用户名: 密码: 验证码:
高演化海相烃源岩元素地球化学评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国南方海相地层沉积厚度大,发育有多套主力烃源岩,是我国目前油气勘探的重要领域之一。然而长期的热演化和强烈的构造运动改造,使得这些烃源岩中有机质的数量和质量发生了较大的变化,传统的烃源岩评价方法在该地区的应用面临很多困难,尤其是氯仿沥青“A”、氢指数等地化指标受高演化作用的影响会出现误差。本文就是针对高演化海相烃源岩而提出的新的烃源岩评价方法。
     本次研究以四川盆地南江杨坝地区下寒武统为研究对象,结合油气地球化学的基本原理,综合运用区域地质与野外记录资料,在烃源岩传统评价的基础上,以优质烃源岩的形成条件为基础,阐明了影响海相烃源岩发育的主要控制因素,同时提出了一套利用元素地球化学数据评价烃源岩优劣的方法。取得的主要研究成果如下:
     1、在野外露头踏勘、采样的基础上,以油气地球化学及元素地球化学为指导,分析了南江杨坝剖面下寒武统中有机质的特征,同时结合分析测试数据,阐述了下寒武统中筇竹寺组、仙女洞组、阎王碥组及石龙洞组中常量元素、微量元素以及碳同位素的变化规律。
     研究认为在南江杨坝剖面下寒武统中筇竹寺组平均TOC大于1%,属于传统意义上优质烃源岩发育的层段;仙女洞组、阎王碥组和石龙洞组所有样品中的TOC都小于0.4%,在烃源岩传统评价标准中属于非烃源岩。地层中各组的有机质类型较好,以Ⅰ型腐泥型为主,同时在长期的热演化作用下,有机质成熟度高,普遍处于高-过成熟阶段。
     此外,结合测试结果来看:筇竹寺组岩性以黑色炭质页岩为主,其样品中常量元素总体较高,且尤其以Al、Ba、Ca、P、Cu、Zn、K、Na及S这些与生物生长发育相关的元素含量最高;微量元素V、Cr、Ni、U及Mo这五种金属元素在筇竹寺组底部的含量最高,到筇竹寺组的中、上部,V、U、Mo元素的含量都有明显的减少,而Cr、Ni元素含量变化却不甚明显;同时稀土元素模式图反映出轻稀土元素较富集,重稀土元素略有亏损的特征。
     仙女洞组以鲕粒灰岩及砂屑灰岩为主,测试结果反映常量元素Al、Ba、Fe、P、Ti、K、Na及S元素含量明显较低;同时微量元素V、Cr、Co、Ni、U、Mo、Th及Pb的含量也明显很低;稀土模式曲线略呈水平。
     阎王碥组多发育粉砂质泥岩,其中阎王碥组底部,常量元素的含量均有增大的趋势,但向上常量元素含量仍然较低,微量元素的含量变化趋势与常量元素较相似,在阎王碥组底部除了Pb元素含量则有减少的现象外,其它微量元素含量总体上都有降低的趋势,而到了该组中、上部,各项微量元素含量均较低,阎王碥组稀土模式曲线也略呈水平。
     石龙洞组主要发育白云岩,总体上各个样品中的常量元素及微量元素的含量均较低;此外该组中稀土元素模式曲线则呈略微的右倾现象,即:较富集轻稀土元素。同时,研究区碳同位素呈现两次旋回的特征。
     2、通过对野外剖面的测量,并结合室内总有机碳及元素分析测试的结果,以元素示踪原理为指导,揭示研究区海相烃源岩形成的主控因素。本文从古生产力、古氧相、埋藏效率及热液作用这四个方面入手,利用Baxs及无机碳同位素(δ13Ccarb)来指示海洋古生产力;V/Cr、Ni/Co、U/Th及稀土元素的La/Yb及6 Ce反映有机质沉积时的氧化还原环境;Mo元素含量指示有机碳的埋藏效率;Ba/Sr比值来指示海底热液作用对有机质富集的影响。
     通过分析后发现,研究区下寒武统筇竹寺组下部古生产力很高,有机质沉积在厌氧的环境中,有机碳埋藏量也很高,具备形成优质烃源岩的条件;仙女洞组及阎王碥组古生产力低,沉积环境偏向贫氧-富氧相,不利于有机质的保存,同时有机碳埋藏量也较低;石龙洞组底部尽管有机碳埋藏效率相对较低,但仍具有较高的古生产力及缺氧的沉积环境。从这个角度分析后认为,较高的古生产力,缺氧的沉积环境以及较高的埋藏效率为优质烃源岩的形成与发育提供了良好的环境。此外,海底的热液流体也影响着有机质的富集,从而控制着优质烃源岩的发育。
     3、元素地球化学特征能够反映烃源岩发育的环境,影响有机质的富集,这与反映有机质丰度的有机碳含量密切相关。本文在此理论的指导下,分析了与总有机碳含量、无机碳同位素及有机碳同位素相关的元素,并以三者为因变量,优选的元素含量为自变量,建立起三个拟合公式,其中影响生物生长的营养元素Baxs、Mnxs、Fexs,海水盐度Srxs及影响有机质保存条件的Uxs、Vxs、Nixs及Znxs都被选入用来评价有机质的丰度和沉积、保存环境。同时对选取的Moxs、Znxs、Fexs、Mnxs、Vxs、Nixs、Znxs、Srxs及Baxs这9个元素,进行因子分析,得到一个多元素组合的综合因子计算公式,这个公式包括了沉积岩中有机质从形成、到沉积、埋藏过程中元素变化的总体信息,反映有机质沉积环境的变化及有机质的分布、聚集规律,可以用来评价烃源岩的优劣。
     从分析结果来看,下寒武统筇竹寺组的下部综合因子得分较高,反映其有机质沉积数量多,保存条件优越,具备优质烃源岩发育的条件;筇竹寺组顶部、仙女洞组及阎王碥组底部综合因子得分处于0-1之间,可发育一般烃源岩;而阎王碥组中、上部及石龙洞组综合因子得分低,基本处于0以下,有机质数量少,埋藏条件差不利于发育烃源岩。
     4、利用元素地球化学特征评价烃源岩为评价高演化海相烃源岩提供了一条新的思路,其与传统烃源岩评价结果存在一定的统一性,但仍存在一些差异。目前可以将其作为我国南方高演化地区传统烃源岩评价的重要补充。
Marine source rock is currently one of the important oil and gas exploration areas.It has thick sediment, develop several sets of main source rocks. However,the quality and quantity of organic matter of these hydrocarbon source rock changed a lot, suffered long-term thermal evolution and transformation of violent tectonic movement.the traditional method of hydrocarbon source rock evaluation of the application in the region face many difficulties, especially chloroform Bitumen "A", hydrogen index and so the evolution of indicators by the effects of high error will appear. This article is for the highly evolved marine source rocks and the proposed new method for evaluating source rock.
     In this paper the lower Cambrian of Yangba Profile in Nanjiang, Sichuan has been studied. Taking the basic principle of petroleum geochemistry and basing on field records,the Geochemical testing of trace elements as well as carbon and oxygen isotope is used to illustrate the mainly facts of developing marine source rock, proposing a set of method of element geochemical for evaluating source rock. The main results and conclusions are as follows:
     1. According to the observation and sampling of fieldwork, the characteristics of organic matter, major elements, trace elements and carbon isotopes are analyzed in the Lower Cambrian of Yangba profile in Nanjiang,Sichuan.
     Qiongzhusi group which the average TOC is greater than 1%, is the high-quality hydrocarbon.Other groups have a low content of organic carbon,belong to non-source rock. Organic matter type is sapropelic, high maturity each group.
     In addition, the testing results show that the major elements constant of black carbonaceous shale, especially Al, Ba, Ca, P, Cu, Zn, K, Na and S which related to biological growth is higher in Qiongzhusi group, trace elements,such as V, Cr, Ni, U and Mo, also has higher content in the bottom of Qiongzhusi group, the upper part, V, U, Mo content of the elements are significantly reduced, REE diagram also shows a more enriched in light rare earth elements and heavy rare earth element characteristics of a slight loss.
     Xiannvdong group developed oolitic limestone and calcarenite. The results reflect the content of major elements,such as Al, Ba, Fe, P, Ti, K, Na and S, are decreased heavily,while the contents of trace elements V, Cr, Co, Ni, U, Mo, Th and Pb are reduced, rare earth model curves keep slightly level.
     Yanwangbian group mainly developed silty mudstone, the content of major elements have a tendency to increase in the bottom, while still low in the upper. The trends of trace elements is similar to major element.In addition to Pb, there is declining. Rare earth model curves slightly level.
     Shilongdong group developed dolomite. Generally, the content of major elements and trace elements are lower, the mode curve of the rare earth element showed that a more enriched in light rare earth elements.In addition,the carbon isotope have two cycles.
     2. Based on the theory of element track, the key control element of marine source rock formation in region of interest is researched by the measurement of field profile, combining with the result of interior analysis test about total organic carbon and element. We start with the paleo-productivity, fossil oxygen facies, burial efficiency and hydrothermal activity to denote the ocean paleo-productivity by Baxs, reflect the oxido reduction environment at the time the OM sediment by V/Cr, Ni/Co, U/Th and the rare-earth element including La/Yb andδCe, indicate the burial efficiency of organic carbon by Mo, instruct the submarine hydrothermal solution action's influence to the OM accumulation by Ba/Sr.
     The analysis result indicate that the lower of Qiongzhusi formation in lower Cambrian has a high paleo-productivity, the OM sediment in an anaerobic environment, the burial quantity of organic carbon is high, and the geobiology condition is advantage to develop superior source rock. The paleo-productivity of Xiannvdong formation and Yanwangbian formation is low. The sedimentary environment deviates to be poor oxygen-rich oxygen facies which is disadvantage to the conservation of OM, and the quantity of organic carbon is little. The burial efficiency of the bottom of Shilongdong formation is relatively low, while the paleo-productivity is big and the sedimentary environment is anoxic. Analyzing from this point, more paleo-productivity, anoxic environment and high efficient burial rate provide good environment for the formation and development of superior source rock. Otherwise, the submarine hydrothermal fluid also affects the accumulation of OM and controls the development of superior source rock.
     3. The element geochemistry can reflect the environment of source rock, affect the concentration and has a closely correlation to the organic carbon content which reflects the abundance of OM. Under the direction of this theory, the elements which are correlated to TOC, inorganic carbon isotope and organic carbon isotope are analyzed to build three fitting equations with the TOC, inorganic carbon isotope and organic carbon isotope as variable and optimized element content as argument. The nutrient elements affecting the growth of biology such as Baxs、Mnxs、Fexs, the sea water salinity element Srxs,and the elements affecting the conservation condition of OM such as Uxs、Vxs、Nixs、Znxs are chosen to evaluate the abundance and deposition, conversation environment of OM. At the same time, factor analysis is conducted to the elements including Moxs、Uxs、Fexs、Mnxs、Vxs、Nixs、Znxs、Srxs and Baxs to obtain a compositive factor calculation equation combined by multi-element which includes total information about the change of trace element of the OM in sedimentary rock in the process from formation to deposition and bury. It reflects the changes of the OM sedimentary environment and the rules of OM distribution and accumulation. It can be used to evaluate the superior and inferior of the source rock.
     The analysis result indicates that the lower of Qiongzhusi formation in lower Cambrian has a higher compositive factor score which reflects that the sediment quantity is more, the reservation condition is advantageous and superior source rock can develop. The compositive factor score of top Qiongzhusi formation, Xiangnvdong formation and low Yanwangbian formation is between 0 and 1 which shows ordinary source rock may develop. Whereas the compositive factor score of the middle and top of Yanwangbian formation and Shilongdong formation is smaller than 0 which shows the OM quantity is little and the bury condition is so bad that it's unfavorable for the source rock development.
     4. It is a new clue to evaluate highly evolved marine source rock by the characteristic of element geochemistry. It has some unity to the result of traditional source rock evaluation, but some differences still exist. This method can be used as an important addition to the source rock evaluation of highly evolved area in southern China.
引文
[1]马永生.中国海相碳酸盐岩油气资源、勘探重大科技问题及对策[J].海相油气地质,2000,5(1-2):15-16
    [2]肖开华,沃玉进,周雁等.中国南方海相层系油气成藏特点与勘探方向[J].石油与天然气地质,2006,27(3):316-325
    [3]马立桥,董庸,屠小龙等.中国南方海相油气勘探前景[J].石油学报,2007,28(3):1-7
    [4]张水昌,梁狄刚,张大江.关于古生界烃源岩有机质丰度的评价标准[J].石油勘探与开发,2002,29(1):8-12
    [5]蔡勋育,韦宝东,赵培荣.南方海相烃源岩特征分析[J].天然气工业,2005,25(3):20-22
    [6]张抗,王大锐.中国海相油气勘探的启迪[J].石油勘探与开发,2003,30(2):9-16
    [7]Hunt J M.Petroleum geochemistry and geology[M].San Franciso:Free Man and Company,1979,500-524
    [8]张水昌,梁狄刚,朱光有.中国海相油气田形成的地质基础[J].科学通报,2007,52(增刊Ⅰ):19-31
    [9]张水昌,张宝民,边立曾等.中国海相烃源岩发育控制因素[J].地学前缘,2005,12(3):39-48
    [10]秦建中,腾格尔,付小东.海相优质烃源层评价与形成条件研究[J].石油实验地质,2009,31(4):366-378
    [11]陈洪德,黄福喜,徐胜林等.中上扬子地区海相成烃物质聚集分布规律及主控因素[J].成都理工大学学报(自然科学版),2009,36(6):569-577
    [12]丘东洲,赵玉华,刘传鹏等.我国海相油气生成物质聚集特征与分布规律[J].新疆石油地质,2009,30(4):425-430
    [13]程克明,熊英,张晓宝.孔西潜山奥陶系原生油藏成藏时期探讨[J].石油勘探与开发,2002,29(4):16-20
    [14]付立新,陈善勇,王丹丽等.乌马营奥陶系潜山天然气藏特点及成藏过程[J].石油勘探与开发,2002,29(5):25-27
    [15]中国科学院地球化学研究所编.高等地球化学[M].北京:科学出版社,2000.1-378
    [16]黄第藩.21世纪初我国油气地球化学面临的任务和展望.见:梁狄刚,黄第藩,马新华等主编-有机地球化学研究新进展[M].北京:石油工业出版社,2001.3-10
    [17]程克明,王兆云.高成熟和过成熟海相碳酸盐岩生烃条件评价方法研究[J].中国科学(D辑),1996,26(6):537-543
    [18]王中刚,于学元,赵振华等.稀土元素地球化学[M].科学出版社,1989.
    [19]刘英俊,曹励明.元素地球化学导论[M],地质出版社,1987.
    [20]赵伦山,赵善仁,叶荣.跨越世纪:地球化学的理论与应用,见:欧阳自远主编.世纪之交矿物学岩石学地球化学的回顾与展望[M].北京:原子能出版社,1998.159-167
    [21]刘本立.地球化学基础[M].北京:北京大学出版社,1994.186-187
    [22]Hatch J R, Leventhal J S.Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian(Missourian)Stark Shale Member of the Dennis Limestone,Wabaunsee County,Kansas,U.S.A.[J].Chemical Geology,1992,99(1-3):65-82.
    [23]朱志军,陈洪德,林良彪等-川东南-湘西地区志留系小河坝组砂岩微量元素地球化学特征及意义[J].地质科技情报,2010,29(2):24-30
    [24]杨守业,李从先,C B Lee等黄海周边河流的稀土元素地球化学及沉积物物源示踪[J].科学通报,2003,48(11):1233-1236
    [25]Elderfield H,Greaves M J.The rare earth elements in seawater[J]. Nature,1982,296(18):214-219.
    [26]Galimov E M,李红光译.生物圈碳同位素组成全球变化特点[J].天然气地球科学.2002,13(1-2):1-17
    [27]朱井泉,李永铁,江茂生等.藏北措勒盆地早白垩世Antian-Albian浅水碳酸盐岩碳同位素组成及其意义[J].中国科学(D辑).2003,33(3):216-222
    [28]Ohno T,Komiya T, Ueno Y, et al.Determination of 88Sr/86Sr mass-dependent isotopic fractionation and radiogenic isotope variation of 87Sr/86Sr in the Neoproterozoic Doushantuo Formation[J].Gondwana Research,2008,14(1-2):126-133
    [29]赵加凡,陈小宏,金龙.柴达木盆地第三纪盐湖沉积环境分析[J].西北大学学报,2005,35(3):342-346
    [30]马力.中国南方大地构造和海相油气地质[M].北京:地质出版社,2004.398-425
    [31]胡光灿.以大中型气田为目标加快四川天然气发展[M].北京:石油工业出版社,1995.1-200
    [32]许效松,刘宝珺,牟传龙等.中国中西部海相盆地分析与油气资源[M].北京:地质出版社,2004,119-161
    [33]张健,张奇.四川盆地油气勘探-历史回顾及展望[J].天然气工业,22(增刊):3-7
    [34]蔡勋育,韦宝东,赵培荣等.南方海相烃源岩研究新进展[J].南方油气,2004,17(4):5-9
    [35]梁狄刚,郭彤楼,陈建平等.中国南方海相生烃成藏研究的若干新进展(一)-南方四套区域性海相烃源岩的分布[J].海相油气地质,2008,13(2):1-16.
    [36]Alberdi-Genolet M.Trace metals and organic geochemistry of the machiques membe. (Aptian-Albian) and La Luna Formation (Cenomanian-Campanian),Venezuela[J]. ChemicalGeology,1999,160(1-2):19-38
    [37]郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000.203-218
    [38]童崇光.四川盆地构造演化与油气聚集[M].北京:地质出版社,1992.10-33
    [39]郭正吾,邓康龄.四川盆地形成与演化[M].北京:地质出版社,1996.113-163
    [40]孙玮.四川盆地元古宇-下古生界天然气藏形成过程和机理研究[D].成都:成都理工大学,2008.26-39
    [41]四川油气区石油地质志编写组.中国石油地质志卷十[M].北京:石油工业出版社,1959.
    [42]辜学达,刘啸虎.四川省岩石地层.全国地层多重划分对比研究丛书[M].武汉:中国地质大学出版社,1996.
    [43]朱光有,张水昌,梁英波等.四川盆地天然气特征及气源[J].地学前缘,2006,13(2):234-248
    [44]四川省地矿局.四川省区域地质志[M].北京:地质出版社,1992.
    [45]张满郎,谢增业,李熙等.四川盆地寒武纪岩相古地理特征[J].沉积学报,2010,28(1):128-139
    [46]冯增昭,彭勇民,金振奎等.中国南方寒武纪和奥陶纪岩相古地理[M].北京:地质出版社2001.1-221
    [47]冯增昭,彭勇民,金振奎等.中国早寒武世岩相古地理[J].古地理学报,2002,4(1):1-12
    [48]刘宝珺,许效松.中国南方岩相古地理图集(震旦纪-三叠纪)[M].北京:科学出版社,1994.1-239
    [49]胡见义,黄第藩.中国陆相石油地质理论基础[M].北京:石油工业出版社,1991.128-230
    [50]陈荣书.石油与天然气地质[M].武汉:中国地质大学出版社,1994.96-137
    [51]黄第藩,李晋超,张大江.干酪根的类型及其分类参数的有效性、局限性和相关性[J].沉积学报,1984,2(3):18-33
    [52]腾格尔,高长林,胡凯.上扬子北缘下组合优质烃源岩分布及生烃潜力评价[J].天然气地球科学,2007,18(2):254-259
    [53]丰国秀,陈盛吉.岩石中沥青反射率与镜质体反射率之间的关系[J].天然气工业,1988,8(3):20-25
    [54]王清晨,严德天,李双建.中国南方志留系底部优质烃源岩发育的构造—环境模式[J].地质学报,2008,82(3):289-297
    [55]张水昌,RL WANG,金之钧等.塔里木盆地寒武纪—奥陶纪优质烃源岩沉积与古环境变化的关系:碳氧同位素新证据[J].地质学报,2006,80(3):459-466
    [56]陈践发,张水昌.孙省利等.海相碳酸盐岩优质烃源岩发育的主要影响因素[J].地质学报,2006,80(3):467-472
    [57]杨瑞东,朱立军,王世杰等.贵州寒武系底部碳同位素负异常的地层学和生物学意义[J].地质学报,2005,79(2):157-165
    [58]腾格尔,刘文汇,徐永昌等.高演化海相碳酸盐烃源岩地球化学综合判识—以鄂尔多斯盆地为例[J].中国科学:D辑,2006,36(2):167-176
    [59]谢树成,殷鸿福,解习农等.地球生物学方法与海相优质烃源岩形成过程的正演和评价[J].地球科学,2007,32(6):727-740
    [60]殷鸿福,谢树成,秦建中等.对地球生物学、生物地质学和地球生物相的一些探讨[J].中国科学D辑:地球科学,2008,38(11):1-8
    [61]曹婷婷,徐思煌,王约等.四川盆地南江杨坝地区下寒武统烃源岩形成的地球生物学条件[J].石油与天然气地质,2011,32(1):11-16
    [62]Xu S.H., Mei L.F., Yuan C.P., et al. Types, Evolution and Pool-Controlling Significance of Pool Fluid Sources in Superimposed Basins:A Case Study from Paleozoic and Mesozoic in South China[J]. Journal of China University of Geosciences,2007,18(1):49-59
    [63]Paul L.A multiproxy reconstruction of biological productivity and oceanography in the eastern equatorial pacific for the past 30,000 years [J]. Marine Micropaleontology,1999, 37(2):173-198
    [64]Dymond J, Er win Suess, Mitch Lyle. Barium in deep-sea sediment:A geochemical proxy for paleoproductivity[J]. Paleoceanography,1992,7(2):163-181
    [65]Francois R, Honjo S, Manganini S J, et al. Biogenic barium fluxes to the deep sea:Imp-lications for paleop roductivity reconstruction[J]. Global Biogeochemical Cycle,1995,9 (2):289-303
    [66]田正隆,陈绍勇,龙爱民.以Ba为指标反演海洋古生产力的研究进展[J].热带海洋学报,2004,23(3):78-86
    [67]倪建宇,姚旭.古海洋生产力的研究方法[J].海洋地质动态,2004,20(3):30-39
    [68]沈俊,冯庆来.广西扶绥东攀剖面二叠纪-三叠纪之交古生产力演化[J].古地理学报,2010,12(3):291-300
    [69]Piper D Z, Perkins R B. A modern vs Permian black shale:The hydrograph, primary productivity, and water-column chemistry of deposition[J].Chemical Geology, 2004,206(3-4):177-197
    [70]严德天,王清晨,陈代钊等.扬子及周缘地区上奥陶统-下志留统烃源岩发育环境及其控制因素[J].地质学报,2008,82(3):321-327
    [71]田景春,曾允孚.贵州二叠纪海相碳酸盐岩碳、氧同位素地球化学演化规律[J].成都理工学院学报,1995,22(1):78-82
    [72]沈渭洲,方一亭,倪琦生等.中国东部寒武系与奥陶系界线地层的碳氧同位素研究[J].沉积学报,1997,15(4):38-42
    [73]Timothy D A, Calvert S E. Systematics of variations in excess Al and Al/Ti in sediment from the central equatorial Pacific[J].Paleo-ceangraphy,1998,13(2):127-130
    [74]Taylor,Mclennan.The continental Crust:it's composition and Evolution[M].Blackwell Publishing 1985.25-30
    [75]Pederson T T,Calvert S E. Anoxia vs. Productivity:What controls the formation of organic-carbon-rich sediments and sedimentary rocks[J].AAPG Bull,1990,74(4):454-466
    [76]腾格尔,刘文汇,徐永昌等.缺氧环境及地球化学判识标志的探讨-以鄂尔多斯盆地为例[J].沉积学报,2004,22(2):305-372
    [77]颜佳新,张海清.古氧相-一个新的沉积学研究领域[J].地质科技情报,1996,15(3):7-13
    [78]腾格尔,刘文汇,徐永昌.无机地球化学参数与有效烃源岩发育环境的相关研究[J].地球科学进展,2005,20(2):193-200
    [79]Jones B J,Manning A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J].Palaeogeography Palaeoclimatology Palaeoecology,1994,111(1-4):111-129
    [80]吴明清,欧阳自远.铈异常-一个寻迹古海洋氧化还原条件变化的化学示踪剂[J].科学通报,1992,3(14):242-244
    [81]陈衍景,邓健,胡桂兴.环境对沉积物微量元素含量和分配型式的制约[J].地质地球化学,1996,(3):97-105
    [82]陈兰.湘黔地区早寒武世黑色岩系沉积学及地球化学研究[D].中国科学院研究生院博士学位论文,2005.2-89
    [83]程岳宏,于兴河,韩宝清.东濮凹陷北部古近系沙三段地球化学特征及地质意义[J].中国地质,2010,37(2):360-366
    [84]Boynton W V. Cosmo chemistry of the rare earth elements:meteorite studies [C].Henderson P. Rare Earth Elements Geochemistry Amsterdam:Elsevier,1984.63-114
    [85]周炼,周红兵,李茉等.扬子克拉通古大陆边缘Mo同位素特征及对有机埋藏量的指示意义[J].地球科学,2007,32(6):759-766
    [86]Siebert C,McManus J,Bice A,et al.Molybdenum isotope signatures in continental margin marine sediments[J].Earth and Planetary Science Letters,2006,241(3-4):723-733
    [87]Meyers S R, Sageman B B, Lyons T W. Organic carbon burial rate and the molybdenum proxy. Theoretical framework and application to Cenomanian-Turonian oceanic anoxic event 2. Paleoceanography[J],2005,20(2):2002-2020
    [88]Zhou Lian, Zhang Haiqiang, Wang Jin, et al. Assessment on Redox Conditions and Organic Burial of Siliciferous Sediments at the Latest Permian Dalong Formation in Shangsi, Sichuan, South China[J]. Journal of China University of Geosciences,2008,19(5):496-506
    [89]孙省利,陈践发,刘文汇等.海底热水活动与海相富有机质层形成的关系-以华北新元古界青白口系下马岭组为例[J].地质论评,2003,49(6):588-595
    [90]孙省利.西成铅锌矿田有机地球化学特征及成矿作用[J].甘肃地质学报,1999,8(2):58-64
    [91]李红敬,解习农,林正良等.四川盆地广元地区大隆组有机质富集规律[J].地质科技情报,2009,28(2):98-103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700