用户名: 密码: 验证码:
沿淮杞柳原料林高效栽培生理生态的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杞柳(Salix integra Thunb.)是杨柳科柳属多年丛生落叶灌木,耐寒、耐旱、根系发达、适应能力极强,抗旱性和耐涝性较强。杞柳广泛分布于河流冲积、淤积湿润的河阶地。杞柳具有发条率高、柳条细长、富有韧性等优良特性,是工艺柳编制品的最佳条材,柳编成为我国许多地方的传统名产。杞柳不仅具有很高的经济价值,而且能够防风固沙、保持水土、护岸、护堤,利用低洼地发展杞柳,因地制宜地发展湿地特色产业,能够有效地规避自然灾害的风险,避免、减少和降低洪涝灾害对沿淮低洼地农业生产的破坏和不利影响,直接关系到沿淮低洼地区广大人民群众的生计和经济社会的可持续发展,是沿淮低洼地农业避灾减灾、增收增效的重要途径。同时,发展杞柳还可以提高土地资源利用率、促进生态平衡。
     国内外对杞柳的研究还不是太多,报道大多集中于杞柳高产栽培、立体种植等方面。因此,本研究通过对杞柳栽培最为集中的阜南黄岗和颍上半岗地区的杞柳生物量、碳贮量、施肥措施以及淹水胁迫等深入的研究,为更好的利用低洼地发展杞柳产业提供科学的理论依据和技术指导。主要结论如下:
     不同栽培模式下杞柳的平均地径为0.46-0.99cm,平均条高为130.44~(~(-1))87.61cm,在相同林龄下纯林的平均地径和条高大于混交林;杞柳纯林及混交林的平均总生物量分别为17.55t·hm~(-2)、17.03t·hm~(-2),纯林的杞柳叶平均生物量高于混交林,而根系生物量则低于混交林,杞柳各部位的生物量大小依次为:根(7.51t·hm~(-2))>去皮茎杆(6.32t·hm~(-2))>茎皮(2.42t·hm~(-2))>叶(1.16t·hm~(-2))。不同林分土壤有机质、全N及全K含量随着土层深度而降低,同一土层中养分含量差异不显著。相关分析显示平均地径与平均条高呈极显著正相关;杞柳林平均总生物量与土壤速效磷及10-30cm土层有机质含量都呈极显著正相关;在各土层内土壤有机质、全N、全P、速效P、全Ca和全Mg之间均存在着不同程度的正相关。
     不同经营代次杞柳林分总生物量大小依次为:10年生(27.76t·hm~(-2))>18年生(24.98t·hm~(-2))>5年生(24.47t·hm~(-2))>1年生(15.06t·hm~(-2))。杞柳林分各器官生物量的分配随不同代次而变化,1年生青皮柳林分为:去皮茎杆(9.29t·hm~(-2))>根(4.11t·hm~(-2))>茎皮(3.10t·hm~(-2))>叶片(2.11t·hm~(-2));1年生红皮柳林分为:去皮茎杆(6.32t·hm~(-2))>根(4.11t·hm~(-2))>茎皮(2.57t·hm~(-2))>叶片(2.06t·hm~(-2));5年生红皮柳林分为:去皮茎杆(9.84t·hm~(-2))>根(9.04t·hm~(-2))>叶片(2.32t·hm~(-2))>茎皮(3.27t·hm~(-2));10年生红皮柳林分为:根(12.62t·hm~(-2))>去皮茎杆(9.87t·hm~(-2))>茎皮(3.55t·hm~(-2))>叶片(1.72t·hm~(-2));18年生红皮柳林分为:根(12.01t·hm~(-2))>去皮茎杆(7.39t·hm~(-2))>茎皮(2.47t·hm~(-2))>叶片(1.31t·hm~(-2))。
     不同经营代次杞柳林的土壤养分含量随着土层的加深而降低,全氮的含量范围在0.97-3.32g·kg~(-1)之间,有机质含量的范围在5.37~(-2)2.62g·kg~(-1)之间;DOC含量为36.96~(-1)31.71mg·kg~(-1)。全磷、速效P、全钾、全Ca和全Mg的含量范围分别为1.52~(-2).61g·kg~(-1)、1.69-6.94mg·kg~(-1)、107.87~(-1)85.03mg·kg~(-1)、11.40~(-2)3.06g·kg~(-1)和74.60-89.70mg·kg~(-1)。
     对杞柳林进行6个梯度的施肥实验,施肥梯度分别为:T1(30g·m~(-2)N)、 T2(20g·m~(-2)N+15g·m~(-2)P)、T3(30g·m~(-2)N+15g·m~(-2)P)、T4(45g·m~(-2)N+15g·m~(-2)P)、T5(60g·m~(-2)N+15g·m~(-2)P)、T6(15g·m~(-2)P)、CK (对照)。不同施肥处理对杞柳的基径、条高和生物量都有不同程度的促进作用。其中T5处理对杞柳茎杆、根、及根蔸生物量的增长的促进作用最为明显,不同施肥处理下杞柳总生物量的大小为:T1(22.67t·hm~(-2))≈T2(21.76t·hm~(-2))≈T3(22.95t·hm~(-2))T6(22.96)>CK (20.42t·hm~(-2))。
     模拟涝渍试验显示,经过75天的淹水处理,红皮柳和青皮柳的存活率均达100%,都产生了有利于吸收氧气的不定根和肥大的皮孔,但在产生的时间上红皮柳较青皮柳迟10天左右。渍水处理促进了青皮柳的生长和光合作用,而红皮柳在渍水和轻度淹水胁迫下,其生长、叶绿素含量(Chl)、净光合速率(Pn)和气孔导度(Gs)都明显低于对照。随着淹水时间的增加,红皮柳的非光化学淬灭系数(NPQ)持续增加并高于对照,最大光化学量子效率(Fv/Fm)持续下降且明显低于对照;青皮柳的NPQ值增加幅度较小,Fv/Fm一直在0.8-0.85之间波动,与对照相比无显著差异。
     杞柳纯林(WP)、杞柳-杨树混交林(WPP)、杨树纯林(PP)的0-30cm土壤有机碳含量(SOC)分别为6.80、8.50和7.71g·kg~(-1),相关分析表明SOC与土壤含水量、NO3--N、全N含量呈正相关。土壤有机碳密度(SOCD)分别为2.88、3.26和2.95kg·m~(-2),SOC和SOCD随土层深度的增加而降低。杨树-杞柳混交林土壤DOC、DON含量均高于杞柳纯林和杨树纯林,不同土地利用土壤DOC、DON平均含量随土层深度的增加而减少。土壤DOC、DON含量受季节影响波动明显,不同土地利用类型夏季及春季土壤的DOC、DON含量较高,秋季和冬季的含量相对较低。
     不同土地利用类型0-30cm土壤MBC、MBN平均含量大小都为:杞柳-杨树混交林>杞柳纯林>杨树纯林。土壤MBC、MBN含量季节变化与DOC、DON含量的季节变化相似,春季、夏季含量较高,冬季含量相对较小。
     通过对0-30cm土层土壤活性碳氮平均含量的相关分析表明,MBC与MBN、DON、DOC呈显著正相关(p<0.01);MBN与DOC呈显著正相关(p<0.01)。对土壤活性碳氮影响因素进行分析表明:土壤MBC与NO3--N、pH、容重呈显著负相关,与含水量呈显著正相关;MBN与NH4+-N、pH值呈显著负相关;DOC与NO3--N、全N、全P,速效P、呈正相关,与pH、EC呈负相关;DON与全N、全P呈正相关,与pH呈负相关。
     不同土地利用类型土壤呼吸年平均值分别为1.68μmol·m~(-2)·s~(-1)(杞柳纯林)、2.33μmol·m~(-2)·s~(-1)(杞柳-杨树混交林)、1.61μmol·m~(-2)·s~(-1)(杨树纯林),土壤呼吸的日均值最高出现在夏季(6.64μmol·m~(-2)·s~(-1)),最低为冬季(0.13μmol·m~(-2)·s~(-1))。相关分析表明,土壤呼吸速率与地表气温之间呈显著的指数关系,杞柳纯林、杞柳-杨树混交林、杨树纯林的相关系数R2分别为0.71、0.62、0.54。杞柳-杨树混交林有利于土壤有机碳的固定,杞柳纯林土壤有机碳储量偏低,与其粗放经营有关。在今后的栽植管理中,应采取合理的耕作措施,在提高土壤肥力的同时增强土壤的碳固定。
Salix integra Thunb. is perennial fascicular deciduous shrub with wide adaptabilityunder adverse growth conditions (e.g. coldweather and waterlogging). S. integra iswidely distributed in China along riparian zone. It is used for willow handicraft due to itscharacteristics of high sprouting rate and long-flexible stem. S. integra not only has higheconomic value, but also has the function of sand-fixing, water and soil conservation, andriverbank protection. Plantation of S. integra in the low-land areas can effectively avoidthe risk of natural disasters and reduce the damage and adverse effect on agriculturalproduction. Therefore, promotion of S. integra enterprise can enhance sustainabledevelopment of regional economic society, and improve the utilization of land resourceand maintain ecological balance.
     The researches on S. integra worldwide preliminarily concentrated in high-yieldcultivation and inter-overlapping plantation. This study conducted at Huanggang of Funanand Bangang of yingshang. The study was designed to investigate the stand biomass, soilorganic carbon pool, nutrient management and waterlogging resistance of S. integraplantations on the lowland areas along the Huaihe River. The objective of the study is toprovide a systematic techniques for sustainable management of S. integra plantation. Theresults were as follows.
     The mean base diameter (MBD) and mean height (MH) were, respectively,0.46-0.99cm and130.44~(-1)87.61cm for the two cultivation patterns, which the pure stands hadhigher MBD and MH than the mixed stand did at the same age. The average total biomassof pure and mixed stands were17.55t·hm~(-2)and17.03t·hm~(-2), respectively. The foliarbiomass was higher in the pure stand than in the mixed stand. However, the root biomasswas adverse. The biomass partitioning ranked in order as root (7.51t·hm~(-2))> peeled stem(6.32)> bark (2.42)> leaf (1.16). The contents of organic matter, total nitrogen and totalpotassium decreased with the soil depth, with no significant difference in the same soillayer for all sampling stands between the pure and mixed. The result from correlationanalysis demonstrated that the mean base diameter was significantly and positivelycorrelated with mean height. The total biomass of S. integra stand was significantly andpositively correlated with available phosphorus in all soil layers, and organic matter in10-30cm soil layer.
     Total biomass of the different aged S. integra stands ranked in order as10a (27.76t·hm~(-2))>18a (24.98)>5a (24.47)>1a (15.06). The biomass partitioning changed with theages. The biomass components of1a S. integra cv. qingpi ranked as peeled stem (9.29 t·hm~(-2))>root (4.11)>bark (3.10)>leaf (2.11). For1a S. integra cv. hongpi, peeledstem (6.32t·hm~(-2))>root (4.11)>bark (2.57)>leaf (2.06). The biomasscomponents of5a S. integra cv. hongpi ranked as peeled stem (9.84t·hm~(-2))>root (9.04)>leaf (2.32)>bark (3.27); for the10a S. integra cv. hongpi as root (12.62t·hm~(-2))>peeledstem (9.87)>bark (3.55)>leaf (1.72); for the18a S. integra cv. hongpi as root (12.01t·hm~(-2))>peeled stem (7.39)>bark (2.47)>leaf (1.31).
     The contents of soil nutrients decreased with the soil depth. The contents of totalnitrogen, soil organic carbon and dissolved organic carbon (DOC) were0.97-3.32g·kg~(-1),5.37~(-2)2.62g·kg~(-1), and36.96~(-1)31.71mg·kg~(-1), respectively. The contents were1.52~(-2).61g·kg~(-1)for total phosphorous,1.69-6.94mg·kg~(-1)for available phosphorous,107.87-185.03mg·kg~(-1)for total potassium,11.40~(-2)3.06g·kg~(-1)for total calcium and74.60-89.70mg·kg~(-1)for total magnesium.
     Fertilization experiments were conducted in S. integra stands under6levels: T1(30gN·m~(-2)), T2(20g N·m~(-2)+15g P·m~(-2)), T3(30g N·m~(-2)+15g P·m~(-2)), T4(45g N·m~(-2)+15gP·m~(-2)), T5(60g N·m~(-2)+15g P·m~(-2)), T6(15g P·m~(-2)), and CK (the control). The mean basediameter, height and biomass of S. integra under the different treatments were increasedcompared with the control. The biomass of stem, root and cutting under T5treatment hadthe biggest increase compared with other treatment. The total biomass under the differenttreatments were ranked as: CK (20.42t·hm~(-2))     During the75-day simulated flooding period, the survival rates of seedlings of the twotypes of S. integra were100%. The seedlings of both types developed hypertrophiedlenticels and adventitious roots at their stem base with the different formation time (S.integra cv. hongpi was10d later than S. integra cv. qingpi). The growth andphotosynthesis of S. integra cv. qingpi were promoted under the waterlogging stress, whilethe growth and photosynthetic properties (chlorophyll content, net photosynthetic rateand stomatal conductance) of S. integra cv. qingpi under waterlogging stress and slightflooding stress were all significantly lower than those of the control. Significant increasesof non-photochemical quenching (NPQ) and reductions of maximal quantum efficiency ofPSⅡ photochemistry (Fv/Fm) in the flooded seedlings were observed for S. integra cv.hongpi. For S. integra cv. qingpi, however, the value of Fv/Fmwas fluctuated from0.80to0.85. There were no significant differences in NPQ and Fv/Fmbetween the treatments andthe control.
     The soil organic carbon (SOC) concentrations in0-30cm soil layer were6.80g·kg~(-1) for the pure willow plantation (WP),8.50g·kg~(-1)for the willow-poplar mixed plantation(WPP) and7.71g·kg~(-1)for the poplar plantation (PP). The mean SOC density was2.88,3.26and2.95kg·m~(-2)for the above-mentioned three land use types, respectively.Correlation analysis showed that SOC was significantly and positively correlated withmoisture, NO3--N and total N. Under the same land use type, the concentration and densityof SOC decreased with soil depth. Soil DOC, DON contents in WPP were higher than thatin WP and PP. Soil DOC, DON contents fluctuated obviously with the seasons. DOC andDON contents under the different land use types were higher in summer and spring, whilerelatively lower in autumn and winter.
     In0-30cm soil, the contents of soil microbial biomass carbon (MBC) and nitrogen(MBN) under the different land use types were ranked as WPP> WP> PP. Seasonalvariations of soil MBC and MBN contents were similar to those of DOC、DON contents,with higher contents in spring and summer and lower contents in winter.
     The correlation analysis showed that MBC was significantly and positively correlatedwith MBN, DON, DOC, soil moisture (p<0.01), while negatively correlated with NO3--N,pH and soil bulk density. MBN was significantly and positively correlated with DOC(p<0.01), while negatively correlated with NH4+-N, pH. DOC was significantly andpositively correlated with NO3--N, total N, total P, available P (p<0.01), while negativelycorrelated with pH, EC. DON was significantly and positively correlated with total N andtotal P (p<0.01), while negatively correlated with pH.
     The annual average rate of soil respiration was1.68μmol·m~(-2)·s~(-1)for WP,2.33μmol·m~(-2)·s~(-1)for WPP,1.61μmol·m~(-2)·s~(-1)for PP, respectively. The maximum daily rate ofsoil respiration appeared in summer (6.64μmol·m~(-2)·s~(-1)), and the minimum in winter (0.13μmol·m~(-2)·s~(-1)). The result from regression analysis demonstrated that there was exponentialrelationship between soil respiration rate and surface air temperature. The value of R2was0.71for WP,0.62for WPP,0.54for PP, respectively. The WPP was beneficial to thecarbon sequestration in soil compared to WP. The lower SOC storage in WP was related tothe extensive management. It was suggested that in the future forest management,reasonable tillage and fertilization should be taken to improve soil fertility and enhancesoil carbon sequestration.
引文
[1]郑万钧.中国树木志[M].北京:中国林业出版社.1985.
    [2]袁玉霞,杨丽,李艳目,厉相卿.杞柳初植密度对比和品种对比试验效应的研究[J].中国林副特产,2005,(3):20-22.
    [3]宫玉臣,闫长智,李峰等.杞柳优良品种筛选技术研究[J].陕西林业科技,2008,(2):10-14.
    [4]王学昌,王国辉,盖云等.杞柳高产栽培技术调查研究[J].山东林业科技,2007,(2):78-79.
    [5]周云兵,张仕兵,杨庆叶.杞柳栽培与环境的关系[J].山东林业科技,2001,S1:12-13.
    [6]刘树龙.杞柳栽培及开发利用初探[J].安徽林业科技,1998,(4):26-27.
    [7]宋晓艳,孙大伟,张爱玲.杞柳丰产栽培技术[J].吉林林业科技,2009,38(3):52-53.
    [8]崔广芳,吴书宝,成永方.杞柳的生物学特性及高产栽培技术[J].甘肃农业科技,2001,(8):42.
    [9]杨丽,晏喜林,李艳目.杞柳丰产栽培技术[J].中国林副特产,2004,(3):22-23.
    [10]汪召君.杞柳丰产栽培技术[J].中国林业,2008,(4):54.
    [11]李振洲,郑福,曹东升.杞柳经济造林密度试验研究[J].吉林林业科技,1996(5):11-12.
    [12]侯学敏.杞柳密植栽培管理技术[J].河北林业科技,2002,(1):40-41.
    [13]李长林,王洪学,王砚革等.杞柳工艺原料林营造技术的研究[J].林业科技,2006,31(6):12-14.
    [14]李频道,徐劲松,王宝卿等.杞柳田夏季杂草种群调查[J].杂草科学,2007,(2):42-43.
    [15]李祥印,王西民,孙欣等.杞柳高产高效栽培技术[J].山东农业科学,1995,(4):33-34.
    [16]吴立潮,胡日利.林木计量施肥研究动态[J].中南林学院学,1998,18(2):57-61.
    [17]吴立潮.马尾松幼林计量施肥研究[J].广西林业科技,1999,28(1):11-28.
    [18] Baule H. The fertilizer treamtent of forest trees [M]. BLV Verlag, Munich,1970.
    [19]李贻铨,刘仲君.杉木幼林前五年施肥效应研究[J].土壤通报,1991,22(1):28-31.
    [20]王力,张青峰.林地施肥及水肥平衡的综述[J].陕西林业科技,2000,(2):70-73.
    [21]陈竣,李贻铨,杨承栋.中国林木施肥与营养诊断研究现状[J].世界林业研究,1998(3):58-65.
    [22]王力,侯庆春.林木施肥与水肥效益[J].西北林学院学报,2000,15(2):844-88.
    [23]周鸣铮.美国测土施肥科学的进展[J].国外农学土壤肥料,1986,(6):1-3.
    [24] Brown. A century of progress in the agricultural chemistry [C]. America: AmericanAssociated Advanced Science,1942:71-82
    [25] Magill AH, Aber JD. Long-term effects of experimental nitrogen additions on foliarlitter decay and humus formation in forest ecosystems [J].Plant Soil1998,203:301-311
    [26]鲍士旦.土壤农化分析[M].北京:中国农业出版社.2005,66.
    [27] Brown KR, vanden Driessch. Growth and nutrition of hybrid poplars over3yearsafter fertilization at planting [J]. Canadian Journal of Forest Research,2002,32(2):226-232.
    [28]邱尓发,郑郁善,洪伟.竹林施肥研究现状及探讨[J].江西农业大学学报,2001,23(4):551-555.
    [29]刘文文.沿淮滩地杞柳人工林施肥关键技术初步研究[D].南京:南京林业大学.2011,1-6.
    [30]李卓,柳树人工林速生丰产配方施肥技术研究[D].南京:南京林业大学,2012.2-4.
    [31]朱光权,江波,袁位高,等.意杨苏柳营养特点与需肥规律研究[J].浙江林业科技,1995,15(4):7-12.
    [32] Heimlan PE, Stettler RF, Hanley DP, et al. High yield hybrid poplar plantation in thePacific Northwest [M]. Pacific Northwest Extension Publication. Washington, D. C.,1995.33-35.
    [33] Menetrier J. Research and development work on poplars [J]. Journal of Forest Reserch,1979,12:50-57.
    [34]王永福,周荣.杨树速生丰产林施肥方案初探[J].内蒙古林学院学报(自然科学版),1996,18(1):34-37.
    [35]张晓平,王沁峰,方炎明等.淹水胁迫对浙江种源鹅掌楸光合特征的影[J].南京林业大学学报,2007,31(3):136-136.
    [36]唐罗忠,徐锡增,方升佐.土壤涝渍对杨树和柳树苗期生长及生理性状影响的研究[J].应用生态学报,1998,9(5):471-474.
    [37] Pezeshki SR, Pardue JH, Delaune RD. The influence of soil oxygen deficiency onalcohol dehydrogenase activity, root porosity, ethylene production, and photosynthesisin Spartina patens [J]. Environmental and Experiment Botany,1993,33:565-573.
    [38]刘春风.淹水对15个树种苗木生长和形态特征特征的影响[D].南京:南京林业大学,2009.23-24.
    [39]曲桂敏,李兴国,赵飞.水分胁迫对苹果叶片和新根显微结构的影响[J].园艺学报,1999,26(3):147-151.
    [40]蔺万煌,孙福增,彭克勤等.洪涝胁迫对水稻产量及产量构成因素的影响[J].湖南农业大学学报,1997,(1):12-15.
    [41]赵可夫,王韶堂.作物抗性生理[M].北京:北京农业出版社,1990.
    [42]赵可夫.植物对水涝胁迫的适应[J].生物学通报,2003,38(12):11-14.
    [43]连洪燕.石楠属植物幼苗对淹水胁迫的响应[D].南京:南京林业大学,2008:11-19.
    [44]汤章程.植物对水分胁迫的反应和适应性[J].植物生理学通讯,1983,(3):24-29.
    [45]吴林,黄玉龙,李亚东.越桔对淹水的耐受性及形态生理反应[J].吉林农业大学学报,2002,24(4):64-69.
    [46]董合忠,郭庆正,唐薇.水分胁迫对棉苗的致害机理及其抗性研究[J].棉花学报,1997,9(6):287-29.
    [47]倪君蒂,李振国.淹水对大豆生长的影响[J].大豆科学,2000,19(1):42-48.
    [48] Seago JL, Peterson CA, Enstone DE. Cortical development in roots of the aquaticplant Pontederia cordata (Pontederiaceae)[J]. American Journal of Botany,2000,87:65-68.
    [49]杨敏生,裴保华,朱之悌.水分胁迫下的白杨无性系主要生理过程的研究[J].生态学报,1999,19(3):136-138.
    [50]郑淑霞,上官周平.近一世纪黄土高原植物气孔密度变化规律[J].生态学报,2004,24(11):2457-2464.
    [51]李宗庭,周燮著.植物激素及其免疫检测技术[M].南京:江苏科学技术出版社,1996.
    [52]何嵩涛,刘国琴,樊卫国.水涝胁迫对银杏内源激素和细胞质含量的影响[J].安徽农业科学,2006,34(1):18-24.
    [53]张福锁.环境胁迫与植物营养[M].北京:北京农业大学出版社,1993.
    [54]张希彪,上官周平,黄土丘陵区油松人工林与天然林养分分布和生物循环比较[J].生态学报,2006,26(2):373-382.
    [55]黄炜娟.闽江河口湿地碳储量的研究[D].福州:福州农林大学,2008.
    [56]仝川,曾从盛.湿地生态系统碳循环过程及碳动态模型[J].亚热带资源与环境学报,2006,1(1):84-92.
    [57]刘子刚.湿地生态系统碳储存和温室气体排放研究[J].地理科学,2004,24(5):634-639.
    [58]张文菊.三江平原典型湿地剖面有机碳分布特征与积累现状[J].环境科学,2005,26(3):56-60.
    [59]刘茂松,姜志林,李湘萍.长江中下游湿地系统的功能及其保护[J].南京林业大学学报,1999,23(2):27-30.
    [60]刘景双.湿地生物地球化学研究[J].湿地科学,2005,3(4):302-309.
    [61] Matthews E, Fung JY. Methane emissions from natural wetlands: Global distribution,area, and environmental characteristics of sources [J]. Global Biogeochemical Cycle,1987,1:61-86.
    [62]马学慧,吕宪国,杨青等.三江平原沼泽地碳循环初探[J].地理科学,1996,16(4):323-330.
    [63]王仁卿,刘纯惠,晁敏.从第五届国际湿地会议看湿地保护与研究趋势[J].生态学杂志,1997,16(5):72-76.
    [64] Xiao HL. Climate change in relation to soil organic matter [J]. Soil EnvironmentScience,1999,8(4):300-304.
    [65]张琪,李恋卿,潘根兴等.近20年来宜兴市域水稻土有机碳动态及其驱动因素[J].第四纪研究,2004,24(2):236-242.
    [66]潘根兴,李恋卿,张旭辉. SOC库与全球变化研究的若干前沿问题—兼开展中国水稻土有机碳固定的建议[J].南京农业大学学报,2002,25(3):100-109.
    [67] Brix H, Sorrel BK, Lorenzen B. Are phragmites dominated wetlands a net source ornet sink of greenhouse gases [J]. Aquatic Botany,2001,69:313-324.
    [68]史军,刘纪远,高志强等.造林对陆地碳汇影响的研究进展[J].地理科学进展,2004,23(2):58-67.
    [69]于贵瑞.全球变化与陆地生态系统碳循环和碳蓄积[M].北京:气象出版社:2003.
    [70] Robert JD, Daniel LC. Quantify aboveground biomass and estimating netaboveground primary production for wetland macrophytes using a non-destructivephenomentric technique [J]. Aquatic Botany,1998,62:115-133.
    [71]韩士杰,董云社,蔡祖聪等.中国陆地生态系统碳循环的生物地球化学过程[M].北京:科学出版社,2008.
    [72]郑文教,林鹏,薛雄志等.广西红海榄红树林CHK的动态研究[J].应用生态学报,1995,6(1):17-22.
    [73]梅雪英,张修峰.长江口湿地海三棱藨草的储碳、固碳功能研究—以崇明东滩为例[J].农业环境科学学报,2007,26(1):360-366.
    [74]陈庆强,沈承德,易惟熙.土壤碳循环研究进展[J].地球科学进展,1998,13(6):555-563.
    [75] Post WM, Rmanuel WR, Zinke PJ, et al. Soil carbon pools and world life zones [J].Nature,1982,298:156-159.
    [76] Schlesinger WH. Evidence from chronosequence studies for a low carbon storagepotential of soil [J]. Nature,1990,348:232-234.
    [77] Maltby E, Turner PJ. Wetland of the World [N]. Geographic Magazine,1983,55:12-17.
    [78] Waddding JM, Roulet NT. Carbon balance of a boreal patterned peatland [J]. GlobalChange Biology,2000,6:87-92.
    [79]高俊琴,欧阳华,白军红.若尔盖高寒湿地土壤活性有机碳垂直分布特征[J].水土保持学报,2006,34(3):59-64.
    [80] Saussure T D E. Rechimiquessurla Vegetation [M]. Paris: Guthier-Villar,1804.
    [81] Moller. Uber die freie Kohlensaure im Boden [J]. Forschende Gebiete-AgriculturalPhysiology,1879,2:329-338.
    [82] Wollny E. Undersuchungen uber den Einfluss der physikalischen Eigenschaften desBodens auf dessen Gehalt an freier Kohlensaure [J]. Forschende Gebiete-AgriculturalPhysics,1831,4:1-28.
    [83] Zak DR, Pregitzer RS, Curtis PS, et al. Elevated atmosphere CO2and feedbackbetween carbon nitrogen cycles [J]. Plant Soil,1993,151:105-117.
    [84] Greaves JR, Carter EG. Influence of moisture on the bacterial activities of the soil [J].Soil Science,1920,10:361-387.
    [85] Kucera C, Kirkham L. Soil respiration studies in tallgrass prairie in Missouri [J].Ecology,1971,52:912-915.
    [86] Witkamp M. Rates of carbon dioxidwe evolution from forest floor [J]. Ecology,1966,47(3):492
    [87]韩雄.模拟增温对短花针茅草原生态系统气体交换影响的研究[D],呼和浩特:内蒙古农业大学,2008:4-15.
    [88]李雅红,江洪,原焕英等.西天目山毛竹林土壤呼吸特征及其影响因[J].生态学报,2010,30(17):4590-4597.
    [89] Luo Y,Zhou X.土壤呼吸与环境(姜丽芬,曲来周,周玉梅等译)[M].北京:高等教育出版社,2007.
    [90]苏永红,冯起,朱高峰,司建华,常宗强.土壤呼吸与测定方法研究进展[J].中国沙漠,2008,28(1):57-65.
    [91]秦璐.艾比湖地区不同生态系统土壤呼吸研究[D],乌鲁木齐:新疆大学,2011,1-6.
    [92] Baldocchi D, Falge E, Gu L. et al. A New Toll to Study the Temporal and SpatialVariabiliy of Ecosystem-Scale Carbon Doixide,Water Vapor, and Energy FluxDensitites [J]. Bulletin of the American Meteorological Society,2001,82(11):2415-2434.
    [93] Giardina CP, Binkley D, Ryan MG. et al. Belowground carbon cycling in a humidtropical forest decreases with fertilization [J]. Oecologia,2004,139:545-550.
    [94] Davidson EA, Verchot, et al, Effects of soil water content on soil respiration in forestsand cattle pastures of eastern mazonia [J]. Biogeochemistry,2000,48:53-59.
    [95] Parkin TB, Kaspar TC. Temporal variability of soil carbon dioxide flux, Effect ofsampling frequency on cumulative carbon loss estimation [J]. Soil Science Society ofAmerica Journal,2004,68:1234-1241.
    [96]贾淑霞.落叶松和水曲柳人工林土壤、根系和土壤微生物呼吸研究[D],哈尔滨:东北林业大学,2009,30-56.
    [97]肖复明.毛竹林生态系统碳平衡特征的研究[D].北京:中国林业科学研究院,2007,94-122.
    [98]吴亚琼,刘国华.傅伯杰.森林生态系统土壤CO2释放随海拔梯度的变化及其影响因子[J],生态学报,2007,27(11):4678-4685.
    [99]李淑芬,俞元春,何晟.土壤溶解性有机碳的研究进展[J].土壤与环境,2002,11(4):422-429.
    [100]俞元春,何晟,李炳凯等.杉林土壤溶解有机碳吸附及影响因素分析[J].南京林业大学学报(自然科学版),2005,29(2):15-18.
    [101] Soilinger KS, Hetal PJ. Control on the dynamics of dissolved organic matter in soil[J]. Soil Science,2000,165(4):277-304.
    [102] Mcdowell WH, Likens GE. Origin, composition, and flux of dissolved organiccarbon in the Hubbard Brook Valley [J]. Ecological Monographs,1988,58:177-233.
    [103] Currie WS, Aber JD. Modeling leaching as a decomposition process in humidMontana forests [J]. Ecology,1997,78(5):1844-1860.
    [104] Qualls RG, Wank WT. Fluxes of dissolved organic nutrients in a deciduous forest [J].Ecology,1991,72:254-26.
    [105]宋长春,王毅勇,阎百兴等.沼泽湿地开垦后土壤水热条件变化与碳氮动态[J].环境科学,2004,25(3):168-172.
    [106]黄耀,沈雨,周密等.木质素和氮含量对植物残体分解的影响[J].植物生态学报,2003,27(2):183-188.
    [107] Dalias P, Anderson JM, Bottner P, Couteaux MM. Long-term effects of temperatureon carbon mineralization processes [J]. Soil Biology and Biochemistry,2001,33:1049-1057.
    [108] Li SW, Reza SP. Effects of moisture regimes on phtosynthesis and growth in cattail[J]. Acta Oecologica,2003,25:17-22.
    [109] Pezeshki SR, Delaune RD, Kludze HK, Choi HS. Photosythestic and growthresponses of cattail and saw grass to soil redox conditions [J]. Aquaric Botany,1996,54:25-35.
    [110] OECD. Guidelines for aid agencies for improved conservation and sustainable use oftropical and subtropical wetlands [R]. Organization for Economic Cooperation andDevelopment. Paris, France,1996.
    [111]张瑞军,朱青,窦素芹等.编织柳中小条培育技术研究[J].山东林业科技,2000,4:5-8.
    [112]朱毅,韩敬,闫常智,等.速生杨树套栽杞柳的试验研究[J].西北林学院学报,2007,22(4):103-105.
    [113]叶绍明,温远光,杨梅,等.连载桉树人工林植物多样性与土壤理化性质的关联分析[J].水土保持学报,2010,(4):57-65.
    [114]茶正早,黎世聪,林钊沐,等.海南岛桉树土壤肥力的研究[J].热带作物学报,1999,(2):39-41.
    [115]许大全.光合作用效率.上海:上海科学技术出版社,2002,2-3.
    [116] Xu DQ. Progress in photosynthesis research: from molecular mechanisms to GreenRevolution [J]. Acta Phytophysiol Sinica,2001,27(2):97-108.
    [117]田晶会,贺康宁.不同土壤水分下黄土高原侧柏生理生态特定分析[J].水土保持学报,2005,19(2):551-555.
    [118]潘瑞炽.植物生理学[M].北京:高等教育出版社,2002.
    [119]张希彪,上官周平.黄土丘陵区主要林分生物量及营养元素生物循环特征[J].生态学报,2005,25(3):527-537.
    [120]孙向阳.土壤学[M].北京:中国林业出版社,2004.254-258.
    [121]耿玉清,孙向阳,亢新刚.长白山林区不同森林类型下的土壤肥力状况的研究[J].北京林业大学学报,1999,21(6):97-101.
    [122] Lilleskov EA, Fahey TJ, Horton TR, et al. Belowground ectomycorrhizal fungalcommunity change over a nitrogen deposition gradient in Alaska [J]. Ecology,2002,83:104-115.
    [123] Goodale CL, Aber JD, McDowell WH. The long-term effects of distur-bance onorganic and inorganic nitrogen export in the White Mountains New Hampshire [J].Ecosystems,2000,3:433-450.
    [124] Vartapetian BB, Jackson MB. Plant adaptation to an aerobic stress [J]. Annals ofBotany,1997,79(Suppl. A):3-20.
    [125] Schlesinger WH. Evidence from chronosequence studies for a low carbon-storagepotential of soil [J]. Nature,1990,348:232-234.
    [126] Carvalho LC, Amancio S. Antioxidant defence wywtem in plantlets transferred frominvitro to exvitra effects of increasing light intensity and CO2concentration [J]. PlantScience,2002,162:33-40.
    [127] Kozlowski TT. Responses of woody plants to flooding and salinity [J]. TreePhysiology,1997,1:1-29.
    [128] Li XM, Kakubari Y. Photosynthesis and chlorophyll a fluorescence of twopoplars under water stress [J]. Journal of Forest Reserch,2001,6:211-215.
    [129] Nakai A, Yurugi Y, Kisanuki H. Stress responses in Salix gracilistylacuttings subjected to repetitive alternate flooding and drought [J]. Trees,2010,24:1087-1095.
    [130] Nakai A, Hiromitsu K. Stress responses of Salix gracilistyla and Salix subfragiliscuttings to repeated flooding and drought [J]. Journal of Forest Reserch,2011,16:465-472.
    [131] Emam Y, Bijanzadeh E. Water uptake and hydraulic Conductivity of Seminal andAdventitious Roots of Five Wheat Cultivars at Early Growth Stage [J]. AgriculturalScience and Technology,2012,14:1605-1616.
    [132] Close DC, Davidson NJ. Long term waterlogging: nutrient, gas exchangephotochemical and pigment characteristics of Eucalyptus nitens saplings [J]. RussianJournal of Plant Physiology,2003,50:843-847.
    [133]靖元孝,陈兆平,程惠青,莫熙穆.淹水时水翁幼苗光和特性与不定根的关系[J].热带亚热带植物学报,2000,8(1):361-364.
    [134] Yamamoto F, Sakata T, Terazawa K. Physiological, morphological and anatomicalresponses of Fraxinus mandshurica seedlings to flooding [J]. Tree physiology,1995,15:713-719.
    [135] Tsukahara H, Kozlowski TT. Importance of adventitious roots to growth of floodedPlatanus occidentalis seedlings [J]. Plant and Soil,1995,88:123-132.
    [136] Islam MA, Macdonald SE. Ecophysiological adaptations of black spruce (Piceamariana) and tamarack (Larix laricina) seedlings to flooding [J]. Trees,2004,18:35-42.
    [137] Kozlowski TT, Pallardy SG. Acclimation and adaptive responses of woody plants toenvironmental stresses [J]. Botanical review,2002,68:270-334,2002.
    [138]曹福亮,罗布特·法门.人工淹水逆境处理对美洲黑杨无性系苗形态和生长的影响[J].南京林业大学学报,1993,17(2):29-44.
    [139] Zoubeir B, Ali A, Mohammed S, Lamhamedi Mejda A, Mohamed H. Adaptation andmorpho-physiology of three Populus deltoides Marsh.×P. nigra L. clones afterpreconditioning to prolonged waterlogging [J]. Agroforestry System,2012,86:433-442.
    [140] Pezeshki SR, Pardue JH, Delaune RD. Leaf gas exchange and growth of floodtolerant and flood sensitive tree species under low soil redox conditions [J]. TreePhysiology,1996,16:453-458.
    [141] Malik AI, Colmer TD, Lambers H, Schortemeyer M. Changes in physiological andmorphological traits of roots and shoots of wheat in response to different depths ofwaterlogging [J]. Australian Journal of Plant Physiology,2001,28:1121-1131.
    [142] Farquhar G, Sharkey TD. Stomatal conductance and photosynthesis [J]. AnnualReview of Plant Physiology and Plant Molecular Biology,1982,33:317-345.
    [143]曹福亮,蔡金峰,汪贵斌,张往祥.淹水胁迫对乌桕生长及光合作用的影响[J].林业科学,2010,46(10):57-61.
    [144] Christiane FS, Shabala S. Screening methods for waterlogging tolerance in lunceme:comparative analysis of waterlogging effects on chlorophyll fluorescence,photosynthesis, biomass and chlorophyll content [J]. Functional Plant Biology,2003,30:335-343.
    [145] Ashraf M, Arfan M. Gas exchange characteristics and water relations in two cultivarsof Hibiscus esculentus under waterlogging [J]. Biologia Plantarum,2005,49:459-462.
    [146] Larcher W. Physiological Plant Ecology [M]. Springer, Berlin, Heidelberg, NewYork,2003.
    [147] Ball MC, Butterworth JA, Roden JS, Christian R, Egerton JG. Applications ofchlorophyll fluorescence to forest ecology [J]. Plant Physiology,1994,22:311-319.
    [148] Jones DT, Sah JP, Ross MS, Oberbauer SF, Hwang B, Jayachandran K. Responses oftwelve tree species common in Everglades tree islands to simulated hydrologicregimes [J].期刊,2006,26:830-844.
    [149] Lavinsky AO, De Souza Sant C, Mielke MS, De Almeida AF, Gomes FP, Franca S,Da Costa Silva D. Eeffcts of light availability and soil flooding on growth andphotosynthetic characteristics of Genipa Americana L. seedlings [J]. New Forests,2007,34:41-50.
    [150] Maxwell K, Johnson GN. Chlorophyll fluorescence–a practical guide [J]. Journal ofExperimental Botany,2000,51:659-668.
    [151]衣英华,樊大勇,谢宗强,陈芳清.模拟淹水对枫杨和栓皮栎气体交换、叶绿素荧光和水势的影响[J].植物生态学报,2006,30(6):960-968.
    [152] James RA, Rivelli AR, Munns R, Von Caemmerer S. Factors affecting CO2assimilation, leaf injury and growth in salt-stresses durum wheat [J]. Functional PlantBiology,2002,29:1393-1403.
    [153] Mielke MS, De Almeida AF, Gomes FP, Aguilar AG, Mangabeira PA. Leaf gasexchange, chlorophyll fluorescence and growth responses of Genipa Americanaseedlings to soil flooding [J], Photosynthetica,2003,50:221-231
    [154] Roohi E, Tahmasebi-Sarvestani Z, Modarres-Sanavy SAM, Siosemardeh A.Comparative study on the effect of soil water stress on photosynthetic function oftriticale, bread wheat, and barley [J]. Agricultural Science and Technology,2013,15:215-228.
    [155] Wu, X. and Bao, W. Leaf growth, gas exchange and chlorophyll fluorescenceparameters in response to different water deficits in wheat cultivars [J]. PlantProduction Science,2011,14(3):254-259.
    [156] Jing YX, Li GL, Gu BH, Yang DJ, Xiao L, Liu RX, Peng CL. Leaf gas exchange,chlorophyll fluorescence and growth responses of Melaleuca alternifolia seedlings toflooding and subsequent recovery [J]. Photosynthetica,2009,(4):595-601.
    [157] Dixon RK, Brown S, Houghton RA, et al. Carbon pools and flux of global forestecosystem [J]. Science,1994,263:185-190.
    [158] Raich JW, Potter CS. Global patterns of carbon dioxide emission from soils [J].Global Biogeochemical Cycles,1995,9:23-36.
    [159]潘根兴,曹建华,周云超.土壤碳及其在地球表层系统碳循环中的意义[J].第四纪研究,2000,20(4):325-334.
    [160]王绍强,刘纪远,于贵瑞.中国陆地土壤有机碳蓄积量估算误差分析[J].应用生态学报,2003,14(5):797-802.
    [161] H gberg P, Read DJ. Towards a more plant physiological perspective on soil ecology[J]. Trends in Ecology and Evolution,2006,21:548-554.
    [162] Rustad LE, Huntington TG, Boone RD. Controls on soil respiration: Implication forclimate change [J]. Biogeochemistry,2000,48:1-6.
    [163]李琪,胡正华,薛红喜.淮河流域典型农田生态系统碳通量变化特征.农业环境科学学报,2009,28(12):2545-2550.
    [164]杨金燕,王传宽.东北东部森林生态系统土壤碳贮量和碳通量[J].生态学报,2005,25(11):2876-2881.
    [165]杨景成,韩兴国,黄建辉.土地利用变化对陆地生态系统碳贮量的影响[J].应用生态学报,2003,14(8):1385-1390.
    [166]方运霆,莫江明,周国逸等.鼎湖山自然保护区土壤有机碳贮量和分配特征[J].生态学报,2004,24(1):135-142.
    [167]吴建国,张小全,徐德应.土地利用变化对土壤有机碳贮量的影响[J].应用生态学报,2004,15(4):593-599.
    [168]许信旺,潘根兴,曹志红等.安徽省土壤有机碳空间差异及其影响因素[J].地理研究,2007,26(6):1077-1086.
    [169]杨晓梅,程积民,孟蕾等.不同林地土壤有机碳及养分储量特征分析[J].水土保持研究,2010,17(3):130-134.
    [170]王海稳,张金柱,许中旗等.太行山区不同土地利用方式下土壤碳贮量的研究[J].水土保持学报,2007,21(2):89-91.
    [171]许信旺,潘根兴,侯鹏程.不同土地利用对表层土壤有机碳密度的影响[J].水土保持学报,2005,19(6):193-200.
    [172]谢宪丽,孙波,周慧珍等.不同植被下中国土壤有机碳的储量与影响因子[J].土壤学报,2004,41(5):688-699.
    [173]赵竑绯,尹维彬,陶晓等.安徽阜南杞柳林生长及其土壤特性的研究[J].东北林业大学学报,2011,39(10):36-39.
    [174]袁玲,杨邦俊.长期施用有机肥和化肥对土壤有机质和氮素的影响[J].西南农业大学学报,1993,15(8):314-317.
    [175] Li Z, Zhao QG. Organic carbon concentration and distribution in soils under differentland use in tropical and subtropical China [J]. Plant and Soil,2001,231:175-185.
    [176] Ogutu ZA. An investigation of the influence of human disturbance on selected soilnutrients in Narok District, Kenya [J]. Environmental Monitoring and Assessment,1999,58:39-60.
    [177]宇万太,姜子绍,李新宇等.不同土地利用方式对潮棕壤有机碳含量的影响[J].应用生态学报,2007,18(12):2760-2746.
    [178]李营.生态恢复过程中土壤有机碳的变化[J].云南地理环境研究,2002,12(2):11-15.
    [179] Lajtha K, Crow SE, Yano Y, et al. Detrital controls on soil solution N and dissolvedorganic matter in soil: A field experiment [J]. Biogeochemistry,2005,76(2):261-281
    [180] Davidson EA, Trumbores E, Amundson R. Soil warming and organic carbon content[J]. Nature,2000,408(14):789-790.
    [181]张凯.园林绿地生态系统养分动态及其利用效率研究[D].合肥:安徽农业大学博士学位论文.2010.
    [182] Whalen JK, Parmelee RW, McCartney DA,et al.Movement of N from decomposingearthworm tissue to soil, microbial and plant N pools [J]. Soil Biology Biochemistry,1999,31:487-492
    [183]陈国潮,何振立,姚傀佐.红壤微生物量的季节性变化研究[J].浙江大学学报(农业与生命科学版),1999,25(4):387-388.
    [184]黄靖宇,宋长春,宋艳宇等.湿地垦殖对土壤微生物量及土壤溶解性有机碳、氮的影响[J].环境科学,2008,29(5):1380-1387.
    [185]高云超,朱文珊,陈文新.土壤微生物生物量周转的估算[J].生态学杂志,1993,6:117-122
    [186]冯文婷,邹晓明,沙丽清等.哀牢山中山湿性常绿阔叶林土壤呼吸季节和昼夜变化特征及影响因子比较[J].植物生态学报,2008,32(1):31-39.
    [187] Larionova AA, Yermolayev AM, Blagodatsky SA, et al. Soil respiration and carbonbalance of gray forest soils as affected by land use [J]. Biology and Fertility of Soils,1998,27:251-257.
    [188]马骏,唐海萍.内蒙古农牧交错区不同土地利用方式下土壤呼吸速率及其温度敏感性变化[J].植物生态学报,2011,35(2):167-175.
    [189]施政,汪家社,何容,等.武夷山不同海拔植被土壤呼吸季节变化及对温度的敏感性[J].应用生态学报,2008,19(11):2357-2363.
    [190]王小国,朱波,王艳强等.不同土地利用方式下土壤呼吸及其温度敏感性[J].生态学报,2007,27(5):1960-1968.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700