明显抑制效应。随着皂苷浓度和处理时间的延长,超氧阴离子自由基(O2-)的产生速率不断加快。对西洋参叶片中可溶性蛋白和叶绿素的合成有轻微的促进作用,可溶性蛋白含量在高浓度处理达48h时降到最低,叶绿素含量随着处理时间的延长而呈逐渐下降趋势,但仍高于对照。叶片丙二醛(MDA)的含量和相对电导率均随着皂苷浓度的增加和处理时间的延长而缓慢升高。高浓度人参皂苷处理48h后,人参根尖细胞核膜膨胀、核仁变形,液泡膜分解,线粒体结构不完整。不同浓度人参皂苷对西洋参早期生长发育具有化感效应,且对地下部分的影响大于地上部分。
     4.人参皂苷处理液对4种常见作物的主根及不定根的发育影响明显不同。随着处理质量浓度的升高,小麦、白菜、黄瓜主根根系活力及根长、根鲜质量均呈下降趋势。而各浓度人参皂苷处理对黄瓜和绿豆下胚轴不定根的数量、根长、根鲜质量及根系活力的影响均未达到显著水平,但二者抗氧化酶的活性都微有升高。人参皂苷对4种栽培作物的主根发育均有一定抑制作用,但对小麦和黄瓜主根生长的抑制作用更强,而对黄瓜和绿豆不定根发育的影响却不明显。
     5.人参皂苷与新林地土混合盆栽发现,人参幼苗地上部分的苗鲜质量无明显变化,但幼根的伸长受到严重抑制,根系活力显著下降,高浓度处理根长比对照降低7.0%,根系活力降低了69.3%,根鲜质量降低了45.5%。蛋白质合成没有受到明显,叶绿素的合成却有所增加,虽然在高浓度处理有下降的趋势但仍然高于对照组。高浓度处理使幼根的颜色变为黄褐色;内源激素IAA含量随浓度变化呈先升高后降低趋势,各处理GA3含量均明显降低,而ABA含量在低浓度处理变化不明显,但在高浓度处理后含量迅速增加到对照的2.39倍。
     因此得出结论:人参三萜皂苷及其三种单体都明显干扰了人参、西洋参的生长及发育,而且这种干扰作用还与三萜皂苷的种类及浓度密切相关。对其它常见几种农作物早期根系的形成有一定的影响,但不如对人参和西洋参的化感效应显著。人参皂苷可能在自身及其它植物的生长发育过程中作为一种化学手段参与了群体形成与稳定的调控。
P. ginseng and P. quinquefolium, all belonging to Araliaceae family, are widely cultivated in China, and used in traditional herbal medicine. However, they cannot be planted consecutively on the same land otherwise their yield and quality will be greatly reduced. The obstacle of re-plantation has been considered to be caused by the soil sickness, pathogenic fungal accumulation, allellopathy and autotoxicity. Ginsenoside is the major pharmaceutically-active component in ginseng and American ginseng, which can be found in their root exudates and old ginseng soils. However, the allelopathic activity of ginsenoside and its monomers and their influences on the recipient plant are less studied. Our studies aim:(i) to detect ginsenoside content in the ginseng of different growth-year and in different collection time and plot via HPLC method;(ii) to understand the allelopathic effects of the total ginsenoside (TGS) and its monomer fractions Rb1, Re and Rg1on ginseng seedling growth and development at different concentration(25mg·L-1,50mg·L-1and100mg·L-1);(iii) to examine the reaction of American ginsengs treated with ginsenoside of different concentration, extracted from4-year American ginseng with water;(iv) to study the influence of ginsenoside on the roots and adventitious roots of four cultivars-cabbage, cucumber, wheat, and mung bean;(v) to test the allelopathic effects of ginsenoside on ginseng seedling growth when they were planted in natural soils mixed with0.125g·kg-1,0.25g·kg-1and0.5g·kg-1TGS. The key conclusions are showed as below:
     1. The TGS content of different growth-year ginsengs and ginsengs in different collection time and plot is distinctively different. The TGS contents extracted from the dried soils increased constantly as growth year prolonged. In both understory and farmland ginseng soils, the TGS content in June were higher than that in August. On the contrary, the TGS content in American ginseng soils in August were higher than that in June, and TGS content increased with growth year increasing. Rb1, Rb2, Rb3, Re, Rd and Rg1were detected in the ginseng soils of3-5year-old. The TGS content in the dried ginseng soils was approximately from0.031to0.332mg·g-1(average:0.0795mg·g-1); the TGS content in American ginseng soils was from0.025to0.154mg·g-1(average:0.0732mg·g-1), whereas the TGS contents in farmland soil were0.002-0.076mg·g-1(average:0.0213mg·g-1).
     2. The four compounds all affected the root vigor (RV) and root length (RL) of ginseng seedling in different ways. The TGS and the Rb1treatments both showed a dose-dependent effect on RV; The RV enhanced drastically as the TGS and Rb1concentration increased, and then when their concentration moved to some certain level which is relatively high the RV began to decline. When the Rgl concentration was low, the RV was inhibited. And as the Rgl concentration went up, the RV increased as well. But just like the TGS and the Rbl, the RV then turned down quickly. As Re concentration increased, the RV enhanced slowly but constantly. For those ginsengs that were treated with ginsenoside at lower concentration (25mg·L-1), the chlorophyll synthesis was promoted. The promotion effect of the four compounds was in order:TGS>Rg1>Re>Rb1, and even if the promoting effect grew weaker as concentration increased, the chlorophyll content was still higher than that of the control. Electron microscope showed that the plasma membranes were detached from the cell wall, the structures of mitochondria and vacuolus were also dissolved under higher TGS and Rbl concentration. Hence, these abnormal physiological parameters in plant growth process indicated the responsibility of ginsenoside concentration.
     3. The ginsenoside extracted from American ginseng with the deionzed water showed a dose-dependent effect on the root elongation. However there was no significant difference between the biomass of seedlings and roots before and after. The root vigor was inhibited significantly as Ginsenoside concentration increased. The production of O2-in seedlings sped up markedly as ginsenoside concentration increased and exposure time prolonged. The synthesis of soluble protein and chlorophyll in the seedlings was slightly stimulated by the ginsenoside. The promoting effect declined as the concentration increased and the treatment time prolonged, but the content is still higher than that of the control. Otherwise, the MDA content and the relative electric conductivity in leaves and roots increased slightly compared with the control as the concentration increased and the application time prolonged. The treated ultra-structure of root-tip cells showed that the nuclear membrane and nucleolus deformed and the vacuole membrane dissolved with the treatment time prolonging. The ginsenoside affected the underground growth of American ginseng more than aboveground growth. Taken together, these findings indicated that ginsenoside affected the early growth of American ginseng.
     4. The alleopathic effect of TGS on the root growth of four cultivar species was conspicuously different.The RV, RL and RFW (root fresh weight) of wheat, cabbage and cucumber declined constantly as ginsenoside concentration ascended. However, the ginsenoside treatment had almost no influence on the hypocotyl adventitious roots of cucumber and mung bean. The RL, RFW, RV and Root number of mung bean adventitious roots had no significant response to ginsenoside, although the antioxidant enzymes activity rose a little bit over the control. Thereby, ginsenoside inhibited the root growth of the four indicator plants, and had stronger inhibitory effects on wheat and cucumber than on cabbage. However, there was no evidence to indicate that ginsenoside affected the hypocotyl cuttings growth in cucumber and mung bean.
     5. The result of the experiment done with the soils from the new understory land indicated that there was no significant change in the biomass of the ginseng seedlings treated with ginsenoside, whereas the root elongation was reduced significantly by7.0%under higher concentration, the RV was declined by69.3%, and the fresh weight of roots slid by45.5%. The soluble protein content had little changes, yet the chlorophyll content had been in an uptrend. Even though the chlorophyll content decreased under higher concentration, it was still higher than that of the control. The color of ginseng roots changed to brown when TGS reached the highest. The IAA content first increased and then decreased as concentration ascended; the GA3content in all the treatments declined; the ABA content had no significant difference at lower concentration, but it increased sharply to2.39times than of the control when treated with high ginsenoside concentratrion.
     Hence, we concluded that triterpenoid ginsenoside and their three monomers all disturbed the growth and development of ginseng and American ginseng, and this disturbance was affected by the types and the concentrations of ginsenosides. The ginsenoside do had allelopathic effect on other plants, yet it was lower than that on ginsengs and American ginsengs. It was found that triterpenoid ginsenoside may participate in the regulation of the formation and stability of plant population.
引文
[1]Rice E L. Allelopathy [M].London, UK:Academic Press,1984.
    [2]S.O. Duke. Allelopathy:Current status of research and future of the discipline:A commentary [J] Allelopathy J.25 (1) (2010) 17-30.
    [3]张爱华,郜玉刚,雷锋杰,等.我国药用植物化感作用研究进展[J].中草药,2011,42(10):1885-1889.
    [4]Langenheim J H.Higher plant terpenoids:Aphytocentric overview of their ecological roles [J]. Journal of Chemical Biology,1994,20:1223-1280.
    [5]Narwal S S. Allelopathy in ecological sustainable organic agriculture [J].Allelopathy Journal, 2010,25(1):51-73.
    [6]柴强,黄高宝.植物化感作用的机理、影响因素及应用潜力[J].西北植物学报,2003,3:509-515.
    [7]Olofsdotter M, Jensen L B, Courtois B.Improving crop competitive ability using allelopathy--an example from rice [J]. Plant Breeding,2002,121(1):1-9.
    [8]Smith M T, Staden J. The effect of a plant-derived smoke extract on the germination of light-sensitive lettuce seed [J]. Plant Growth Regulation,1995,16:205-209.
    [9]孔垂华,胡飞.植物化学通讯研究进展[J].2003,27(4):561-566.
    [10]宋君.植物间的化感作用[J].生态学杂志,1990,9(6):43-47.
    [11]Nasir H, Iqbal Z, Hiradate S. Allelopathic Potential of Robinia pseudo-acacia L. [J].Journal of chemical ecology,2005,31:2179-2192.
    [12]Muller, C H. Inhibitory trepenses volatilized from Salvia shrubs Bull [J].Torrey Bot Club, 1965,92:38.
    [13]林思祖,黄世国,曹光球,等.杉木自毒作用的研究[J].应用生态学报,1999,10(6):661-664.
    [14]杨期和,叶万辉,邓雄,等.我国外来入侵植物的特点及入侵危害[J].生态科学,2002,2(3):269-274.
    [15]Vivanco J M, Bais H P, Stermitz F R, et al. Biogeographical variation in community response to root allelopathy:novel weapons and exotic invasion[J]. Ecology Letters,2004,7:285-292.
    [16]赵杨景.植物化感作用在药用植物栽培中的重要性和应用前景[J].中草药,2000,3(8)附1-4.
    [17]李绍文.生态生物化学[M].北京:北京大学出版社,2001:185-195.
    [18]尹文佳,杜家方,李娟,等.连作对地黄生长的障碍效应及机制研究[J].中国中药杂志,2009,3(1):18-21.
    [19]郭兰萍,黄璐琦,蒋有绪,等.苍术根茎及根际土水提物生物活性研究及化感物质鉴定[J].生态学报,2006,26(2):528-535.
    [20]李晶,惠继瑞,马瑞君.当归根系分泌物的自毒作用[J].安徽农业科学,2008,36(2):605-607,611.
    [21]张晨露,孙群,叶青.连作对丹参生长的障碍效应[J].西北植物学报,2005,25(5):1029-1034.
    [22]王英,凯撒.苏来曼,李进,等.伊贝母根系分泌物对其幼苗生长的自毒作用[J].作物杂志,2010(1):25-28.
    [23]银福军,瞿显友,曾纬,等.黄连不同部位水浸液自毒作用研究[J].中药材,2009,32(3):329-330.
    [24]夏品华,刘艳.太子参连作障碍效应研究[J].西北植物学报,2010,30(11):555-558.
    [25]郭兰萍,黄璐琦,蒋有绪,等.药用植物栽培种植中的土壤环境恶化及防治策略[J].中国 中药杂志,2006,31(9):714-717.
    [26]游佩进,张媛,王文全,等.三七连作土壤对几种蔬菜种子及幼苗的化感作用[J].中国现代中药,2009,11(5):12-13.
    [27]张欢强,幕小倩,梁宗锁,等.附子连作障碍效应初步研究[J].西北植物学报,2007,27(10):2112-2115.
    [28]尹淇淋,谢越.酚酸类物质导致植物连作障碍的研究进展[J].安徽农业科学,2011,34:20977-20978,20985.
    [29]张重义,林文雄.药用植物的化感自毒作用与连作障碍[J].中国生态农业学报,2009,17(1):189-196.
    [30]黄璐琦,郭兰萍.环境胁迫下次生代谢产物的积累及道地药材的形成[J].中国中药杂志,2007,(4):277-280.
    [31]简在友,王文全,孟丽等.人参属药用植物连作障碍研究进展[J].中国现代中药,2008,10(6):3-5.
    [32]董章杭,林文雄.作物化感作用研究现状及前景展望[J].中国生态农业学报,2001,6(1):80-83.
    [33]Inderjit. Plant phenolics in allelopathy [J].Botany Review,1996,62 (2):186-202.
    [34]Vokou D. The allelopathic potential of aromatics shrubs in phryiganic (east Mediterranean) ecosystems. Allelopathy:Basic and applied aspects. Chapman and Hall, London.pp.1992,37: 1297-1299.
    [35]雷锋杰,张爱华,张秋菊,等.人参、西洋参化感作用研究进展[J].中国中药杂志,2010,35(17):2221-2226.
    [36]张新慧,郎多勇,张恩和.当归根际土壤水浸液自毒作用研究及化感物质鉴定[J].2010,41(12):2063-2066.
    [37]孙跃春,林淑芳,黄璐琦,等.药用植物自毒作用及调控措施[J].中国中药杂志,2011,36(4):387-389.
    [38]柴民伟,石福臣,马妍.防己抑藻效应及其化感物质的HPLC分析[J].植物研究,2010,30(6):758-762.
    [39]Oleszek W,Jurzysta M.The allelopathic potential of alfafa root medicagenic acid glycosides and their fate in soil environments [J].Plant and Soil,1987,98(1):67-80.
    [40]李玉占,梁文举,姜勇.苜蓿化感作用研究进展[J].生态学杂志,2004,23(5):186-191.
    [41]He C N, Gao WW, Yang JX, et al.Identification of autotoxicity compounds from fibrous root of Panax quinquefolium L.[J]Plant Soil,2009,318(1/2):63.
    [42]Thomaszewiski M, Thimann KV. Interaction of phemolic acids,metabllicions and chlating agents on auxin-induced growth [J].Plant Physiology,1966,41:1443-1454.
    [43]林武星,洪伟,郑郁善,等.森林植物他感作用研究进展[J].中国生态农业学报,2005,13(2):43-46.
    [44]黄小芳,李勇,易茜茜,等.五种化感物质对人参根系酶活性的影响[J].中草药,2010,41(1):117-121.
    [45]施月红,谷文祥.生化他感作用研究中的生物测定方法[J].生态科学,1998,1:84-89.
    [46]孔垂华.植物化感作用研究中应注意的问题[J].应用生态学报,1998,3:332-336.
    [47]陶月红,张昭,张本刚,等.泊洛沙姆(Poloxamer)在脂溶性化感物质生物检测中的作用[J].武汉植物学研究,2008,26(5):533-539.
    [48]Chou S C, Huang C H, Hsu T W, et al.Allelopathy potential of Rhododendron formosanum Hems1 in Taiwan[J]. Allelopathy Journal,2010,25(1):73-92.
    [49]Rimando A M, Olofsdotter M, Dayan E et al.Searching for rice allelochemicals:An example of bioassay-guided isolation [J].Agronomy Journal,2001,93:16-20
    [50]曾任森.化感作用生物测定方法的综述[J].应用生态学报,1999,10(1):123-126
    [51]戚建华,梁银丽,梁宗锁.农业生态系统中化感作用研究综述[J].西北农业学报,2004,13(2):1115-1118
    [52]孔垂华,胡飞.植物化感作用(相生相克)及其应用[M].北京:中国农业出版社,2001:5.
    [53]Haugland E, Brandsaeter L O. Experiments on bioassay sensitivity in the study of allelopathy [J]. Journal of Chemical Ecology,1996,22:1845-1859
    [54]沈慧敏,郭鸿儒.不同植物对小麦,黄瓜和萝卜幼苗化感作用潜力的初步评价[J].应用生态学报,2005,16(4):740-743.
    [55]Hisashi K N, Takahiro S,Hideyuki S. Allelopathy and allelopathic substance in moss Rhynchostegium pallidifolium [J].Journal of Plant Physiology,2010,167:468-471.
    [56]靳月华.组织培养在化学生态(他感作用)研究中的应用[J].生态学杂志,1986,5(5):61-64
    [57]张强.甘草柠条间化感作用组织培养研[D].北京林业大学,2005
    [58]阎飞,杨振明.植物化感作用(Allelopathy)及其作用物的研究方法[J].生态学报,2000,20(4):692-696.
    [59]张开梅,石雷,李振宇.蕨类植物的化感作用及其对生物多样性的影响[J].生物多样性,2004,12(4):466-471.
    [60]Zeng R S, Luo S M, Shi M B, et al. Tan, Physiological and biological mechanism of allelopathy of secalonic acid F on higher plants [J].Agronomy Journal,2001,93(1):72-79.
    [61]蔡祖国,徐小彪,赵一鹏,等.猕猴桃茎尖超低温保存过程中超微结构观察[J].西北植物学报,2006,26(8):1600-1604.
    [62]王军喜,赵庆芳,叶文斌,等.单体化感物质的作用机理研究概况[J].中国农学通报,2010,(20)182-186.
    [63]Tiffany L W, Park S W, Jorge M.V.Biochemical and physiological mechanisms mediated by allelochemicals [J].Current Opinion in Plant Biology,2004,7:472-479.
    [64]陈静雯,张丽.植物化感作用的机理及应用前景[J].生物学通报,2018,43(11):13-15.
    [65]韩杰,孟军,黄收兵.生物他感作用的途径与机制[J].生物学通报,2011,46(9):5-7.
    [66]Einhelling F A. Mechanism of Action Allelochemicals in Allelopathy [M]. Washington DC: American ChemicalSociety,1995.
    [67]张爱华,雷锋杰,许永华,等.外源人参皂苷对人参种子萌发和幼根抗氧化酶活性的影响[J].生态学报,2009,29(9):4934-4941.
    [68]Rizvi S J H, Rizvi V. Allelopathy:basic and applied aspects [M] Chapman and Hall, New York,USA,1991
    [69]李寿田,周建民,王火焰.植物化感作用机理的研究进展[J].农村生态环境,2001,17(4):52-55.
    [70]张重义,林文雄.药用植物自毒作用与连作障碍研究进展[J].中国农业生态学报,2009,17(1):189-196.
    [71]周凯,郭伟明,王智芳.菊花不同部位水浸液自毒作用研究[J].西北植物学报,2008,28(4):759-762.
    [72]李玲梅,李明.广藿香根系分泌物的化感自毒作用研究[J].湖北农业科学,2011,50(24):5168-5171.
    [73]宋亮,潘开文,王进闯.化感活性物质影响种子萌发作用机理的研究进展[J].世界科技研究与发展,2006,28(4):52-57.
    [74]叶居新,洪瑞川,聂义如,等.芒其植株浸出液对几种植物生长的影响[J].植物生态学与地植物学学报,1987,11(3):203-211.
    [75]惠继瑞,李晶,赵庆芳,等.当归不同发育期自毒作用的研究[J].安徽农业科学,2008,36(2):605-611.
    [76]王英,凯撒.苏来曼,李进,等.伊贝母植株水浸液自毒作用研究[J].种子,2009,28(9):1-4.
    [77]李玲,华智锐.药用植物化感作用研究进展[J].安徽农业科学,2009,37(5):2022-2023,2031.
    [78]赵口丰.人参西洋参忌地形成机制[J].特产研究,2001(1):40.
    [79]金慧,于树莲,曹志强,等.老参地、农田地改造,连续栽培人参、西洋参[J].中医药现代化,2006,8(1):84-86.
    [80]赵晓萌,张雪松,祈建军,等.连作对西洋参根系生长及酶活性影响[J].中国农学通报,2009,25(13):103-107.
    [81]简在友,王文全,孟丽,等.人参属药用植物连作障碍研究进展[J].中国现代中药,2008,10(6):3-5.
    [82]张连学,陈长宝,王英平,等.人参忌连作研究及其解决途径[J].吉林农业大学学报,2008,30(4):481-485,491.
    [83]王玉萍,赵杨景,邵迪,等.西洋参根系分泌物的初步研究[J].中草药,2005,3:229.
    [84]崔树玉,黄耀阁.人参种子发芽抑制物质的初步研究[J].吉林农业大学学报,1996,1:25-29.
    [85]韩东,李向高,黄耀阁,等.西洋参果实不同部位发芽抑制物质的研究[J].特产研究,2001(2):13.
    [86]韩东,黄耀阁,李向高,等.西洋参果实中发芽抑制物质-二苯胺的分离鉴定[J].吉林农业大学学报,2001,23(4):60-63,68.
    [87]陈长宝,刘继永,王艳艳,等.人参根际化感作用及其对种子萌发的影响[J].吉林农业大学学报,2006,28(5):534-537,541.
    [88]李勇,朱殿龙,黄小芳,等.不同土壤浸提物对人参种子生长抑制作用的研究[J].中草药,2008,39(7):1070-1074.
    [89]Zhao Y J, Wang Y P, Shao D,et aL.Autotoxicity of Panax quinquefolium L.[J].Allelopathy Journal,2005,15(1):67-74.
    [90]Bi X B,Yang J Y,Gao W W. Autotoxicity of phenolic compounds from the soil of American ginseng(Panax quinquefolium L) [J].Alleopathy Journal,2010,25(1):115-122.
    [91]雷锋杰,张爱华,方斯文,等.人参根系分泌物对4种药用植物化感作用的研究[J].中国农业生态学报,2010,26(19):140-144.
    [92]黄小芳.人参根系分泌物及其自毒活性研究[D].北京:中国协和医科大学,2009
    [93]Nicol R W, Yousef L, Traguair J A. Ginsenosides stimulate on the growth of soil-borne pathogens of American ginseng[J].Phytochemistry,2003,64:257-264.
    [94]李勇,黄小芳,丁万隆,等.不同土壤提取物对人参种子生长的化感效应及其组成[J].生态环境,2008,17(3):1173-1178.
    [95]赵杨景,杨峻山,王玉萍,等.西洋参、紫苏籽和薏苡根水提物的化感作用[J].中草药,2004,35(4):452.
    [96]赵杨景,王玉萍,杨峻山,等.西洋参与紫苏、薏苡轮作效应的研究[J].中国中药杂志,2005,30(1):12.
    [97]Lei F J, Zhang A H, Xu Y H, et al. Allelopathic effects of ginsenosides on the growth and antioxidant enzymes activity of ginseng callus in vitro [J]. Allelopat J,2011,26(1):13-22.
    [98]许世泉,艾军,王英平,等.人参化感物质对人参根尖组织结构的影响研究[J].特产研究,2008,2:36-41.
    [99]杨靖春,李治平,酒井斐子.人参根系分泌物及其对人参根际微生物作用的研究[J].东北师大学报(自然科学版),1982(1):71-73.
    [100]Bernards M A, Yousef L F, Nicol R W. In:Allelochemicals:The allelopathic potential of ginsenosides. Biological Control of Plant Pathogens and Diseases (Inderjit and Mukerji, K.G., Eds) [M]. Netherlands:Springer Dordrecht,2006:157-175.
    [101]赵雪淞,刘民,马丹丹,等.皂苷与植物病原真菌相互关系研究进展[J].中国生物防治学报,2011,2(3):404-409.
    [102]田义新,王本有,盛吉明,等.老参地短期轮作体系建立-人参西洋参轮作体系[J].吉林农业大学学报,2002,24(3):46-49.
    [103]郝绍卿,武侠.老参地实行绿肥轮作后栽参的研究[J].特产研究,1992,14(4):21-23.
    [104]张子龙,王文全.药用植物连作障碍的形成机理及其防治[J].中国农业科技导报,2009,11(6):19-23.
    [105]李晓明,赵曰丰,张亚玉,等.老参地栽参问题的研究进展[J].特产研究,1997(2):31.
    [106]杨利民,陈长宝,王秀全,等.长白山区参后地生态恢复与再利用模式及其存在的问题[J].吉林农业大学学报,2004,26(5):546-549.
    [107]王韶娟.人参根系分泌物对植物生长的影响及参后地植物修复[D].吉林农业大学,2008
    [108]陈振,马小军,赵杨景,等.西洋参无士栽培方法的初步研究[J].中国中药杂志,1991,16(9):528.
    [109]姚文明,薛振东,肖勇.无士栽培人参试验初报[J].辽宁中医杂志,1981(10):22.
    [110]付佳,王洋,闫秀峰.萜类化合物的生理生态功能及经济价值[J].东北林业大学学报,2003,31(6):59-62.
    [111]Bohlmann J, Gilbert M G, Rodney C. Plant terpenoid synthases:Molecular biology and phylogenetic analysis [J]. Proceedings of the National Academy of Sciences,1998,95(8): 4126-4133.
    [112]杨期和,叶万辉,邓雄,等.我国外来入侵植物的特点及入侵的危害[J].生态科学,2002,21(3):269-274.
    [113]张学文,刘亦学,刘万学,等.植物化感物质及其释放途径[J].中国农学通报,2007,23(7):295-297.
    [114]刘叔倩,郑俊华,王弘,等.不同气候区银杏叶中黄酮和萜内酯含量的变化[J].中草药,2000,31(6):424-426.
    [115]王雪.尾叶香茶菜萜类成分的研究[D].长春:吉林农业大学,2007:45
    [116]李继泉,金幼菊,沈英柏,等.环境因子对植物释放挥发性化合物的影响[J].植物学通报,2001,18(6):649-656.
    [117]赵红梅,杨顺义,郭鸿儒,等.黄花蒿对4种受体植物的化感作用研究[J].西北植物学报,2007,27(11):2292-2297.
    [118]夏丹.党参营养器官的发育解剖学研究[D].西安:西北大学,2009:23.
    [119]李方元.中国人参和西洋参[M].北京:中国农业科学技术出版社,2002:25.
    [120]R.W. Nicol, J.A. Traguair, M.A. Bernards, Ginsenosides as a host resistence factors in American ginseng(Panax quinquefolium L.) [J]. Can. J. Bot.2002,80:557-562.
    [121]Inderjit, Mukkerji K G. Allelochemicals:Biological control of plant pathogens and disease [M]. Springer Press, Nertherlands,2006:157.
    [122]索茂荣,杨峻山.向日葵属植物倍半萜类化学成分及其生物活性研究概况[J].中草药,2006,37(1):135-140.
    [123]林娟,殷全玉,杨丙钊,等.植物化感作用研究进展[J].中国农学通报,2007,23(1):68-72.
    [124]Bradow J M, Connick W J. Volatile seed germination inhibitors from plant residues [J]. Journal of Chemical Ecology,1990,16(3):645-666.
    [125]韩芬,王辉,边银霞,等.华北落叶松枝叶挥发性物质的化学成分及其化感作用[J].应用生态学报,2008,19(11):2327-2332.
    [126]丁兰,祁林林,景宏伟,等.四种对映-贝壳杉烷二萜化合物化感作用潜能的初步评价[J].西北师范大学学报(自然科学版),2008,44(6):74-78.
    [127]Hiradate S, Yada H, Ishii T. Three plant growth inhibiting saponins from Duranta repens [J]. Phytochemistry,1999,52(7):1223-1228.
    [128]Chen P K, Leather G R. Plant growth regulatory activities of artemisinin and its related compounds [J]. Journal of Chemical Ecology,1990,16 (6):1867-1876.
    [129]Juan G, Antonio H, Franck E, et al. Dehydrozaluzanin C:a natural sesquiterpenoide, causes rapid plasma membrane leakage [J]. Phytochemistry,1999,52:805-813.
    [130]JoanneG R, Stacy N A, Franck E D. Allelopathic effects of volatile cineole on two weedy plant species [J]. Journal of Chemical Ecology,2000,26(1):303-313.
    [131]Nishida N, Tamotau S, Nagata N, et al. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla:inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings [J]. Journal of Chemical Ecology,2005,31(5): 1187-1203.
    [132]聂呈荣,曾任森,黎华寿,等.三裂叶蟛蜞菊对花生化感作用的生理生化机理[J].花生学报,2002,31(3):1-5.
    [133]马祥庆,刘爱琴,黄宝龙.杉木人工林自毒作用研究[J].南京林业大学学报,2000,24(1):12-16.
    [134]Guo Q Y, Fang H W, Wan X L, et al. Influence of two allelochemicals from Ageratina adenophora sprengel on ABA, IAA and ZR contents in roots of upland rice seedlings[J]. Allelopathy Journal,2008,21(2):253-262.
    [135]Ervin G N, Wetzel R G. Allelochemical autotoxicity in the emergent wetland macrophyte Juncus effusus (Juncaceae) [J]. American Journal of Botany,2000,87 (6):853-860.
    [136]曾任森,林象联,骆世明.蟛蜞菊的生化他感作用及生化他感作用物的分离鉴定[J].生态学报,1996,16(1):20-27.
    [137]马瑞君,王明理,朱学泰,等.黄帚橐吾挥发物的化感作用及其主要成分分析[J].应用生态学报,2005,16(10):1826-1829.
    [138]彭少麟,南蓬,钟扬.高等植物中的萜类化合物及其在生态系统中的作用[J].生态学杂志,2002,21(3):33-38.
    [139]孟庆会,黄红娟,刘艳,等.假高粱挥发油化学成分及其化感潜力[J].植物保护学报,2009,36(3):277-282.
    [140]Roytrakul S, Verpoorte R. Role of vacuolar transporter proteins in plant secondary metabolism:Catharanthus roseus cell culture [J]. Phytochemistry Review,2007,6(3):383-396.
    [141]Fischer N H. et al. In search of allelopathy in the Florida scrub:The role of terpenoids [J]. Journal of Chemical Ecology,1994,20:135-138.
    [142]Jose S, Gillespin A R. Allelopathy in black walnut (Juglans nigra L.) alley cropping:Effects of juglone on hydroponically grown corn (Zea mays L.) and soybean (Glycine max L. Merr.) growth and physiology [J]. Plant and Soil,1998,203:199-205.
    [143]王延平,王华田.植物根分泌的化感物质及其在土壤中环境行为[J].土壤通报,2010,41(2):501-506.
    [144]Kim K U, Shin D H. Rice allelopathy[M].Taegu (Korea):Kyungpook National University press,2000:15-16.
    [145]李娟.侧柏和油松挥发物动态变化规律研究[D].北京:中国林业科学研究院,2009
    [146]王海斌,何海滨,曾聪明,等.含氧萜类化合物对稗草的化感抑制作用[J].中国生态农业学报,2009,17(2):307-311.(146)
    [147]孔垂华,徐涛,胡飞.胜红蓟化感物质之间相互作用的研究[J].植物生态学报,1998, 22(5):403-408.
    [148]王朋,王莹,孔垂华.植物挥发性单萜经土壤载体的化感作用——以三裂叶豚草(Ambrosia trifida L)为例[J].生态学报,2008,28(1):62-68.
    [149]刘爽,张红,马丹炜,等.反枝苋水浸提液与挥发油对黄瓜根尖的影响[J].西北植物学报,2010,30(3):569-574.
    [150]孔垂华,徐效华,陈建军.胜红蓟化感作用的研究Ⅸ-主要化感物质在土壤中转化[J].生态学报,2002,22(8):1183-1189.
    [151]张红,贾贵芳,王亚南,等.加拿大蓬挥发油经不同载体对蚕豆根尖的细胞毒性[J].生态环境学报,2010,19(8):1872-1875.
    [152]张秋菊,张爱华,孙晶波,等.植物体中萜类物质化感作用的研究进展[J].生态环境学报,2012,21(1):187-193.
    [153]邱立友,戚元成,王明道,等.植物次生代谢物的自毒作用及其与连作障碍的关系[J].土壤,2010,42(1):1-7.
    [154]杨鹤,郜玉刚,李瑛,等.人参皂苷等萜类化合物生物合成途径及HMGR研究进展[J].中国生物工程杂志,2008,28(10):130-135.
    [155]吴琼,周应群,孙超,等.人参皂苷生物合成和次生代谢工程[J].中国生物工程杂志,2009,29(10):102-108.
    [156]焦晓林,高微微.环境因子对药用植物三萜皂苷合成影响的研究进展[J]中草药,2011,42(2):398-401.
    [157]孟祥颖,任跃英,李向高,等.西洋参中皂苷类成分的研究综述[J].特产研究,2001,3:43-46.
    [158]张崇禧,鲍建才,李向高,等.HPLC法测定人参、西洋参和三七不同部位中人参皂苷的含量[J].药物分析杂志,2005,25(10):1190-1194.
    [159]陈光,李向高,李艳丽.西洋参皂苷积累动态的研究[J].吉林农业大学学报,2007,24(4):70-72.
    [160]Carter J P, Spink J,Cannon P F, et al.I solation, characterization and avenacin sensitivity of a diverse collection of cereal root-colonizing fungi[J]. Applied Environmental Microbiology,1999, 65(8):3364.
    [161]韦美丽,孙玉琴,黄天卫,等.化感物质对三七生长的影响[J].特产研究,2010,1:32-34.
    [162]韩东.连作、轮作技术在药用植物组织培养中的应用探索[D].吉林农业大学,1999
    [163]Nicol R W, Traguair JA, Bernards M A.Ginsenosides as a host resistence factors in American ginseng (Panax quinquefolium L.) [J].Can. J. Bot.2002,80:557-562.
    [164]毕晓宝.人参皂营和香豆酸对西洋参的自毒作用研究[D].中国协和医科大学,2011
    [165]肖培根.我国东北地区野山参的初步调查[J].药学学报,1962,9:340.
    [166]肖培根.山参资源及保护,见王铁生主编《中国人参》[M].天津:科学技术出版社,2001
    [167]高俊风.植物生理学实验指导[M].北京:高等教育出版社,2006
    [168]Arno n D J. Copper enzymes in isolated chloroplasts. Polyphenyloxidase in Beta vulgaris, [J].Plant Physiol.1949,24:1-15.
    [169]蔡祖国,徐小彪,赵一鹏,等.猕猴桃茎尖超低温保存过程中超微结构观察[J].西北植物学报,2006,26(8):1600-1604
    [170]Williamson GB.Bioassay for allelopathy measuring treatment responses with independent controls [J].J Chem Ecol,1998,14:181-187.
    [171]Bertin C, Yang, X H, Weston L A, The role of root exudates and allelochemicals in the rhizosphere[J].Plant and Soil,2003,256:67-83.
    [172]Inderjit K H. Plant phenolics in allelopathy [J]. BotanyReview,1996,62(2):186-202
    [173]Whittaker R H, Feeny P P. Allelochemicals:Chemical interaction between species [J].Science.1971,171(2):757-770.
    [174]Einhelling F A. Mechanism of Action Allelochemicals in Allelopathy [M]. Washington DC: American ChemicalSociety,1995
    [175]王玉洁,郁继华,张韵,等.两种化感物质对茄子生长及幼苗生理特性的影响[J].甘肃农业大学学报,2007,4(3):47-50.
    [176]Narwal S S. Allelopathy in ecological sustainable organic agriculture [J].Allelopathy Journal, 2010,25(1):51-72.
    [177]Applebee T A, Gibson D J. Elevated atmospheric carbon dioxide alters the effects of allelochemicals produced by tall fescue on alfalfa seedling [J].Transactions Illinois State Acad Sci, 1999
    [178]Agrell J, Oleszek W, Stochmal A Herbivore-induced responses in alfalfa (Medicago sativa) [J]. J Chem Ecol,2003,29:303-320.
    [179]Lim W,Mudge K W,Vermeylen F O. Effects of population,ages,and cultivation methods on ginsenosides content of Wild ginseng[J].Jouranal of Agricultural and Food Chemistry,2005, 53(22):8498-8505.
    [180]杨家学,高微微.酚酸类化感物质对两种西洋参病原真菌的作用[J].中国农学通报,2009,25(9):207.
    [181]谷文祥,段舜山,骆世明.萜类化合物的生态特性及其对植物的化感作用[J].华南农业大学学报,1998,19(4):108-110.
    [182]张春红,李向高,张连学,等.人参皂苷超生水提法的改进[J].吉林大学学报(理学版)2007,45(2):311-314.
    [183]张秋菊,张爱华,雷锋杰,等.人参皂苷粗提液对西洋参早期生长的化感效应[J].西北植物学报,2011,31:576-582.
    [184]李忠光,龚明.植物中超氧阴离子自由基测定方法的改进[J].云南植物研究,2005,27(2):211-216.
    [185]张志良,瞿伟菁.植物生理学实验指导(第三版)[M].北京:高等教育出版社,2003
    [186]杨莉,王春雨,王菡,等.加拿大蓬挥发油化感作用及其释放途径的研究[J].西北植物学报,2010,30(10):2116-2122.
    [187]Molly E H, Eric S M. Allelopatgy effects and root distribution of Ceratiola (Empetraceae) on seven rosemary scrub species[J].A merican Journal of Botany,2002,89(7):1113-1118.
    [188]Weirt L, Park S W, Vivanco J M. Biochemical and physiological mechanisms mediated by allelochemicals[J]. Current Opinion in Plant Biology,2004,7:472-479.
    [189]张震,徐丽,马艳婷,等.喜早莲子草组织水浸液对黑麦草种子和幼苗的化感效应[J].西北植物学报,2009,29(1):148-153.
    [190]Zeng R S, Luo S M, Shi M B, et al. Physiological and biological mechanism of allelopathy of secalonic acid F on higher plants, Agronomy Journal[J].2001,93(1):72-79.
    [191]刘宝东,王跃.参后土壤理化性质变化及亲体液对作物种子萌发的影响[J].北方园艺,2010,22:11-15.
    [192]张秋菊,贲文锐,徐丽红,等.老参地土壤提取物对水稻种子萌发及幼苗生长的影响[J].西北农业科技大学学报(自然科学版),2012,40(1):49-55,60.
    [193]Inderjit, Duke S O. Eco-physiological aspects of allelopathy [J].Planta,2003,217:529-539
    [194]Tiffany L W, Park S W, Jorge M V, Biochemical and physiological mechanisms mediated by allelochemicals [J].Current Opinion in Plant Biology,2004,7:472-479.
    [195]王铁生,干英平.韩国人参栽培新品种及轮作制[J].人参研究,2003,15(3):23
    [196]Bi X B, Yang J X, Gao W W. Autotoxicity of phenolic compounds from the soil of American ginseng (Panax quinquefolium L.)[J].Allelopathy Journal,2010,25 (1):115-122.
    [197]肖辉林,彭少麟,郑煜基,等.植物化感物质及化感潜力与土壤养分的相互影响[J].应用生态学报,2006,17(9):1747-1750.
    [198]王延平,王华田.植物根分泌的化感物质及其在土壤中的环境行为[J].土壤通报,2010,41(2):501-507.
    [199]Inderjit and Nilsen, E T.Bioassays and field studies for allelopathy in terrestrial plants: progress and problems [J].Critical Reviews in Plant Sciences,2003,22:221-238.
    [200]郭敏敏,王清连,胡根海,等.利用高效液相色谱法分离和测定棉花组织培养过程中4种内源激素[J].生物技术通讯,2009,20(2):213-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700